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Abstract .  The Laplace transform ¢(t) = E[exp(-tX)] of a random variable 
with exponential density A exp(-Ax), x > 0, satisfies the differential equation 
(A + t)¢'(t) + ¢(t) - 0, t _> 0. We study the behaviour of a class of consistent 
("omnibus") tests for exponentiality based on a suitably weighted integral of 
[(A,~ + t)¢~(t) + Cn(t)] 2, where ~,~ is the maximum-likelihood-estimate of A 
and ¢,~ is the empirical Laplace transform, each based on an i.i.d, sample 
X1, .  • •, X,~. 

Key words and phrases: Exponential distribution, goodness-of-fit test, empir- 
ical Laplace transform, consistency. 

1. Introduction 

Apart from the normal distribution, the exponential distribution is probably 
the most widely used probability law in statistical analysis, especially in connec- 
tion with life testing and reliability theory. Therefore it is not surprising that  many 
tests for exponentiality have been proposed in the literature (see e.g. D'Agostino 
and Stephens (1986) and Spurrier (1984)). Since the alternatives to the exponen- 
tial distribution are rarely known in practice and the choice of a test should not 
be done on the basis of given data, omnibus tests for exponentiality which aim 
at detecting all distributional departures from exponentiality are of great impor- 
tance, two prominent members of in this line of work are the tests of Cram~r-von 
Mises and Anderson-Darling (see Davis and Stephens (1989)). 

It is clear that  each omnibus test for exponentiality must use some character- 
izing equation (property) of the class of exponential distributions and a distance 
statistic which measures the deviation from this equation for the empirical distri- 
bution of the observed sample. 

In this paper, we study a class of omnibus tests for exponentiality based on 
a differential equation for the Laplace transform, characteristic for the family of 
exponential distributions. To be specific, let X, X 1 , . . . ,  X,~ be independent iden- 
tically distributed non-negative random variables, and let Exp(A) denote the ex- 
ponential distribution with density A exp(-Ax),  x _> 0. The problem is then to 
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test, on the basis of X 1 , . . . ,  Xn, the composite hypothesis 

H0: The law of X is Exp()~) for some A > 0 

against the general alternative that  X is not exponentially distributed. The ratio. 
hale for the new test is as follows: If the distribution of X is Exp()~), the Laplace 
transform ¢(t)  = E[exp(- tX)] ,  t >_ 0 of Z is given by ¢(t)  = ~/(), + t) and thus, 
satisfies the differential equation 

(1.1) (A + t)~p'(t) + ~p(t) =- O, kit > 0 

subject to the boundary condition ¢(0) = 1. Since the distribution of a non- 
negative random variable is determined by its Laplace transform, the equation 
(1.1) characterizes the exponential distribution Exp(A). Letting 

n 

Ca(t) = _1 E e x p ( _ t X j )  
n 

j = l  

denote the empirical Laplace transform of X 1 , . . . ,  X~ and ~n = )~-1 the maxi- 
n mum-likelihood-estimator of A, where )~n = ( l / n )  ~-~j=l Xj,  the test statistic pro- 

posed is the weighted integral 

Tn,~ = n [(~n + t)¢~(t) + Cn(t)]22,~ exp(-a2,~t)dt, 

where a > 0 is a positive constant. It will be seen in Section 3 that  a test 
for exponentiality rejecting the hypothesis H0 for large values of T~,a leads to a 
consistent procedure for any positive a. However, the choice of a has a pronounced 
influence on the power performance of the test (see Section 4). 

Some motivations to consider the weight function )fn e x p ( - 2 n a t )  are as fol- 
lows: Firstly, Tn,a may be computed in an easy way (see below) and has the 
desirable feature of being scale invariant. Secondly, from Tauberian theorems on 
Laplace transforms (see e.g. Feller (1966), Chapter  XIII.5), it is known that  the tail 
behaviour of a probability distribution concentrated on [0, c¢) is reflected by the 
behaviour of its Laplace transform at zero and vice versa. Consequently, choosing 
a small value of a and thus, letting the weight function decay slowly, should result 
in good power properties against alternative distributions having a point mass or 
infinite density at zero. On the other hand, a large value of a implying that  the 
weight function puts most of its mass near zero should be a safeguard against al- 
ternative distributions with great difference in tail behaviour from the exponential 
distribution. 

