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A Class of Balanced Non-Uniserial Rings*

VLASTIMIL DLAB and CrLAUS MICHAEL RINGEL

Let R be a ring with unity. An R-module M is called balanced, if the
natural homomorphism from R to the double centralizer of M is surjective.
If every left R-module is balanced, R is said to be left balanced (or to
satisly the double centralizer condition for left modules). It is well-known
that every artinian uniserial ring is both left and right balanced, and
recently Jans [3] conjectured that “if R has minimum condition, then
every R-module has the double centralizer condition if and only if R
is a uniserial ring”. This conjecture has been proved in [1] to be true for
rings which are finitely generated over their centres. However, the follow-
ing theorem shows that, in general, the conjecture is false.

Theorem. Let R be a local ring with the radical W such that W? =0,
dim(g,wW)=2 and dim(Wg,)=1. If R/W is commutative, then R is
both left and right balanced.

It is easy to see that rings satisfying the conditions of Theorem exist.

In Section 1, a sufficient condition for a direct sum of modules to be
balanced is given; it represents a generalization of theorems of Nesbitt
and Thrall [5] and Morita [4]. In Section 2, the indecomposable injective
left module and the indecomposable injective right module over the
rings R described in our theorem are calculated. From this, it follows
that there are exactly three different types of indecomposable left
R-modules (all of which are monogenic), three different types of indecom-
posable right R-modules and that every R-module is a direct sum of
indecomposables. The latter is proved for left R-modules in Sectio.n 3,
and for right R-modules in Section 4. A combination of the previous
results yields the theorem; together with a few remarks, the proof of

Theorem constitutes the final Section 5.

1.

The following Proposition generalizes results of Nesbitt and Thrall
[5] and Morita [4]. We recall that a module M, is said to be a generator
for a module M, if the images of all the morphisms M_D—>M generate M
and that it is said to be a cogenerator for M, if the intersection of the
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kernels of the morphisms M — M, equals zero. Thus, in particular, if M
is isomorphic to a quotient module of M,, then M, generates M and,
if M is isomorphic to a submodule of M, then M, cogenerates M.

Proposition 1. Let M = (@ M. ) ® M, be a direct sum of R-modules
vel g

such that M, is balanced and, for every eI, M, is a generator or a
cogenerator for M.,. Then M is balanced.

Proof. Let, for every y e I'u {0},
n,,M—>M, and 1M -M

be the canonic projections and injections accompanying the direct sum
M ; in particular,
1., =1y foreach ;.

Let v be an element of the double centralizer of M. Consider, for
every y e I'u {0}, the morphism

p,=npn,=M ‘M- MM,
Clearly, if @ : M, M_.(y,y € 'u{0}) is an R-homomorphism, then
(p,x)p=vp,.(xp) forall xeM,.

This follows easily from the fact that m,¢u,, belongs to the centralizer
and y to the double centralizer of M :

Ipy(p = (lywny) (P(Iy’ny’) = IyW(ny(Ply’) ny’
= iy(nyq)ly’) 1P7Ty' = (P‘Py' .

Thus, in particular, v, belongs to the centralizer of M,. Therefore, since
M, is balanced, y, is induced by multiplication by an element g € R.
We are going to show that also v, is induced by multiplication by the
same element g (for every y e I'). Indeed, if x € M$, where ¢ : My — M, is
an R-homomorphism and x = xq¢ with x, € M,, then

¥y X = P,(Xo@) = (o Xo) 9 =(gx,) @ = 0(xo @) = 0x.
As a consequence, if M, generates M, then

y,x=¢x forall xeM,.

Also, if xe M, then p,x — gx belongs to the kernel of every morphism
©:M_—M,: for,

(p,x — x) @ = (9, x) @ —(2x) @ = YPo(xp)— o(xp)=0.
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And hence, if M,, cogenerates M., then

v, x—ox=0, ie 1y x=gx, forall xeM,.

