A class of codes generated by circulant weighing matrices

K Wehrhahn

Jennifer Seberry
University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers
Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Wehrhahn, K and Seberry, Jennifer: A class of codes generated by circulant weighing matrices 1978.
https://ro.uow.edu.au/infopapers/989

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

A class of codes generated by circulant weighing matrices

Abstract
Some properties of a new class of codes constructed using circulant matrices over $\mathrm{GF}(3)$ will be discussed. In particular we determine the weight distributions of the $(14,7)$ and two inequivalent $(26,13)$ codes arising from the incidence matrices of projective planes of orders 2 and 3 .
\section*{Disciplines}
Physical Sciences and Mathematics
\section*{Publication Details}
Wehrhahn, K and Seberry, J, A class of codes generated by circulant weighing matrices, Combinatorial Mathematics: Proceedings of the international Conference, Canberra, August, 1977, 686, in Lecture Notes in Mathematics, Springer--Verlag, Berlin--Heidelberg--New York, 1978, 282-289.

Lecture Noted an Mathematics, Vol. 686, Springer - Verkug, Borsin-Hecketberg-nluw York, 1PP 282-289 (1978).

```
\because }\because\mathrm{ CLASS OF CODES GENETNATED BY CIRCULANT WEIGHING MATRICES S 
```



```
Jemifer Seberry and K. Wehrhahn
Applied Mathematics Department and
    Fure Mathematics Department,
        University of Sydney,
            F.S.W., 2006
```

ABSTRACT.

Some properties of a new class of codes constructed using circulant matrices over $\operatorname{Gr}(3)$ will be discussed. In particular we determine the weight distributions of the (14,7) and two inequivaleat (26, 13) -codes arising from the incidence matrices of projective planes of orders 2 and 3.
.1. INIRODUCTION.

In this paper "code" will mean a linear code over GF(3). An
(n, k)-code C has length n, dimension k. An ($n, k, d)$-code is an (n, k)-code with minimum nonzero weight d. Oג notation and definitions are consistent with those of Blake and Mullen [2].

Let Q be the circulant incidence matrix of a projective plane of order q (See Hall [6]). Then Q, of order $q^{2}+q+1$ satisfies

$$
Q Q^{T}=q I+J, \quad Q J=(q+I) J
$$

where J is the appropriate all $1{ }^{\dagger} s$ matrix. $W^{T}=Q^{2}-J$ is a circularise $(0,1,-1)$ matrix of order $q^{2}+q+1$ satisfying

$$
W W^{T}=q^{2} I, \quad W J=q J
$$

i.e. W is a circulant weighing matrix of weight q^{2}. We write $W=W\left(q^{2}+q+1, q^{2}\right)$ to denote its order and weight. More details of W can be found in Main [5] and Wallis and Whiteman [10].

We call conies with basis

$$
\begin{aligned}
& {\left[\begin{array}{ll}
I W
\end{array}\right] \text { for } q \equiv 0(\bmod 3)} \\
& {[I \text { nW] for } q \equiv 1 \text { or } 2(\bmod 3)}
\end{aligned}
$$

over Gr (3) weighing codes. The purpose of this paper is to establish some general properties of weighing codes and to determine the weight distributions
and desik: properties of the codcs corresponding to $q=2$ and $q=3$.
Note that if

$$
G=[I W]
$$

is the busis of C then for $\bar{q} \equiv 1$ or $2(\bmod 3)$

$$
G^{l}=\left[\begin{array}{ll}
I & -W
\end{array}\right]
$$

is the basis of the duat code C^{1}. Mence \mathcal{C} is neither seip-dual nor selforthogonsl. However we shall see that \mathcal{C} and C^{\perp} always hove the same weight Gistribut on and hence the same minimum distance d. By well known result, ef. Delsin.te [3], weighing coajes are orthogonal arrays of strengeh d-1. In this sense the weighing codes belong to a family of codes incluaing the selfduan coder, see Mallows, et, al [7] and the symetry codes, sec Pless [8, 9] and Blaise [1].