Straightforward manipulation of integrals gives the computationally simple 
form 

Tn ,a_ l_  _ ~-~ [(1 - Yi)(1 - Yj) _ Y~+Yj 
n + a  +Yj  + a )  2 i,j=l 

2 Y~ Yj 2 Yi Yj ] 
+ ( Y ~ + Y j + a )  2 + ( Y i + Y j + a )  3 ' 
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where Yj = X j / f ( n ,  1 <_ j <_ n. This shows that Tn,a = nVn(~n), where 

1 ~ ha(Xi, Xj; A) yn  ( ~, ) = -~ 
i,j=l 

is a degree-two V-statistic with kernel 

ho(x, y; ~) = 
(1 - ~ x ) ( 1  - ~y)  ~ ( x  + y) 

~(x + y) + a (~(x + y) + a)~ 

2)~2xy 2)~2xy + + 
()~(x + y) + a) 2 (~(x + y) + a) 3 

(see, e.g. Serfling (1980)). Moreover, the distribution of Tn, a under H0 is seen to 
be independent of the underlying parameter A. An alternative expression of Tn,a 
is 

(1.2) 

where 

(1.3) 

~0 
1 

Tn, a ~ Z 2 ( u ) u a - l d u ,  

n 

z ~ ( u )  = n - 1 / :  Z uY~[ 1 - (1 - log (u) )y j ] ,  
j = l  

0 < u < l .  

The representation (1.2) in terms of a functional of a stochastic process is partic- 
ularly useful for deriving the asymptotic null distribution of Tn,a as n -~ oc. This 
will be done in the next section. 

2. The limiting null distribution of the test statistic 

The stochastic process Zn introduced in (1.3) may be regarded as a random 
element in C[0, 1], the Banach space of real valued continuous functions on the 
unit interval, endowed with the supremum norm suP0<u<l Ix(u)l, x C C[0, 1]. 
Obviously, Tn,a is a continuous function of Z~. We shall prove that, under the 
hypothesis H0 of exponentiality, Zn tends in distribution to a zero-mean Gaussian 
process Z = {Z(u), 0 < u < 1} with continuous sample paths. Consequently, the 
limiting null distribution of T~,a is the same as that of 

i 
l 

Ta = Z(u)2ua-ldu.  

N 2 It is well known that  the distribution of Ta is that of )-~j_>l 7j j ,  where N1, N2, . . .  
are independent unit normal random variables, and 7j, j _> 1, are the eigenvalues 
of the integral operator associated with the kernel k(u, v) = Cov(Z(u), Z(v)), 
0 _< u, v < 1, i.e. 

j0 
1 

"/j~j(u) = k(u, v)~j(v)v'~-ldv, 0 < u < l .  
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The eigenfunction ~oj corresponding to 7j is square integrable with respect  to the 
measure dua(u) = ua - ldu  on the unit  interval. The  kernel k(u, v) turns  out  to be 

(2.1) k(u, v) = 
(1 - logu)(1 - logv)  + ( logu)( logv)  1 

(1 - log(vu)) a (1 - log  u)  2 (1 - log  v)  2 

(0 _< u, v _< 1). In what  follows, we may assume that  the random variables Xj  
are exponentially dis t r ibuted with the parameter  ), = 1. The stochastic process 
Wn = {Wn(u) ,  0 < u < 1}, where 

[ 1 W . ( u )  = n -1/2 u X' (1 - (1 - l o g u ) X j )  + (1 - logu)2J ' 
j= l  

O < u < l ,  

can also be regarded as a random element of C[0, 1]. We first show that  Wn con- 
verges in distr ibution to Z. By applying the multivariate central limit theorem we 
see that  the  finite dimensional distr ibutions of Wn converge weakly to multivariate 
normal distr ibutions with zero means and covariance matrices determined by the 
kernel k ( . ,  • ) given in (2.1). Now, 

e(u, v) = l(1 - logu)  -1/4 - (1 - logv)- l /41,  0 < u, v < 1, 

defines a continuous metric e on the unit interval satisfying the metric entropy 
condition 

fo l ( l ogN(u ) ) l / 2du  < c~. 

Here, for each u > 0, N ( u )  is the smallest positive integer m such that  the unit  
interval can be covered by m subsets,  each having a diameter  at most  2u with 
respect to e. Lett ing 

S(u)  = uX' (1  - (1 - l o g u ) X 1 )  + 
X I  - i 

(1 - log  u)  2'  
0 < u < l ,  

the second mean value theorem implies tha t  there is a positive constant  c such 
that  

IS(u) - S(v)l  <_ c m a x ( X  2, Xll/4)g('t/,, V), 0 _< u, v < 1. 