Finally, in order to complete the proof, it is sufficient to observe that,
for every ye 'y {0},

(ymyn, =y, (mn) forall meM;
this follows immediately from
pu, =(yn)n,=(m1,p)n,=nyp,.
And thus, it turns out that
ym= % m,,= T porm],

veI'w {0}

=Y eomn),=Y (gm)m 1, =gm
Y Y
for all m e M, as required.

2.
In what follows, R will always stand for a ring described in our
Theorem, i.e. R will always be a local ring with radical W such that
Q = R/W is commutative, W? =0 and

dim(,W)=2, dim(Wy=1.

For the sake of brevity, we shall often refer to these rings as to rings of

type (2,1).
Our first objective is to determine the indecomposable injective

R-modules. This s achieved in the following

Proposition 2. Let R be a ring of type (2, 1). Let u and v be elements of
W such that Ru+ Rv=W. Then

() g(R/Ru) is an indecomposable injective left R-module and

(r) (R®R)/D]g with D= {(ug, —vg)lee R} is an indecomposable
injective right R-module.

Proof. In order to facilitate the proof of Proposition 2, let us define
a multiplication (which will be denoted by %) on W in such a way that the
bimodule Wy becomes a bialgebra in the following sense:

A left module zW with a multiplication * is called a left alg_ebra, if
(W, %) is a ring, and for all A € R, and w,, w, € W we have the equality
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A bimodule Wy with multiplication = is called a bialgebra, if (;W. s} is a
left algebra and (Wg. *) is a right algebra.

In order to define the multiplication. we take the element ue W
and proceed as follows: Any element of W has the form ug with g € R,
because W is a minimal right ideal. Moreover, it is easy to see that the
morphism from R to W mapping ¢ into ug defines an R-isomorphism of
the simple right module (R/W); onto Wg. Now (R/W)g is not only a
right R-module, but in fact a right algebra with respect to the given
multiplication. And, we define * in such a way that the mapping g—ug
becomes a morphism of right algebras, i.e. we define

(ug)*(uos)=upo forall pg,o in R.

One can see immediately that the operation = is well-defined and that
(Whg, *) is a right algebra. But W is also a left R-module and, we can show
that (W, =) is a left algebra. For, if w, =ug,, i=1, 2, are two elements of
W, and 4 € R, then Au can be written in the form fu = up for some ¢ in R,
and we have

(Awi)xw, = (Aug,)*(ug,) = (ugo,) *(ug,) = uge, 0,
= AuQ, 0, = Al(ug;)*(ug,;)) = Alw, *w,),

as required. This shows that W, is with respect to the operation * a
bialgebra. Let us also point out that the ring (W, ) is isomorphic to
Q=R/W (and is therefore commutative) and that u« is the identity
element of (W, x).

() Now, let us prove that the indecomposable left R-module M = R/U
with U = Ruisinjective. We need to show that every morphisme : zW —-M
can be extended to a morphism from gR to M.

We can assume that the kernel ker ¢ is of length 1. Thus, ker¢ = Rw
for some non-zero w of W. Since wR = W,

u=wg, forsome pg,eR.

Moreover, ¢, must obviously be a unit. Observe that the element
vy =g, ' does not belong to the kernel of ¢. For, otherwise vgg ! would
be in Rw= Rugg ', i.e. v would belong to Ru. Write

(voggHe=Av+UeM, JAeR.

Now, iu=uag, for some o, R and, furthermore, this implies that
Av=1v0,. Indeed, refering back to the first part of the proof,

Vo =(V*u) oy =vx(uoy)=v*(Au)=(Au)*v

=Muxv)y=Av.
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In fact, we claim that g0, induces the morphism ¢. First, if xweker ¢,

then we have the relation
(%xw) o0y =xuoc,=xiuclU.
Second. for r, =g, ' we have the relation
L0Q000 ="UQo 'Qo0o="V0¢=Ab.
Thus, summarizing,
woobo+ U=U=we and v,0,0,+U=4v+U=v40,

i.e. ¢ can be extended to a morphism from gR to M, as required.

