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A CLASS OF BOUNDARY VALUE PROBLEMS WHOSE 

SOLUTIONS POSSESS ANGULAR LIMITING BEHAVIOR 

F. A. HOWES* 

ABSTRACT. For small positive values of the parameter e , 
solutions y — y(t, e ) of the problem e2y" = h(t, y), — 1 <Ct < 1, 
y(±l,e) prescribed, are shown to exist and to satisfy (as 
< F - » 0 ^ ) y(t, e ) - * tti(*) on ( - 1 , 0] and y(t,t ) - * u2(t) on [0, 1). 
The functions u\, u2 are solutions of the associated reduced 
equation 0 = h(t, u) on the intervals [ — 1,0] , [0, 1] , respec-
tively, which satisfy Wi(0) = u2(0) and ui'(0) =£. ifc'CO). The 
results are established by using an extension of the classical 
Nagumo theorem for second-order boundary value problems. 

1. Introduction. We consider in this note the singularly perturbed 
boundary value problem 

(1.1) ey = h(t,y),-l< t< 1, 

(1.2) y ( - l , € ) = A , y ( l , € ) = B , 

for small positive values of the parameter €. The principal assumption 
is that the corresponding reduced or degenerate equation 

(1.3) 0=h(t,u) 

has a pair of solutions uY = ux(t) and u2 = u2(t) defined and suitably 
smooth on [ — 1, 0] and [0,1], respectively, with Wi(0) = i*2(0) and 
Ui'(0) j£ u2'(0). Under additional assumptions which guarantee that 
ux and u2 are stable roots of equation (1.3), it will be proved that for 
each sufficiently small value of e > 0, the problem (1.1), (1.2) has a 
solution y=y(t,€) which satisfies y(t,€)—*> ux(t), t G ( - l , 0] , and 
y{t,e) —» u2(t), t Œ [0,1), as €—»0+. The nonuniform convergence 
which occurs near the boundaries t = ± 1 (i.e., boundary layer be-
havior) is, of course, characteristic of solutions of a wide class of singu-
lar perturbation problems. 

Similar observations have been made by Haber and Levinson [7] 
for the case of the more general boundary value problem 

cy" = f(t,y,y',c), - l < t < l , 

t/( — l ,c) , t/(l,c) prescribed. 

•Research conducted as a Visiting Member, Courant Institute of Mathematical 
Sciences, New York University, and supported by the National Science Founda-
tion under Grant No. NSF-GP-37069X. 

Copyright © 1976 Rocky Mountain Mathematics Consortium 

591 



592 F . A. HOWES 

However, in their discussion, a crucial assumption is that the function 
dfldy' is never zero along appropriate solutions of the reduced 
equation 0 = f(t, u, u', 0). In addition, their assumptions preclude 
the occurrence of boundary layer behavior near t = ± 1. 

We remark that various aspects of the problem (1.1), (1.2) have been 
studied by several authors, including Bris [2], Vasileva [13, Chap. 
3] , Carrier and Pearson [3, Chap. 18], Boglaev [1], Fife [4], [5], [6], 
and most recently, Habets [8], and O'Malley [12]. The theorems 
proved below are most closely related to the work in [1] and [2]. 

The principal tool of our investigation is an extension of the clas-
sical Nagumo theory of two-point boundary value problems due to 
Habets and Laloy [9]. For convenience of the reader, we state this 
result in the next section before commencing our study of (1.1), (1.2). 

2. Nagumo-type Inequalities. Our study of the problem (1.1), (1.2) 
is made possible by the following generalization of a theorem of 
Nagumo [11], [10, Thrm. 7.3] due to Habets and Laloy [9]. 

Consider the general boundary value problem 

(2.1) x" = F(t,x,x'),a< t< b, 

(2.2) x(a), x(b) prescribed, 

where F is continuous on [a, b] X R2. Suppose first that there exist 
two continuous functions a = ait), ß = ß(t) on [a, b], a = ß, which 
are piecewise — C(2) on [a, b], i.e., there is a partition {t{} of [a, b], 
1 = i = n + 1, with a = tx < t2 < ' • • < tn+l = b, such that on each 
subinterval [t^ ti+i], a and ß are twice continuously differentiable. 
At the partition points ti9 ti+l, the derivatives are the righthand, re-
spectively, lefthand derivatives. Suppose next that on each subinterval 
[tu U+\] ? 