Since E [max(X  2, X1-1/4) 2] < cx), the sequence of distr ibutions of Wn in C[0, 1] 
is tight and converges weakly to the distr ibution of a zero-mean Gaussian process 
with continuous sample paths  and covariance function k ( . ,  • ) (see, e.g. Araujo 
and Gin~ (1980)). 

Introducing for ~ > 0, the process Mn(~) = {Mn(~, u), 0 < u < 1}, where 

Mn(~, u) = n - 1 / 2  fi'U/~X') (1 -- (1 -- log  u ) { X j ) ,  
j = l  

O < u < l ,  
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and denoting by Ln and Ln the processes 

and 

we have that  

71, 

Ln(u) = (1 - logu)-2n -1/2 E ( X j  - -  1), 
j=l 

Z. (u )  = - (1  -logu)-2nl/2(A~ - 1), 

where, generically, 

O < u < l  

0 < u < l ,  

IIZn - Wnll  = I I M ~ ( A ~ )  - Mn(1) - L II , 

~0 
1 

llfll 2 = f2d.a, f square integrable with respect to dva. 

Using a Taylor expansion of M~(~, 1) in a neighbourhood of ~ = 1 we see that  
[[M~(A~) - M~(1) - Z~[[a = OF(l). Since [[L,~ - L~Ha = OF(l) it follows that  
[]Z~ - WnlIa = oF(l) .  Summarizing, we have the following result. 

THEOREM 2.1. The limiting null distribution of the test statistic T~,a is that 
of ~-]d>l 7J N2, where N1, N2, . . .  are independent unit normal random variables, 
and 71, 72, . . . are the eigenvalues of the integral operator associated with the kernel 
k ( . ,  .) given in (2.1). 

It should be remarked that  a different method of proof of the result stated 
above is provided by the work of De Wet and Randles (1987). 

3. C o n s i s t e n c y  

For a given level of significance a E (0, 1), let tn,a(OL ) be the (1 - a)-quantile 
of Tn,a when the hypothesis H0 is true. 

THEOREM 3.1. The test rejecting the hypothesis of exponentiality if T,~,~ > 
tn,a(a) is consistent against any fixed non-exponential distribution having finite 
positive first moment. 

PROOF. Let X1 have a distribution with finite expectation A > 0 and 
Laplace-transform ¢(t), t _> 0. Then n-lT~,~ tends to 

/: ,~ ((A -1 + t)¢'(t)  + ¢(t)) 2 exp( - aAt)dt 

in probability. This stochastic limit is zero if and only if ¢ is the Laplace- 
transform of an exponential distribution. Thus, for non-exponential distributions, 
limn--,o~ P(Tn,a <_ tn,a(OO) = O. 
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4. Power results 

The main justification to propose a new test is that it provides a higher power 
than the presently used procedures. To compare the power of the proposed test 
with some of the prominent competitive procedures, especially the omnibus tests 
of Cram4r-von Mises and Anderson-Darling, a Monte Carlo simulation study was 
done. 

The following procedures were compared. 
(i) The new test based on Tn,a for a = 0.1, a = 1 and a --- 10 which is 

indicated as T(.1), T(1) and T(10) in Tables 4 and 5. Critical points for Tn,a may 
be obtained from Table 1 (a = 0.1), Table 2 (a = 1) and Table 3 (a = 10). The 
entries in Tables 1-3 represent 20%-trimmed means of 10 Monte Carlo estimates, 
each based on 10000 replications. The results indicate rapid convergence of the 
true quantiles to their limiting values as n ~ oc. 

Table 1. Empirical percentage points for Tn,a, a = 0.1. 