(r) The proof that the right R-module M =(R@® R)/D with
D = {(ug, —vp)le € R} is an indecomposable injective will be given in
several steps. Let us start with a remark that v«v can be expressed as a
linear combination of u and v and thus we have

usu=u, uxt=v*u="0, vsv=oau+ fv forsome o feR.

First, M has necessarily a simple socle. For, assume the converse,
i.e. that the socle of M has length = 2. Then, denoting by = the canonic
epimorphism R@ R —(R@®R)/D, R is obviously embedded by

RLRORSM
as a direct summand. Therefore, there is a morphism # : M — R such that
RCURPR-SM LR = 1,.

Now, n has the form (u,, u,), where y; : Rg— Rg can be interpreted as a
left multiplication by y; € R. Under the morphism (u;, #,), D is mapped

into 0 and thus
u
#1”‘#21’:(#1,#2)(_ ) =0.

But, obviously p,v=v and hence p,u=v implying that v € Ru. "[_"his
contradiction shows that the socle of M must be simple. As an immediate

consequence, M is indecomposable.
Second, we are going to show that every socle element of M has the

form (iu+ xv, 0)+ D for some 4, x€ R. On the basis of the preceeding
paragraph, we know that every element of the socle of M has the form

(Wl,W2)+D With er W (i= I., 2).
Moreover, since W = vR, w, = vg, for some g, €R and thus
(wy, wy) + D =(w; +ugs, w,—00,)+D=(w; +ug,;, O)+D.

Obviously, w, + ug, belongs to W and has therefore the required form.

Fon,, N
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Third, we want to show that, for every x e R,
(#fu—x=v.zau)eD.

Again, we shall make use of the operation = and its commutativity. Take
¢ € R such that ug=»flu— xr.
Then,

vo=(vxu)p=ruvx(ug)=rv*(xfiu— xr)
=v*(xfu) — v*(xv)=(xfu)*v —(xr)*r
=xPlurt)—x(v*r)=xfr —x(xu+ fr)= —xau.

Therefore, the element (up, — vg) = (xffu — xr. xau)e D.

Finally, we are ready to prove that M is injective. Again, it is sufficient
to verify that every morphism ¢ : Wy — M can be extended to a morphism
of Rg into M. Since ¢u is a socle element of M.

pu=(Au+xv,00+ D forsome i xeR.

Consider the morphism
(A+xB,x2): R-R®R,
where the ring elements operate on R by left multiplication. Obviously
(A4+xB, no)u=(Au+ xfu, xau)

and thus the morphism

R (A+xf,xa) RC‘BR _E_’ M
maps the element u into

(Au+ = Bu, xau) + D = (Ju+ % Bu, xocu) — (% fu— xv, xou) + D
=(Au+xv,0)+ D= ¢u.

This completes the proof of Proposition 2.

3.

Again, throughout this and the following sections, R denotes a ring
of type (2, 1). Now, knowing the indecomposable injective R-modules,
it is not difficult to derive that every R-module can be decomposed into
a direct sum of indecomposable R-modules. In this section, this result
will be proved for left R-modules.

Lemma 1, Let F be a free left R-module. Let s+ 0 be an element of

the socle of F. Then s belongs to a monogenic submodule which is iso-
morphic to gR.
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Proof. The elements of F can be represented by indexed families
(r;) with r; € R and the restriction that all but a finite number of the r’s
to be zero. An element (r;) belongs to the socle SocF of F if and only if
r.e Wioralli Let

s=(w;) e SocF.

Let u+ 0 be a fixed element of W. Since uR = W, there exists g, € R such
that w; = up;; here, we take g; =0 if w; =0. Now, right multiplication by
o; yields a homomorphism g;: xR — zR, and thus the family (g;)} defines a
homomorphism

¢:gR—-F.

Clearly, up =s, and hence s € Im¢. Furthermore, since s+ 0, there is a
unit g such that w;, = ug, ; as a consequence, Imp = zR.

Let us introduce a notation for the different types of monogenic left
R-modules. Let us point out that, for a given length, all monogenic left
R-modules are isomorphic. The only non-trivial case is that of length 2;
here, the isomorphism follows from the fact that 2 monogenic module of
length 2 is injective. Denote by A4; the isomorphism type of the monogenic
R-module of length i (i=1,2,3); hence, there is the simple module
A, = g(R/W), the injective module A; = zg(R/Ru) of Lemma 1 and the
ring itself considered as a left module 4; = gR.