a"(t)^F(t,a(t),cx'(t)) 

and 

ß"(t)^F(t,ß(t),ß'(t))9 

and that for each t G [a, b], Dza(t) g Dra(t) and Dß(t) ^ Drß(t\ 
where D£, Dr denote lefthand, respectively, righthand, differentiation. 
Finally suppose that a(a) = x(a) = ß(a) and a(b) = x(b) = ß(b). Then 
if the function F satisfies a Nagumo condition with respect to a, ß, 
i.e., if there exists a positive continuous function <f> = <f)(s) such that 
So°s(kl<l>(s) = oo and | F ( * , x , x ' ) | ^ ( | x ' | ) , for * G [ a , 6 ] , a(t) g 
x(t)^ß(t) and |x ' | < oo? the problem (2.1), (2.2) has a solution x = 
x(t) satisfying a(t) ^ x(t) ^ ß(t), for t G [a, b]. 
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We remark that since the function h = h(t, y) in (1.1) is independent 
of y ', it trivially satisfies a Nagumo condition. Consequently, the prob-
lem of studying the existence and asymptotic behavior of solutions of 
(1.1), (1.2) for small values of e reduces to the construction of suitable 
bounding functions a and/3 satisfying the above inequalities. 

Finally we state that in the following sections all derivatives of the 
functions uY and u2 at the point t = 0 are to be understood as the 
appropriate one-sided derivatives. Also partial derivatives will be 
indicated as follows: dy

kh(t, y) = dkh(t, y)ldyk. 

3. The Case w/(0) < u2'(0). Consider now the boundary value 
problem 

(3.1) € y = h(t,y),-l< t< 1, 

(3.2) y(-l,e)=A,y(l,e)=B, 

and the corresponding reduced equation 

(3.3) 0 = h(t, u). 

We assume in this section that (3.3) has solutions u = u^t), u = u2(t) 
on [ — 1,0], [0,1] , respectively, satisfying 1^(0) = %(0) and uY '(0) < 
u2 ' (0). 

THEOREM 3.1. Assume 

(1) there exist junctions ux = ux{t) and u2 = u2(t) defined on Ix = 
[ — 1, 0] and I2 = [0,1] , respectively, satisfying for i = 1, 2 : h(t, u^t)) 
= 0, with \u"(t)\ = M, t G IÌ; moreover, u^O) = u2(0) and u1'(0) < 
V(0); 

(2) for a nonnegative integer q, the function h is continuous in (t, y) 
and of class C(2q + l) with respect to y in D : —1 ^§ t^ l,\y — Ui(t)\ ^ 
d, i = l,2,withd^ m a x { | A - t i ^ - l ) ! , |B - t/2(l)|}; 

(3) for t G /,-, i = 1, 2, dy
kh(t, Ui(t)) = 0, k = 1, • • -, 2q; dy

2^% 
è m2 > 0 in D,for a positive constant m. 

Then there exists an e0 > 0 such that for each c, 0 < e ^ e0, there 
exists a solution y = y(t, e) of (3.1), (3.2). In addition, for 

r « l W , - l £ t S 0 , 

' \u2(t), O S f g l , and t G [ - 1 , 1 ] , 

\y(t,€) - u(t)\ ^ \A - Ul(-l)\exV[-me-\l + t)] 

+ \B- «2(1)| exp [ -me-» ( l - t)] + Coe, 

ifq = 0; 
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\y(t,e) - u(t)\ =S \A - U l ( - l ) | ( l +a1(<7)e-i(l + t))-"~l 

+ \B - u2(l)\(l + a2(q)e^(l - t))-^ 

if g ^ 1. Here 

<jx(q) = mg((9 + 1)(29 + l)!)-i '2 |A - U l ( - 1 ) K 

a2(q) = mq((q + l)(2q + l)\)~^\B - u2(l)|«, 

and c0, cq are positive, computable constants independent ofe. 

This theorem and the two that follow will be proved at the end of 
this section. We note that in Theorem 3.1 there is no restriction placed 
on the relative position of uY(— 1) and A, and u2(l) and B. In the next 
two theorems, however, the weaker assumptions will require that 
appropriate restrictions be placed on these quantities. 

THEOREM 3.2. Assume (1) and (2) as in Theorem 3.1 with the excep
tion that in (1) Ui" ^ 0, t G lh i = 1, 2, and % ( - l ) g A, u2(l) ^ B, 
and in (2) /i is of class C(n) toff/i respect to y, for n = 2. Assume a/so 
(3)' /or * G 4 i = 1, 2, dy

kh(t,Ui(t)) ^ 0, fc = 1, • • -, n - 1; «y*/* 
^ m2 > 0 in D,for a positive constant m. 

Then there exists an e0 > 0 suc/i that for each e, 0 < e S e0) £here 
exists a solution y = y it, e) of(3.1), (3.2). In addition, for t G [ — 1, 1], 

0 ^ y ( * , e ) - u ( t ) 

^ ( A - f*i(-l))(l +a 1 (n)€- 1 ( l + 0)"2 ( n~1 ) _ 1 

+ (B - tt2(l))(l +a 2 (n)€- 1 ( l - 0 ) - 2 ( n - i r l 

+ cne^^-1 , 

inhere 

a » = m(n - l)(2(n + l)n\)-l'2(A - ^i( —l)) (n"1)/2, 

a2(n) = m(n - l)(2(n + l)n!)"1/2(B - ^(l))*»"1*'2, 

and fhe cn are positive, computable constants independent ofe. 