n 0.5 0.75 0.9 0.95 0.975 0.99 

5 0.284 0.534 0.832 1.071 1.529 2.465 

6 0.290 0.543 0,854 1,091 1.569 2.437 

7 0.293 0.546 0.871 1,130 1.585 2.414 

8 0.293 0.548 0,887 1.181 1.601 2.397 

9 0.294 0.550 0.908 1,212 1.614 2.386 

10 0.294 0.553 0.923 1.231 1.624 2.376 

11 0,294 0.556 0.936 1.246 1.632 2.367 

12 0,294 0,560 0,946 1.258 1.639 2,359 

13 0,294 0.563 0.952 1.268 1.646 2.351 

14 0.294 0.565 0.957 1.277 1-653 2.344 

15 0,294 0.567 0.961 1,284 1.659 2,336 

16 0.294 0.569 0.964 1.290 1.666 2.330 

17 0.294 0.571 0.967 1.295 1.672 2.325 

18 0.294 0.572 0.970 1.300 1.678 2.320 

19 0,294 0,573 0,973 1,305 1.684 2,316 

20 0.294 0.574 0.975 1.309 1.689 2.312 

25 0.294 0.576 0.986 1.327 1.707 2.305 

30 0.294 0.578 0.994 1.339 1.722 2.301 

35 0.294 0.579 1.001 1,346 1.731 2.298 

40 0.294 0,580 1.003 1,351 1.735 2.295 

45 0.294 0.580 1.005 1.354 1.737 2.292 

50 0.294 0.580 1.006 1.356 1.739 2.289 



CONSISTENT TESTS FOR EXPONENTIALITY 

Table 2. Empirical percentage points for Tn,a, a ---- 1. 

557 

X - - o r  

n 0.5 0.75 0.9 0.95 0.975 0.99 

5 0.050 0.118 0.205 0.262 0.308 0.378 

6 0.049 0.117 0.209 0.272 0.329 0.407 

7 0.049 0,117 0.211 0.276 0.338 0.425 

8 0.049 0,117 0.213 0.282 0.352 0.446 

9 0.048 0.117 0.214 0.286 0.359 0.464 

10 0.048 0.117 0.215 0,289 0.366 0,469 

11 0.048 0.116 0.216 0,291 0.369 0.476 

12 0.048 0.116 0.217 0.294 0.372 0.482 

13 0.047 0.116 0.217 0.295 0.374 0.486 

14 0.047 0.116 0.217 0.296 0.376 0.490 

15 0.047 0.116 0.217 0.297 0.378 0.492 

16 0.047 0.116 0.217 0.298 0.380 0.495 

17 0.047 0.116 0.218 0.299 0.381 0.497 

18 0.047 0.115 0.218 0.300 0.383 0.499 

19 0.047 0.115 0.219 0.302 0.386 0.501 

20 0.047 0.115 0.220 0.303 0.389 0.506 

25 0.047 0.115 0.220 0,304 0.392 0.512 

30 0.047 0.115 0.221 0.305 0.393 0.513 

35 0.047 0.115 0.221 0.306 0.396 0.515 

40 0.047 0.114 0.222 0.308 0.398 0.521 

45 0.047 0.114 0.223 0.309 0.399 0.523 

50 0.047 0.114 0.223 0.310 0.401 0.526 

(ii) The  tests  of Cramdr-von Mises and Anderson-Darling.  These  are based 
on measures of discrepancy between the empirical dis tr ibut ion function 

n 

On(u) = Z < u} 
j = l  

of W(j) -- 1 - exp( -Y( j ) ) ,  1 _< j _< n, and the uniform distr ibut ion function on 
the unit  interval. Here and in what  follows, Y(1) -< "'" -< Y(n) denote  the order  
statist ics of Y 1 , . . . ,  Yn, and I { A }  is the indicator  function of an event A. The  
Cramdr-von Mises stat ist ic is 