Lemma 2. Let M be a left R-module with submodules X and Y of type
A such that
X+Y=M and XnY isasimple submodule.

Then M contains a submodule of type A,.

Proof. M is obviously isomorphic to the pushout P of the following

diagram
L —1— R

I

RR—‘_‘) P

where L is a minimal left ideal of R, 1 the inclusion mapping and n a
monomorphism. If x # 0 is an element of L, then

xn=xp forsome geR,

because xR = W. Thus right multiplication by ¢ is a mapping from R
into R satisfying 1¢ = n. But this implies, in view of the properties of a
pushout, that i’ splits and that the complement is just the cokernel R/L
of i. Since R/L is of type 4, the lemma follows.
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Now, we are ready to prove

Proposition 3. Let R be a ring of type (2.1). Then A, 4, and A, are
the only (isomorphism) types of indecomposable left R-modules and every
left R-module is a direct sum of indecomposables.

Proof. To prove our proposition, we shall show that every left
R-module can be expressed as a direct sum of modules of types A4,,
A, or A;.

Let M be aleft R-module. Takea submodule X of M which is maximal
with respect to the property of being a direct sum of modules of type 4,.
Since X is injective, M = X @M, where M’ is a submodule of M which
contains no submodules of type A,.

Now, let Y be a submodule of M’ which is maximal with respect to
the property of being a direct sum of modules of type 4;. Let Z be a
complement of the socle SocY of Y in SocM’. Then, Z is a direct sum
of modules of type 4, and, evidently, Y nZ =0. We want to show that

Y®Z=M".

To this end, assume that there is an element me M (Y @® Z). Then
Rm must be of type A5, because m ¢ Soc M’ and M’ contains no submodule
of type A,. The submodule Y ~nRm is non-zero; for, otherwise Y + Rm
would be a direct sum of modules of type A, contradicting the maximality
of Y. Take s+0 of Y nRm. Since se SocY, Lemma 1 implies that there
is a submodule N C Y of type A; with se N. In view of Lemma 2, NnRm
cannot be simple and therefore the length of N Rm is 2.

If we now assume that Soc(N + Rm) is of length 2, then the embedding
Soc(N + Rm) in the injective module A,@® A4, yields an isomorphism
N+Rm=A,® A, (because both modules are of length 4). However,
since M’ has no submodules of type A,, this is impossible. Thus,
Soc(N + Rm) has to be of length 3, and therefore

N+ Rm=N+Soc(N+Rm).
But this means that

RmCY+SocMCYDZ,

and we get a contradiction to our hypothesis. The proof is completed.

4.

' In this section, we are going to prove a decomposition theorem for
right R?modules analogous to that for left R-modules derived in the
preceeding Section 3. Let us denote by B,, B, and B, the isomorphism
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types of indecomposable right R-modules defined as follows: B, is the
simple module (R/W)g: B, is the ring considered as a right module;
B, i1s the injective module (R@® R)/D described in Proposition 2. Here
again, the index refers to the length of the respective module. Note
however that, contrary to the previous situation, B, is not a monogenic
module.

First, let us prove by induction the following

Lemma 3. (a) Let M be an R-module of length 2n+ 1 generated by
n+ 1 monogenic submodules. Let N be a submodule of M which is a direct
sum of n copies of B,. If, furthermore, M does not contain a submodule of
type B, then

M =N+ SocM.

(b) The only indecomposable R-modules of length <2n+1 are
modules of type B,, B, and By.

Proof. Hf the length of M is 3, and if M contains a monogenic sub-
module N of length 2, then either Soc M is simple — in which case the
injectivity of B, yields an isomorphism from M onto B, or SocM is of
length = 2; in the latter case, evidently

M=N+ SocM.

This establishes the validity of both (a) and (b) for n= 1.

Now, assume that both assertions hold for allm=n— 1.