THEOREM 3.3. Make the same assumptions as in Theorem 3.2 with 
the exception that in (3) ', for t G I{, i = 1, 2, dy

kh(t, u^t)) ^ 0, fc = 
0 , 1 , • • • , £ — ! ; dy

lh(t, Ui(t)) ̂  m2 > 0, 1 ^i £ < n, /or some positive 
constant m; and finally, dy

l + lh^: 0 in D. 
T/ien £/iere exisfs an e0 > 0 such that for each €, 0 < e = e0, fhere 

exists a solution y = t/(£, e) o/(3.1), (3.2). In addition, for t G [ — 1,1], 
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0^y(t9€)-u(t) 

g ( A - w 1 ( - l ) ) e x p [ - m € - 1 ( l + t)] 

+ (B- w 2 ( l ) )exp[~m€- 1 ( l - t)] + c0e, 

if I = 1; 

0^y(t,c)-u(t) 

g (A - W!(-l))(l 4- a ^ c - K l + t))-2«-1)-1 

+ (B - M2(1))(1 + C72(£)e-i(l - ^ ) ) - 2 ( £ - i r l 

if £ = 2. Here ai(a)9 cr2(£) « ^ ^ constants appearing in the state
ment of Theorem 3.2 IUÌÉTÌ n replaced by £. 

Before proceeding to an outline of the proofs of Theorems 3.1, 3.2 
and 3.3, it is perhaps worthwhile to examine briefly the differences be-
tween these results. In Theorem 3.1, the functions w1? u2 are assumed 
to be roots of the reduced equation (3.3) of multiplicity 2q + 1. The 
partial derivative, dy

2q + lh, is required to be strictly positive in the 
entire region D; consequently, as noted above, the validity of the 
result is independent of the relative positions ofu^—1), A and w2(l), 
B. On the other hand, in Theorem 3.2 it is only required that dy

k 

h(t, Ui(t)) be nonnegative for t in l{ and 1 ̂ = k ^ n — 1. Moreover, the 
first partial derivative, dy

n h, which is strictly positive in all of D, may 
be of even or odd order, whereas in Theorem 3.1, an odd order deriva-
tive was required to be strictly positive. These weaker assumptions 
necessitate the restrictions that tti(— 1) = A, w2(l) = B and u" = 0, 
i = 1, 2. Finally, Theorem 3.3 is a variant of Theorem 3.2 in the sense 
that the first strictly positive partial derivative, dy

l h, is only required 
to possess this property along the reduced path formed by ux and u2, 
provided the next higher partial derivative, dy

l + lh, is nonnegative 
in all of D. These various nuances are illustrated by several repre-
sentative examples in § 6. 

The theorems are proved by defining the following functions o, ß 
and verifying that the inequalities of the Habets-Laloy theorem are 
satisfied. In the case of Theorem 3.1, define for t G [ — 1,1] and e > 0, 
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«i(t,c)= i 

ßi(t,e) = 

u^t)- \A-Ul(-l)\E(t,e) 

- | B - « 2 ( l ) | F ( 0 , e ) - r ( e ) , - l ^ t ^ 0 , 

u2(t)- |B - u 2 ( l ) |F (M) 

- | A - U l ( - l ) | E ( 0 , e ) - r ( € ) , 0 ^ t g l ; 

' ui(t) +\A- u^-l^Efae) + H(t,e) + T(e) 

+ ( l - t ) | A - « 1 ( - l ) | E ' ( 0 , e ) 

+ | B - « 2 ( l ) | ( F ( 0 , e ) 

+ F ' ( 0 , 6 ) ) , - l g ( g 0 , 

u2(t) +\B- u2(l)\F(t,e) + H(0,e) + I » 

+ ( l - * ) | B - u 2 ( l ) | F ' ( 0 , « ) 

+ | A - u 1 ( - l ) | ( E ( 0 , e ) 

+ E ' ( 0 , € ) ) , 0 ^ f ^ 1. 