We observe that the one's vector $\frac{1}{\sim}$ 3s in C for $q \equiv 1$ or 2 (mod 3) and is tr, sum of the basis vectors. Fine vector $k=(1,1, \ldots, 1,-\ldots,-)$ (where represents -1) of $q^{2}+q+1$ ones and $q^{2}+q+1$ minuses oscurs In the dual code for $q \equiv 1$ or 2 (rod 3).

If $q \equiv 0(\bmod 3)$ then the sum of the besis vectors
[IW] is not $\underset{\sim}{l}$,
anā so the code cannot contain $\underset{\sim}{l}$. Moreover, in this case rank W order of W since $W^{2}{ }^{2} \equiv 0(\bmod 3)$.
2. GENETAL PROPERTIES OF THE CODFS.

If A_{i} is the number of codewords of weight i in C, then we call the bivariate polynomial

$$
W E(x, y)=\sum_{i=0}^{r_{2}} A_{i} x^{n-i} y^{i}
$$

the weight enmerator of C. If $A_{i, j k}$ is the number of codewords of weisht ${ }_{s}+k$ in C contrining j ones and f thos (minus ones over GF(3)) then we call the trivariate polynomial

$$
\operatorname{ChE}(x, y, z)=\sum_{i=0}^{n} A_{i-1 k^{2}} x^{i} y_{z}^{3} x
$$

the complete weight enumeraton of C.

THEOREM.
Let C be the code over GF(q) with basis $G=[I X]$ where X is a ciroulant matrix of order k and I is the identity matris of order k. Then c and c^{1} have the some weight enumerators.
Proof :
First recall that if X ts a circulant matrix and R the back diagonal permutation matrix then

$$
(\mathrm{XR})^{\mathrm{T}}=\mathrm{XR} .
$$

Now C^{\perp} has basis

$$
\left[-X^{T} I\right]
$$

ard the basis vectors of C^{\perp} may be written as

$$
R\left[-X^{T} I\right]=\left[-R X^{T} R\right]=\left[-X R^{T} R\right]=[-X R R]
$$

since this merely involves rearranging the order of the basis vectors, Hence C^{1} is equivalent to the code D^{1} with basis
[-XR I] as this just rearranges the columns of R. Since $X R$ is stmmetric we have that $\left(\mathcal{D}^{\perp}\right)^{\perp}=D$ has basis [I XR].

If $\underset{\sim}{b}$ is a q-ary vector of length k
then $W E(b[I X R])=W E(b)+W E(\underline{b R})$
whereas $W E(b[-X R I])=W E(-b X R)+W E(b)$ and hence D and C^{\perp} have the same weight enumerators. But D is equivalent to \mathcal{C} and hence the theorem holds.

In particular $A_{i}=A_{i}^{\perp}$ for weighing codes, and so C and \mathcal{C}^{\perp} form orthogonal arrays of maximum strength $d-1$ where d is the minimum distance of C (and \mathfrak{c}^{\perp}).

Any two vectors from the basis of C can be written as

and we obtain the following equations
$a+b+c=a+a+B=\frac{1}{2}\left(q^{2}+q\right)=$ number of ones.
$d+e+f=b+e+h=\frac{1}{2}\left(q^{2}-q\right)=$ number of minus ones.
$1+g+h=c+f+1=q+1=$ number of zeros.
$a+e=b+d$ (orthogonality).

These equations can be solved for c, d, e, f, g, h in terms of q, a, t. The CWE of the sum and difference of two vectors are

$$
x^{\frac{1}{2}\left(3 q^{2}+q\right)} y^{2+q^{2}+q-3 a_{z}}-\frac{1}{2^{2}} q^{2}+\frac{1}{2} q+3 a
$$

and

$$
x^{\frac{1}{2}\left(3 q^{2}+q\right)} y^{1+q^{2}-3 b} z-\frac{1}{2} q^{2}+\frac{3}{2} q+3 b+1
$$

respectirely.
Of course the negatives of these vectors are also in C and hence the weight 0 : every two combination is $\frac{1}{2}\left(q^{2}+3 q+4\right)$ and consequently there are at least $4\left(q^{2}+q+1\right)$ vectors of this weight.