(a) Without loss of generality, we may assume that the n+ 1 mono-
genic submodules which generate M are all of length 2. We can consider
M as the amalgamation of N with a monogenic module of length 2 with
simple submodules identified. Thus, M is isomorphic to the pushout P
of the following diagram

WR___"_, RRG')RR@@RR

| o

Ry L > P

where 1 is the inclusion of W in R,  is a monomorphism and 1’ corresponds
to the inclusion N € M. Let us take a non-zero element we W; hence,
nwis of the form (x,, X5, ..., X,) with at least one non-zero x;. Assume that

x, +0 and distinguish three cases:
(i) Let x;€ Rw for all 1<i<n. Then, we can find elements o; such

that x, = o,w and thus the morphism

(0-1,0-2, as ey Jﬂ):RR_)RR@RR@..'@ RR
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representing left multiplication maps w into (x,, x,, ..., X,)=nw. But
this means that R Rz®---@ Ry is a direct summand of P. Conse-
quently, the complement is simple and therefore M = N + SocM.

(ii) Let x, ¢ Rw and x;e Rx, for all 1 £i<n. Then, we can find
elements ¢, with x,=6,x,; observe that ¢, is a unit. Now, both n'(1)
and 1'(g,, 0,, ..., 6,) generate submodules of length 2 and the equality

nMHw=ngw=i'nw=1(x, X3, ..., X,)
=1(6,X,02Xy,...,6,X,)=1(0y, 0, ...,6,) X;

shows that
n"wen (1) Rni'(6,,0,,...,6,)R.

Let X =1 (1) R +1(0y, 65, ..., 6,) R. Assuming that i'(g,,0,,...,0,) R is a
direct summand of X, we would havea morphismy'(1)R—1'(g,,0;,....6,) R
mapping #'w into 1'(g, x,, 6, X;, ..., 6,x,), and thus a morphism Rgr— Ry
@ Ry®P--- @ R mapping w into (g, x,, 6,X,, ..., 6,X,). In particular, we
would have a morphism Rp— R, mapping w into o, x; = x, and since
such a morphism must be induced by left multiplication we would get
that x, € Rw, contradicting our hypothesis. Thus, X has to be an
indecomposable R-module of length 3 and therefore of type B,. Since

M has no submodule of type B;, we conclude that the case (i1) cannot
happen.

(1) Let x, ¢ Rw and there is x; such that x; ¢ Rx;. We may assume
that x, ¢ Rx,. Thus, W= Rx, + Rx, and therefore there are elements
a,, 0, such that

W=0,X;+0X,.

In this case, the pushout P can be considered as the quotient module of
n+ 1 copies of Ry by the submodule generated by (w, — x;, — x5, ..., — X,).
Under the morphism

(1,0,,05,0,...,0): Rg@Ry®D - ®Rr— Ry

representing left multiplication, the element (w, — x;, — x5, ..., — X,) 1§
mapped into w — 6, x; — 6, x, = 0 and thus the morphism factors through
P. As a consequence P has a homomorphic image of type B,. The latter
splits off and we deduce that M is a direct sum of a module of type B,
and a module M’ of length 2n — 1.

Now, using the induction argument, M’ is a direct sum of modules
of types B,, B, and B;. However, since M has no submodules of type Bj,
M’ is a direct sum of monogenic modules of length 1 and 2. In particular,
SocM’ has to be of length at least n and therefore SocM has to be of
length at least n+ 1. Consequently, M = N + SocM, as required.
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The statement (a) is established.

(b) Given an indecomposable R-module M of length <2n+ 1, we
deduce immediately that M has no proper submodule of type B,; this
follows from the fact that B, is injective. Now, take a submodule N
which is maximal with respect to the property of being a direct sum of
copies of B,, and let K be a complement of SocN in SocM. In order to
verify (b), it is sufficient to show that M = N@ K, i.e. to show that every
element x € M generating a submodule of length 2 belongs to N® K.
Let M= N + xR. If x ¢ N, then the length of M’ is 2m + 1, where m is the
number of the copies of B, in N. Since m < n, we get by induction

M =N+ SocM’.