Here 

E(t,e)= exp[-me-1(l+ t)], if q = 0, 

E(M) = ( 1 + ^ ( 9 ) 6 - 1 ( 1 + t ) )" ' " 1 , if 9 = 1; 

F(t,e)= exp[-me-\l- t)], if</ = 0, 

F ( M ) = (1 +a 2 (9 )e - 1 ( l - «)) - ' " ' , if«? ^ 1; 

I » = (e V^
2
)

( 2 t , + i r
' , if 9 ^ 0, 

for -y a positive constant to be determined below; and finally, 
H(t,e) = e m - 1 ( « 2 ' ( 0 ) - M l ' ( 0 ) ) e x p [ m € - 1 ( ] , ifq = 0, 
H(t,e) = 9fc-Ie<" + I»-I(n2 '(0) - «J '(0)) • 

• (1 - ke-to + v-H)-'!-1, if 9 ^ 1, 

with 

k = \mq« + 1\(q + l)(2q + l ) ! ) - » 2 ^ ' ^ ) - "i '(0))"| ^ + 1 ) _ I 

In the case of Theorem 3.2, define 

a2{t,e) = 
rUl(t),-l^t^0, 

\u2(t), O g f g l ; 
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02(f,e) = 

Here 

«,(*) + (A - ttl(-l))£(n)(t,e) + JZ(B,(t,e) + I » 

+ ( l - t ) ( A - t t 1 ( - l ) ) E ' ( B ) ( 0 , e ) 

+ (B-« 2 ( l ) ) (F ( n ) (0 ,€) 

+ F ' ( B ) ( 0 , e ) ) , - l ^ « ^ 0 , 

u2(t) + (B- u2(l))F(n)(t,e) + H(n)(0,c) + T(e) 

+ ( l - t ) ( B - « 2 ( l ) ) F ' ( B ) ( 0 , e ) 

+ ( A - « 1 ( - l ) ) ( £ ( B ) ( 0 , e ) 

E ( n ) ( M ) = ( l + o - 1 ( n ) e - i ( l + *) ) - 2 < "- 1 , " \ 

F(n)(f,e) = ( 1 + a 2 ( n ) e - ' ( l - l ) ) -2 (" - i r ' , 

H ( B )( t ,e)= ( n - l) /2fc«2<»^)- ' («i ' (0)-«i ' (0)) . 

•(1 - fc-zfa + n- ' f )-«»-!)-^ 

with 

Jfc = 

and 

m* ( n - l)" + 1 ( n + 1 ) - I 2 - " ( W 2 ' ( 0 ) - M 1 ' ( 0 ) ) " -
(n + l ) - l 

r(e)= (eV»"
2
)""

1
-

Finally, in the case of Theorem 3.3, define 

«&(',«) = <*z(t,e) and fl3(*,e) = ß2(t,e) 

with n replaced by £, if£ ^ 2. If£ = 1, define E(l)(t,e) = exp[— me-1 

( 1 + 0 ] , Fai(t,f)=exp[-me-l(l-t)]i Ha)(t,e) = em-\u2'(Q) -
«i'(0)i exp[m£- ' t ] , and I » = « V * - 2 . then /83(*,«) = ß2(t,e) with 
E(n) replaced by E(1), etc. 

We observe that for each pair eç, ßj, j = 1, 2, 3, aj ï i ßj, eç( — 1 , e) 
S A g ( 3 / - 1 , 6 ) , aj(l, e ) S ß g f t ( l , e), and that Drrç(0) è Dtrç(0) 
and D„ßj(0) = DJij(0), for sufficiently small values of e. It only re-
mains to verify that the differential inequalities 

« V W = *(', <%(*)) and «%"(«) g /»(*,/%(*)) 

are satisfied on [ — 1, 0] and [0, 1]. Since the arguments are virtually 
the same, we verify in detail only that €2/32"(£) = h(t, ß2(t)) and 
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€2oz"(t) ^ h(t, a2(t)). Recall that 

( Ul(t) +(A-u1(-l))Ein)(t,e) 

J +H(B)(t,e) + r1(e), -l^t^O, 

u2(t) + ( B - t t 2 ( l ) ) F ( n ) ( t , e ) 

^ + r 2 ( e ) , O ^ t ^ l , 

where r » = (1 - t)(A - u,(-!))E('n)(0,e) + (B - u2(l))(F(B)(0, e) 
+ F'(B)(0,e)) + I » and ra(e) = H(n)(0,e) + (1 - t)(B- u2(l))F'(B) 

(0, e) + (A - u 1 ( - l ) ) (£ ( n ) (0 , €) + E(n)(0, c)) + I » . We note that if 
A > t/j(— 1), the terms r\(e) and r2(e) are nonnegative for e sufficient-
ly small even though they contain the negative terms (1 — t)(A — ul 

(-1))E' (B)(0, e) and (A - W l ( - l ) )E ' ( n ) (0 , e), respectively. On [ - 1 , 0] , 
differentiating ß2, substituting into (3.1) and expanding by Taylor's 
Theorem we have 

h(t,ß2(t))-e*ß2"(t) 

= "s f±dSh(t,u1(twA-«i(-wat,*) 
fc=i I K ! 