We mey observe that

$$
\frac{1}{2}\left(q^{2}+3 q+4\right)<q^{2}+1 \text { for } q \geq 4
$$

and hence $\frac{1}{2}\left(q^{2}+3 q+4\right)$ provides an upper bourd on the minimum distance of C for $q \geq 4$.
3. TFIE : 14, 7) CODE WITH MINIMM DISTANCE 5.

This code is generated by w with first row

$$
-710100
$$

In order to ensure the $\frac{3}{\sim}$ vector is in \mathcal{C} we use the basis vectors

$$
G=\left[\begin{array}{ll}
I & q
\end{array}\right]=\left[\begin{array}{ll}
I & -W
\end{array}\right]
$$

where $\mathrm{c}=2$.

We observe that the linear combinations given by xo where
$X=I+2+J$ (Q as before the incidence matrix of the prosective plate of order 2 and $\left.W=Q^{2}-J\right)$ are

$$
H=[X-X W]=[I+Q+J 2 Q+2 J](\bmod 3)
$$

Since each ros of K has eight +1 's and six-1's and each columr. has fowr + I's and three - $1^{\prime} \mathrm{s}$ we nave a (7, 14, 8, 4, 4) - SIBD. In fact the 16 vectors $\underset{\sim}{7}, 2, H, 2 H$ contair a $(14,16,6)$-block code. The vecters

```
[lll
```

Where $\frac{I}{\sim}$ ㅇs the vector of seven ones, are the first eight rows of an hadamard matrix of order 16 (See Waliis, et al [11]) .

We note that since every vector in the code C is orthogonal to every vector in C^{1} the remaining 8 rows of this Hadamard matrix of order 1.6 (and their negatives) will be obtained from the vectors of full weight in \mathcal{C}^{\perp}.

We found the weight distribution for this code, which is given in Figure 1, and that of the dual code, given in Figure 2. As expected, we see \mathcal{C} and \mathcal{C}^{\perp} have the same weight distribution but not the same complete weight enumerator.

The (14, 7)-code has minimum distance 5 and hence forms an orthogonal array of strength 4 .

Figure 1.

A_{1400}			i			
A_{914}					14	
A_{860}	A_{833}	A_{806}	7	98		7
A_{752}					8 l	
		A_{617}	42	350		42
A_{563}					168	
$\mathrm{A}_{44 \mathrm{~g} 2}$	$A_{4} 55$	A_{428}	84	420		84
A_{374}		A_{347}			212	
A_{293}	A_{266}	A_{239}	55	168		55
	${ }^{4} 077$			16		

Figure 2.
4. TWO (26, 13)-CODES WIMT DISTAMCE 3 AMD 4

Richard M. Hain [5] conjoctured and Peter Lades [4] verified (by computfr) that there are two equivalence classes of circulant rit(13, 9). They have first rows

$$
0-0-10011-112
$$

and
$0101100-11-1$.
Call tru circuiant matrices with these sirst rows W_{1} and W_{2}.

The linear codes $C_{1}, \quad C_{2}$ with bases

$$
\left[\begin{array}{lll}
I & W_{1}
\end{array}\right],\left[\begin{array}{ll}
I & W_{2}
\end{array}\right]
$$

respectively, were studicd via the computer at the University of sylney and thein CWE's outained. We give here their wh's in Fisures 3 anc 4 respectively.

It is most interesting to note that the coles have different minimum distaness 3 and 4 respectively. Also, as expected since $q=3 \equiv 0(\bmod 3)$ for these codes, neither C_{1} nor C_{2} contains ${ }_{\sim}$ (and neither does \mathcal{C}_{1}^{\perp} nor \mathcal{C}_{2}^{\perp} as $\underset{\sim}{I}$ is not orthogonas to their basis vectors). Al: neither contains any full weight vectors.