fo l( 
c 2 = n - u ) 2 d u  

= W(j) -2n + 12n' 
j = l  



558 LUDWIG BARINGHAUS AND NORBERT HENZE 

Table3.  E m p i r i c a l p e r c e n t a g e p o i ~ s ~ r  ~ , a , a = l O ,  

1 - - ( 2  

n 0.5 0.75 0.9 0.95 0.975 0.99 

5 0.0010 0.0022 0.0035 0.0043 0.0050 0.0073 

6 0.0010 0.0023 0.0038 0.0047 0.0056 0.0089 

7 0.0010 0.0024 0.0040 0.0050 0.0062 0.0100 

8 0.0010 0.0025 0.0041 0.0053 0.0067 0.0109 

9 0,0010 0.0025 0,0043 0.0056 0.0072 0,0121 

10 0.0010 0.0025 0.0044 0.0058 0.0076 0.0124 

11 0.0010 0.0026 0.0045 0.0060 0.0079 0.0127 

12 0.0010 0.0026 0.0046 0.0062 0.0081 0.0129 

13 0.0010 0.0026 0.0047 0.0063 0.0084 0.0131 

14 0.0010 0.0026 0.0048 0.0065 0.0086 0.0134 

15 0.0010 0.0027 0.0049 0.0066 0.0088 0.0139 

16 0.0010 0.0027 0.0049 0.0067 0,0090 0.0141 

17 0.0011 0.0027 0.0050 0.0068 0.0091 0.0143 

18 0.0011 0.0027 0.0050 0.0069 0.0093 0.0145 

19 0,0011 0.0028 0.0051 0.0070 0.0095 0.0147 

20 0,0011 0.0028 0,0052 0.0072 0.0097 0.0149 

25 0.0011 0.0028 0.0054 0.0074 0,0100 0.0152 

30 0.0011 0.0029 0.0055 0.0077 0.0103 0.0153 

35 0.0011 0.0029 0.0056 0.0079 0.0105 0.0153 

40 0.0011 0.0029 0.0057 0.0080 0.0106 0.0154 

45 0.0011 0.0030 0.0058 0.0081 0.0107 0.0154 

50 0.0011 0.0030 0.0058 0.0082 0.0108 0.0155 

w h e r e a s  t h e  A n d e r s o n - D a r l i n g  p r o c e d u r e  is b a s e d  on  

j [ o  I (Cn( ' t t )  - U) 2 
A 2 = n  u ( 1 - u )  d u  

1 ~ 
= - n  - -n j~i(2J.= - 1) [ log(W(j ) )  + log(1 - W ( n - j + i ) ) ] .  

T h e  t e s t s  were  c a r r i e d  ou t  us ing  t h e  m o d i f i c a t i o n s  a n d  p e r c e n t a g e  p o i n t s  g iven  in 

T a b l e  4.11 of  D ' A g o s t i n o  a n d  S t e p h e n s  (1986).  T h e  A n d e r s o n - D a r l i n g  t e s t  s h o u l d  

b e  u sed  w i t h  c a u t i o n  d u e  to  severe  effects  of  r e c o r d i n g  e r ro r s  c lose  t o  zero.  

(iii) T h e  t e s t  of  M o r a n  ( M o r a n  (1951)) .  T h i s  p r o c e d u r e  is b a s e d  on  t h e  s t a t i s t i c  

n 

M = - 2  log( ). 
j =  1 
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Table 4. Percentage  of 5000 Monte  Carlo samples declared significant by the  various tests  of 

exponential i ty;  tes t  size a = 0.05; sample size n = 20. 