+ H(B)(*,e) + r 1 (6 ) ]*} 

+ jjdynh{-}[(A-Ul(-l))E(n)(t,e) 

+ H (n)(t, c) + rl(e)]» 

- « V'W 

- e%A - ul(-l))E"{n)(t,e) - €2iT(B)(*,€), 

where { * } G D is the appropriate intermediate point. We now use 
assumptions (1) and (3) ' and the fact that rx(e) ^ 0 to continue with 
the inequality: 

h(t,ß2(t)) - eW(t) 

^ ^ [ ( A - M l ( - l ) )«EfB ) (M) + **•}„,(*, e) + r ^ e ) ] 
n! 

- e*M - €*(A - U l ( - l ) )E" ( B , ( t ,e) - e*H»M(t,e). 

We note next that the functions E(n) and H(n) satisfy by construction 
the differential equations: 
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e*(A - Ul(-l))E"(n)(t,e) = ^ ( A - t ^ - l ^ E ^ e ) 

and 

e*H"(n)(t,e)=t^HUt,e). 

Also, a short computation reveals that for y > 1 and e sufficiently 
small, r ^ e ) ^ (l/2)(€2ym"2)n-1. Consequently, 

h(t,ß2(t)) - €%"(*) ^ ^ » ( e ) - e2M, 

2 

n! 

provided the constant y > 1 is additionally chosen so that y i^ 2nn\M. 
Similarly on [0,1] , 

h(t,ß2(t))-e*ß2"(t) 

-e2M-e2(B-u2(l))F'\n)(t,e) 

g ^ r 2 » ( € ) - € 2 M g o , 
n! 

since y â max{l, 2nn!M}, and since e2(B — u2(l))F'\n)(t, e) = (m2ln\) 
(B — u2(l))

nFn
(n)(t, e). The verification that a2 satisfies the required 

inequalities is trivial, since h(t, a2(t)) = 0, t G. [ — 1, 1] and ct2" = 0, 
i.e., e2a2"(t) "" h(t, a2(t)) i? 0. Thus by the theorem of Habets and 
Laloy, quoted in § 2, under the assumptions of Theorem 3.2, the prob-
lem (3.1), (3.2) has a solution y = y(t, e) satisfying the stated estimates. 
The proofs of the other two theorems follow analogously. 

REMARK 1. We note that the above theorems are valid under the 
assumption that uY '(0) = u2'(0). Theorem 3.1 is then a slightly stronger 
statement than a theorem of Boglaev [1, Thrm. 1]. Similarly, 
Theorem 3.2 is a generalization of Theorem 2 in [1]. 

REMARK 2. In Theorem 3.3, if £ = 1, then it is not necessary to 
assume that u" = 0, t G lh i = 1,2. Simply define 

uY(t) - e2m~2My - l ^ f ^ O , 
a 3 ( + -x - ' lu9(t) — i2(t) -e2m-2M, O S ^ S l , 

where \u"\ = M. It follows easily that e2a3" è h(t, a3). 
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REMARK 3. Although we will not discuss it here, it is clear that the 
derivatives yf(t,e) behave non-uniformly in a neighborhood of t = 0, 
since ux '(0) < u2 '(0). In addition, y '(t, e) possesses boundary layers at 
t= ± 1 . 

REMARK 4. Finally we note that we have made no statement con-
cerning the uniqueness of solutions. Under certain circumstances, it 
may be possible to proceed as in [1] to show uniqueness. However, 
many nonlinear problems of interest (see, e.g., [3, Chap. 18] and [12] ) 
have nonunique solutions. The theorems in this section and the next 
only assert that under the stated assumptions there is at least one 
solution with the specified asymptotic behavior. 

4. The Case ul'(0) > u2 '(0). If the derivatives of the functions ux 

and u2 satisfy the opposite inequality uY '(0) > u2 '(0), then it is possible 
to obtain results analogous to those of the previous section. To be pre-
cise, we simply make the change of dependent variable y —» —y and 
apply the theorems of § 3 to the transformed problem. For the sake of 
clarity we isolate these results as theorems. 

THEOREM 4.1. Make the same assumptions as in Theorem 3.1 with 
the exception that in assumption (1), ux '(0) > u2'(0). Then the con
clusion of Theorem 3.1 holds. 

THEOREM 4.2. Assume (1) and (2) as in Theorem 3.1 with the excep
tion that in assumption (1), u-'{t) ^ 0, t G Ih i = 1, 2, uY '(0) > u2 '(0) 
and Ui( — 1) = A, u2(l) ^ B; and in assumption (2), h is of class C{2q) 

with respect to y, for q ^ 1. Assume also (3) for t G Ih i = 1, 2, 
dy

2k + lh(t,Ui(t))^0, dy
2kh(t, Ui(t))^0, fc = 0, l, • •-, 9 - 1 ; and 

dy
2qh = — m2 < 0 in D,for m a positive constant. 
Then there exists an e0 > 0 such that for each €, 0 < e = e0, there 

exists a solution y = y(t,e) of (3.1), (3.2). In addition, if 

,., r u i ( * ) , - l ^ * ^ 0 , 
m \u2(t), O^t^l, 

and t G [ —1,1], 

(A - tt,(-l))(l +a 1 (9 )e - i ( l + t ) ) - 2 ^ - 1 ' " 1 

+ (B - «2(1))(1 +a 2 (9 )e - i ( l - * ) ) - 2 ( 2 " - l r ' 

- cqe
2<2<<+1>-' ^ y(t, e) - u(t) ^ 0. 