Since the codes have minimum distance 3 and 4 they ane orthogonal arra: of strength 2 and 3 respectively.
$A_{0}=1$
$A_{1}=0$
$A_{2}=0$
$A_{3}=104$
$A_{4}=468$
$A_{5}=1404$
$A_{6}=4056$
$A_{7}=8424$
$A_{8}=11934$
$A_{9}=13442$
$A_{10}=11258$
$A_{11}=5928$
$A_{12}=4264$
$A_{13}=11260$
$A_{14}=39780$
$A_{15}=105768$
$A_{16}=211224$
$A_{17}=317538$
$A_{18}=352638$
$A_{19}=281632$
$A_{20}=154128$
$A_{21}=52168$
$A_{22}=7904$
$A_{23}=0$
$A_{24}=0$
$A_{25}=0$
$A_{26}=0$

Weight Distribution of \mathcal{C}_{1} Figure 3.

```
\(A_{0}=1\)
\(A_{1}=0\)
\(A_{2}=0\)
\(A_{3}=0\)
\(A_{4}=26\)
\(A_{5}=0\)
\(A_{6}=156\)
\(A_{7}=624\)
\(A_{8}=0\)
\(A_{9}=1128\)
\(\mathrm{A}_{10}=3458\)
\(A_{11}=8736\)
\(A_{12}=24830\)
\(A_{13}=54264\)
\(\mathrm{A}_{14}=100152\)
\(A_{15}=152568\)
\(\mathrm{A}_{16}=212862\)
\(A_{17}=259974\)
\(\mathrm{A}_{18}=272766\)
\(A_{19}=222976\)
\(\mathrm{A}_{20}=145002\)
\(\mathrm{A}_{21}=73996\)
\(\mathrm{A}_{22}=37180\)
\(A_{23}=16848\)
\(A_{24}=6006\)
\(\mathrm{A}_{25}=780\)
\(A_{26}=0\)
```

Weight Distribution of \mathcal{C}_{2}
Figure 4.

REMERENCES.
(1) Ian F. Blake, "On a generalization of the Fless symetry codes", Infomation and Control, 27(1975), 369-373.
(2) Ian F. Blake and Ronala C. Mullin, An Introduction to Algebraie and Combinatorial Coding theory, Academic Press, N.Y. -San Francisco-Iondon, 1976.
(3) P. Delsarte, "Four Furdamental Parameters of a sode and Their Cominator Significance", Information and Controt, 23(1973) $407-4$.
(4) P. Eades, On the Existence of Orthogonat Designs, Ph. L. Thesis, Anstral Nationel University, Canberra, 2977.
(5) Richara M. Hain, Cinculant Weighing matrices, M.Sc. Thesis, Austraitian National University, Carıerra, 1977
(6) Marshall Hal. J.., Combinatovial Theory, Blaisdell, [Gian Co.], Waithar, Mass, 1967.
(7) C.L. Mallows, V. Pless and N.u.A. Sloene, "Self-Dual codes over GF(3)", SIAll J. App2..Math. Vol 31, (1976), 649-666.
(8) V. Pless, "On a new family of symmetry codes and related new five desis. Buz2. Amer. Math. Soc. 75(1969), 1339-1342.
(9) V. Pless, "Symmetry codes over GF(3) and new-five designs", J. Combinatorial Th. Ser. A 12(1972), 219-142.
(10) Jennifer Seberry Wallis and Albert Leon Whitenan, "Some results on weigh matrices", Bult. Austral. Math. Soc. 12(1975), 433-447.
(1]) W.D. Wallis, Anne Penfola Street, Jennifer Seberry Wallis, Combinatoric Room Squares, sm-free sets, Hadanard matrices, Eecture Notes in Mathematics, Vol. 292, Springermerlag, Berlin-Heidelberg-New York, 1 :