But this means that xe N + K.

The proof of Lemma 3 is completed.

As an easy consequence of Lemma 3, we can formulate the following
result parallel to Proposition 3. We may remark that it shows in con-
junction with Proposition 3 that rings of type (2, 1) are rings of SLCRT,
but not of SRCRT in the sense of Tachikawa [7].

Proposition 4. Let R be a ring of type (2,1). Then B,, B, and B, are
the only (isomorphism) types of indecomposable right R-modules and
every right R-module is a direct sum of indecomposables.

Proof. It is sufficient to show that every right module M can be
written as a direct sum of modules of types B;, B, and B;.

Following the method of proving Proposition 3, we denote by X a
submodule of M which is maximal with respect to the property of being
a direct sum of modules of type B; and observe that M =X@®M’. In
M’, take a submodule Y which is a maximal direct sum of modules of
type B,, and denote by Z a complement of SocY in SocM’. We intend
to show that

M=X®Y®Z.

Assume the contrary, ie. that there is an element me M\(Y®Z)
which generates a submodule of length 2. Clearly, because of maximality
of ¥, YAmR % 0. Thus, there is a direct sum Y’ of a finite number of
copies of B, contained in Y such that

Y~nmR=*0.

Now, applying Lemma 3(a) to the module Y'+mR and the submodule
Y’ we get readily that

Y +mR=7Y + Soc(Y' +mR).
Consequently,me Y’ + Soc(Y'+mR)S Y + Soc M’ = Y @ Z, a contradic-
tion. Proposition 4 follows.

21 Math. Ann. 195
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5.
Finally, making use of Proposition 1. 3 and 4. we can readily present

Proof of Theorem. First, it is easy to verify that all indecomposable
R-modules are balanced. This is trivial for A, and B,. as well as for the
simple modules 4, and B,; and. it follows for 4, and B;, because they
are injective modules over a local artinian ring, from a theorem of Fuller
[2] or Tachikawa [8]. In view of Propositions 3 and 4, the fact that every
R-module is balanced then follows immediately from Proposition 1
(taking for M, a direct summand of a maximal length).

Let us conclude this section with a few remarks. The first one con-
cerns the existence of rings of type (2, 1) (cf. Rosenberg and Zelinsky [6]).

Remark 1. Let F(t) be the field of all rational functions over a field F.
Denote by R, the ring of all pairs (f (1), g(1)). where f(1)., g(t) € F(1). with
respect to the component-wise addition and the following multiplication

(f1(), g1 (1) - (f2(0), g2() = (1 () [0, [1(t2) go(n 4+ g, (D) f,(0).

Then R, is a (2, 1)-ring, its radical W, = {(0, g(t))|g(t)€ F(n)}, and thus
R,/W,~F(t).

It may be also appropriate to show that a local artinian ring R with
the radical W does not need to be balanced if R/W? is balanced.

Remark 2. Let F(t) be the field of all rational functions over a field
F. Denote by R, the ring of all triples ( f(t), g(¢), h(1)), where f (1), g(t),

h(t) € F(t), with respect to the component-wise addition and the following
multiplication

(f1(), g1(1), by (1) - (f5(2), g5(2), B, (1))
=(f1(0 100, £1(P)g2(t) + g, (1) £5(0), f1(t*) ha(0) + g, (1)) g, (1) + hy (1) f2(1))-
Then the radical

W3 =1{(0,g(t), h(1)|19(1), hit) e F(1)}

W3 ={(0,0, h(t)| h(t) € F(1)}

and thus R;/W1isa(2, 1)-ring of the type described in Remark 1. However,
as one can easily see, the dimension of the left vector space W3$ over
R,/W, equals 4, and therefore R; is not left balanced (cf. [1]).

. Added in Proo_f (January, 1972). A full characterization of balanced rings will appear
in Lecture Notes in Mathematics (The contributions to the ring and operator year at

Tulane University), Springer-Verlag. In particular, the rings described in Theorem belong
to the class of exceptional rings,
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