Here a^q), a2(g) are the constants ffi(n), c2(n), respectively, 
of Theorem 3.2 with n replaced by 2q. 
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THEOREM 4.2 '. Make the same assumptions as in Theorem 4.2 with 
the exception that h is of class Ci2q + l) with respect to y, q= 1, and in 

(3), 

a,2*+•/»(*, «,(0) ^ o, dy
2k+2h(t,Ui(t)) g o, 

fc = 0,1,2, • • -,q - 1; 

and dy
2q + lh = m2 > 0 in D,for m a positive constant. 

Then the conclusion of Theorem 4.2 holds with the estimate, for 
t e [ - 1 , 1 ] , 

( A - « . ( - I M I + ^ ( 9 ) 6 - 1 ( 1 + * ) ) - ' - ' 

+ ( B - « 2 ( l ) ) ( l + a 2 ( 9 ) C - ' ( l - J ) ) - " - 1 

- c„e'<+i r l g i / ( ( , e ) - tt(t)^0. 

77ie constants a-^q), <r2(q) are those appearing in Theorem 3.1. 

THEOREM 4.3' . Ma/ce the same assumptions as in Theorem 4.3 
tionthatu" Si 0, «/(O) > u2 ' (0), andux{— 1) è A , « 2 ( l ) = B. Assume 
ako (3) ' for t E. J„ i = 1, 2, dy

2k + ih(t, u{(t)) ^ 0, ay
2^(t , «,(*)) g 0, 

fc = 0, 1, • • -, £ - 1, £ ^ 1, 2£ + 1 g n; dv
2tÄ(t, «,(*)) = ~m2 < 0, 

/or m a positive constant; finally, dy
u + 1h^ 0 in D. 

Then there exists an e0 > 0 such that for each e, 0 < e Si e0, there 
exists a solution y = y(t, e) o/(3.1), (3.2). In addition, for t (E [ — 1,1], 

( A - M l ( - l ) ) ( l +<r1(£)e-1(l + t))-2<a-ir ' 

+ (B - u2(l))(l +a 2 (£)e- 1 ( l - t))~^~^ 

_ c # 2(2i+i)-i ^y(t,e)-u(t)^0. 

THEOREM 4.3 ' . Make the same assumptions as in Theorem 4.3 
the exception that (3 ') should read: For t G Ihi = 1, 2, dy

2k + lh(t, ut(t)) 
S 0, dy

2k+2h(t, Ui(t)) Si 0 ; fc = 0, 1, • • • , £ - ! , £ S 0, 2H + 2 Si n; 
dy

2l + ih(t, Uj(t))^m2>0, for m a positive constant; finally, 
dy

2t+2h^0inD. 

Then the conclusion of Theorem 4.3 holds with the estimate, for 
t e [ - 1 , 1 ] , 

( A - « 1 ( - l ) ) e x p [ - m e - 1 ( l + *)] 

+ (B - M 2 ( l ) )exp[-me- 1 ( l - t)] - c0e 

if I = 0; 
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+ (B - tt2(l))(l +a 2(£)€- 1( l - t))-t~l - c^+V-1 

^y(t,e)-u(t)^0, 

ifl^ 1. 

REMARK. The results stated in this section are also valid if Mi '(0) = 
u2 '(0). Theorem 4.2 is then a slight generalization of another result of 
Boglaev [ l ,Thrm.3] . 

5. Discussion. In this section we want to motivate, at least in part, 
some of our assumptions in the two previous sections, and also to 
discuss briefly the relationship of our results with those of Boglaev [1], 
Fife [4],andO'Malley [12]. 

In § 3 we assumed that the partial derivatives dy
kh were all non-

negative either along the reduced solution paths u^t) or in the larger 
domain D. It is instructive to note that such nonnegativity restrictions 
imply the following; in each of the theorems of § 3, if u^ — 1) < A, then 
/ i ( - l , A) > 0, and similarly, if M2(1) < B, then h(l, B) > 0. This is 
most easily seen by applying Taylor's Theorem: 

/ i ( - l , A) = hi-ltU^-l) + ( A - t*!(-l)) 

= S'-rrVM-l^^-lJKA-^-l))* 
fc=i Kl 

+ Jydy-h{'}(A-ul(-l)y\ 
n! 

for { . } = ( - l , Ml( —1) + 0 ( A - w 1 ( - l ) ) G D , O < 0 < 1 , i.e., 
h(-l, A) ^ (1/n!) dy

nh{ • }(A - f i ! ( - l ) ) n > 0. Similarly, h(l9 B) 
^ (1/n!) dy

nh{ • • } (B-w 2 ( l ) ) n > 0. The positivity of / i ( - l , A) and 
h(l, B) then implies that any solution y = y(t, e) of the problem (3.1), 
(3.2) is convex near t = — 1 and t = 1, since e2î/"( — 1) = /i(— 1, A) > 0 
and 62j/"(l) = h(l, B) > 0. Analogously, the inequality restrictions in 
the theorems of § 4 imply the following: if ux(— 1) > A, then h(—l, A) 
< 0, and if u2(l) > B, then h(l, B) < 0. That is to say, in the boundary 
layers at t = ± 1 , any solution y is concave, since e2y"(± 1) is negative. 
Again these results follow from Taylor expansions of h(— 1, A) and 
Hh B). 

This discussion leads naturally to a consideration of the following 
question: if we only assume in the case wx( — 1) > A that h(—l, A) < 0, 
can we conclude that any solution of the problem e2y" = h(t, y), 
— l<t<l, y( — 1, e) = A, Ì/(1, e) = B, possesses a "concave" boun-
dary layer at t = —1? Analogously, if Wx( — 1) < A, is the assumption 
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that h( — 1, A) > 0 strong enough to guarantee the existence of "con-
vex" boundary layers at t— — 1? It does not seem possible, under 
these weaker assumptions, to prove any kind of general statement akin 
to those of the previous sections using differential inequalities. There 
are simply not enough hypotheses to which one can apply the ma-
chinery of the Nagumo or Habets-Laloy theorems. However, Boglaev 
[1], Fife [4] and O'Malley [12] have obtained results under 
such weaker assumptions by using conditions which involve integrals 
of the righthand side h(t,y) in place of conditions involving partial 
derivatives. In doing so, they forsake obtaining explicit boundary 
layer information; however, their results apply to problems which ours 
do not. 

Nevertheless we note that in particular instances, it may be possible 
to apply differential inequalities to problems of the form (3.1), (3.2) 
which satisfy some but not all of the assumptions in §§ 3 and 4. An 
example of a problem of this type is given in the next section. 

6. Some Examples. We present now some applications of the 
theorems proved above and of the discussion in § 5. 

EXAMPLE 1. 

€ V = (if + /(*))2q + 1> - 1 < *< 1, 

î / ( - l , e ) = A,t/(l,e) = B, 

where q is a nonnegative integer and 

m = ft, - l ^ t ^ o , 
J(> l-t, O g f g l . 

Solving the reduced equation (w + f(t))2q + i = 0, we clearly have 
Mj(£) = — t, u2(t) = t. Thus applying Theorem 3.1, we conclude that 
for each sufficiently small e > 0, there exists a solution y = y(t,e) 
satisfying: for q = 0, 

\y(t,e)+ t\^\A- l | e x p [ - e - 1 ( l + t)] + c0e, 

- l S f g O , 

\y(t,e) - t\ S \B - 1| e x p f - c - ^ l - t)] + CQC, 

O S f g l ; 

for ç g l , 

\y(t,e) + t\^\A- 1|(1 +a , (c / )€- ' ( ! + O) ' ' ' " ' + c q e < W , 

- l g f g O , 
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\y(t,e) - t \ ^ \ B - 1|(1 + a 2 ( 9 ) e - ' ( l - t ) ) - * " + c ^ + T1., 

O g f g l . 

EXAMPLE 2. 

€ Y = y2 + (1 + t)y + g(t), - K K 1 , 

t / ( - l , e ) = A , y ( l , € ) = B , A , B ^ 1 , 

where 

g U \ - ( £ + 2 * 2 ) , O g ^ l . 

The reduced equation u2 + (1 + £)w + g(£) = 0 has the solutions w 
= -t,u= - 1 on [ - 1 , 0 ] and u = *, w = - (1 + 2*) on [0,1]. Con-
sider now hy(t,u(t)) for h(£, t/) = y2 + (1 H- £)y + g(£). Clearly, 
fry(*, y) = 2y 4- 1 + t and 

fe„(*, - f ) = 1 - t^ I o n [ - 1 , 0 ] , 

V*, - 1 ) = * - 1 ̂  0 on [ - 1 , 0] ; 

hy(t,t)= 1 + 3 * ^ I o n [0,1], 

hy(t9-(l + 2f)) = - ( 1 + 3 * ) ^ - I o n [0,1] . 

Thus, ux = — t, u2 = t form a stable pair with hy(t, u^t)) izî 1. Since 
Wi(— 1) = 1 = A and w2(l) = 1 = B, we may apply Theorem 3.3 (with 
£ = 1) to conclude that for each sufficiently small e > 0, there exists 
a solution y = y(t,e) satisfying 

0^y(t,e) + * ^ ( A - l ) e x p [ - e - 1 ( l + *)] + c0€, 
- I S f S O , 

0 ^ y(t,€) - * g (B - l ) e x p [ - € - i ( l - 0] + c<fi, 

EXAMPLE 3. 

€
Y = J/

2
" ^ - 1 < * < 1, 

?/( - l ,e) = A, t / ( l , e ) = B . 

Clearly the solutions of the reduced equation are u = ±t; and since 
Jitf(f, y) = 2(/, Jitf(f, - 1 ) = - 2* ^ 0, on [ - 1 , 0 ] while Jitf(f, f) = 2t 
= 0 o n [0, 1]. Consequently, ux = —t,u2= t form a stable pair and 
provided A ^ 1, B ̂  1, we can conclude via Theorem 3.2 (with n = 2) 
that for each e > 0, € sufficiently small, there exists a solution y = 
y(t,e) with 
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0^y(t,e) + t^(A- 1)(1 -f a1(2)€-1(l + *))"2 + c&u\ 

0 g t / ( ^ ) - t^(B- l ) ( l + a 2 ( 2 ) 6 - 1 ( l - t)~2+ c2€
1^ 

0 S * g l . 

If on the other hand, we have —1 < A, B < 1, then Wi( — 1) > A and 
u2(l) > B, and we cannot apply any of the results in § 4, since /iy{/ = 2 
and we require hyy < 0. We note however that with this choice of A 
and B, / i ( - l , A) = A2 - 1 < 0 and fe(l, B) = B2 - 1 < 0, so there is 
a possibility that solutions exist which possess "concave" boundary 
layers at t = ± 1 . Indeed, it is possible to describe the asymptotic 
behavior of a solution of this example for — 1 < A, B < 1 by defining 
the functions 

a(t,e) = 

0(*,€) 

-t + ( A - l )exp[ -(T^-^l + t)] - € y ( l - t2), 

t + ( B - l ) e x p [ - ( 7 2 6 - i ( l - *)] - € y ( l - *2), 

•* + fc-^l - kt€-2^)-'2, - I g * ë 0 ; 

-1/3 where 0 < a 1 < A + l , 0 < a 2 < B + 1, 0 < fc < 6~1/3, and y > 0 
is suitably chosen, and verifying that the required inequalities are 
satisfied for small positive values of €. It is now easy to treat this prob-
lem with boundary data of the form — 1 < A â l , B = 1 or A § 1, 
— 1 < B = 1, by using suitable combinations of the bounding func-
tions a, ß. Finally, we remark that if either A < — 1 or B < — 1, then 
there is no solution of the problem for small e > 0 of bounded t-
variation, since / i ( - l , A) = A2 - 1 > 0 and h(l, B) = B2 - 1 > 0. 
Put geometrically, if there were a solution of bounded ^-variation, it 
would have the wrong convexity properties in the boundary layers 
near t = — 1 or t = 1. 

EXAMPLE 4. As our final example we study a problem which is not 
amenable to treatment by the integral methods of [ 1]. Consider 

€y (y + f(t))*,-Kt<l, 

j , ( - l , « ) = A â l , y ( l , « ) = B è l , 

where 
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f{t)={-t, o s t s i . 

Clearly the solutions ul = — t, u2 = t form a stable pair with Ui( — 1) 
= 1 g A and u2(l) g B. Thus by Theorem 3.2 (with n = 2), this 
problem has a solution y = y(t,e) for each sufficiently small € > 0 
satisfying 

O ^ y ( M ) + * = ( A - l ) ( l + a 1 ( 2 ) e - 1 ( l + £))~2 + c2e1/3, 

- l g * g 0 , 

0^y(t,c) - t ^ ( B - l)(l +a 2 (2)6- 1 ( l - *))-2 + c^1 '3 , 

However, the potential energy function 

U(y,t)=- \\ (s + f(t)T~ds 
J A 

does not possess a maximum along the pair uY = —t, u2 = t at the 
point £ = 0, and so Theorem 6 of [ 1] is not applicable to this problem. 

7. An Extension. We close with the observation that the above 
results are valid in the case of the more general problem 

(7.1) ey = h(t,y)p(t,y,y'),-l<t<l, 

(7.2) y( ± 1, € ) prescribed, 

where h is as before and where the continuous function p satisfies the 
two assumptions: p = p(t, y,y')^ /x,2 > 0, for (t, y) G D and \y'\ < o° ; 
and p = 0(\y ' |2) , as \y '| —» o° ? for (£, t/) G D. This follows again from 
the Habets-Laloy theorem (using the same a, ß as above with m re-
placed by fjum) since the righthand side of (7.1) satisfies a Nagumo 
growth condition. Thus although the righthand side may depend on 
y', the problem (7.1), (7.2) still possesses solutions which exhibit 
boundary layer behavior at both endpoints. 
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