Al te rna t ive  T(.1) T(1)  T(10)  M Q1 W* C 2 A 2 S 

Gamma(0 .4 )  91 82 67 92 40 52 75 89 18 

Gamma(0 .6 )  53 39 31 52 16 20 32 48 9 

Gamma(0 .8)  17 12 11 16 8 8 10 15 6 

Gamma(1 .0)  5 5 5 5 5 5 5 5 6 

Gamma(1 .4)  11 16 10 17 6 13 15 13 5 

Gamma(1 .6)  19 26 17 28 7 21 24 21 6 

Gamma(1 .8)  32 41 27 43 12 32 36 34 8 

Gamma(2 .0)  44 53 38 57 15 43 49 46 7 

Gamma(2 .4 )  67 75 56 78 27 61 69 68 10 

Gamma(3 .0 )  89 93 80 94 46 82 89 88 12 

Weibull(0.4) * 99 97 * 83 92 98 * 60 

Weibull(0.6) 83 76 67 82 40 54 69 81 25 

Weibull(0.8) 29 25 24 27 12 18 20 28 11 

Weibull(1.2) 10 14 10 14 6 13 14 12 6 

WeibuIl(1.4) 26 38 28 38 10 33 34 31 8 

Weibull(1.6) 51 67 54 65 20 61 62 59 14 

Weibull(2.0) 88 96 92 95 47 93 93 92 26 

Uniform(0,1)  33 60 66 45 27 77 67 63 79 

Half-Normal 11 20 17 18 9 23 21 17 11 

Half-Cauchy 58 65 70 55 53 67 64 64 57 

Log-Normal(0.5)  * 99 91 * 87 91 99 99 9 

Log-Normal(0.7) 67 61 37 70 30 39 61 62 9 

Log-Normal(0.8) 37 34 18 42 16 21 34 35 11 

Log-Normal(1.0) 9 12 17 8 11 17 16 15 18 

Log-Normal(1.5)  56 64 67 48 44 60 61 63 43 

X 2 76 62 49 76 25 34 53 71 13 

Power(0.5) 99 * * * 87 * * * 98 

Power(0.8) 67 88 91 77 43 96 91 90 90 

Power(1.2) 16 32 38 21 20 50 42 38 65 

Power(1.4) 11 14 18 12 18 27 24 24 51 

Power(2.0) 45 14 3 40 21 3 19 41 23 

Power(3.0) 90 65 28 90 38 11 63 88 9 

Power(4.0) 99 91 64 99 58 39 89 98 9 

JSHAPE(0 .5 )  39 45 51 36 29 44 41 44 33 

JSHAPE(1 .0 )  79 83 84 77 65 79 80 82 62 

JSHAPE(1 .5 )  95 95 95 94 85 92 94 95 79 

LIFR(1.0)  10 18 13 15 8 19 18 14 9 

LIFR(2.0)  17 28 23 25 11 30 29 25 13 

LIFR(4.0)  26 42 36 37 14 44 44 37 15 

LIFR(6.0)  31 49 43 43 17 52 49 44 18 

LIFR(10.0)  40 59 53 51 21 62 58 54 20 
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Table  5. Percentage of 5000 Monte  Carlo samples  declared significant by the  various tes ts  of 

exponential i ty;  tes t  size a = 0.05; sample size n = 50. 

Al te rna t ive  T(.1) T(1)  T(10) M Q1 W* C 2 A 2 S 

Gamma(0 .4)  * 99 96 • 64 87 99 • 29 

Gamma(0 .6)  84 75 59 86 23 42 66 80 12 

Gamma(0 .8)  28 21 17 27 9 11 17 24 7 

Gamma(1 .0)  5 5 5 5 5 5 4 5 5 

Gamma(1 .4)  34 37 24 41 9 26 32 32 4 

Gamma(1 .6)  62 64 44 69 17 45 56 58 6 

Gamma(1 .8)  83 84 65 88 27 64 77 80 7 

Gamma(2 .0)  94 94 81 96 41 79 91 93 8 

Gamma(2 .4)  * 99 96 * 65 94 99 99 12 

Gamma(3 .0)  * * * * 89 99 * * 16 

Weibull(0.6) 99 99 96 99 65 90 98 99 47 

Weibull(0.8) 54 50 45 54 16 33 43 51 15 

Weibull(1.2) 25 32 24 32 8 26 28 27 5 

Weibull(1.4) 73 82 73 81 23 73 75 76 11 

Weibull(1.6) 96 98 96 98 47 96 96 97 22 

Uniform(0,1) 79 96 99 80 52 * 98 99 * 

Half-Normal 30 49 50 37 13 56 48 44 17 

Half-Cauchy 88 93 95 86 83 94 93 92 88 

Log-Normal(0.7) * 96 63 99 83 57 98 99 13 

Log-Normal(0.8) 94 67 30 81 52 29 76 85 18 

Log-Normal(l.0) 34 18 28 15 23 29 30 34 34 

Log-Normal(1.2) 38 52 66 21 36 62 57 55 52 

Log-Normal(1.5) 89 94 95 84 70 92 94 93 74 

X 2 97 94 82 98 39 66 90 96 18 

Power(0.8) 99 * * 99 79 * * * * 

Power(1.2) 42 72 88 39 35 94 86 86 99 

Power(1.4) 22 34 57 13 30 72 61 65 96 

Power(2.0) 74 25 3 64 34 6 49 76 68 

Power(3.0) * 95 48 * 64 15 96 * 27 

JSHAPE(0 .1)  9 11 16 8 7 13 9 10 12 

JSHAPE(0 .2)  19 25 33 18 13 29 22 23 23 

JSHAPE(0 .5)  69 79 82 68 51 78 75 76 60 

JSHAPE(1 .0)  98 99 99 98 92 99 99 99 92 

LIFR(1.0) 26 43 42 34 11 47 41 38 13 

LIFR(2.0) 46 66 66 53 18 71 64 61 21 

LIFR(4.0) 68 85 86 72 27 89 83 81 30 

LIFR(6.0) 78 92 92 81 34 94 91 89 34 

LIFR(8.0) 84 95 95 86 40 96 93 93 37 

LIFR(10.0) 87 96 97 88 41 97 96 95 39 
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A two-sided test, based on M, is a uniformly most powerful unbiased test against 
Gamma alternatives (see also Shorack (1972)). Bartholomew (1957) showed it to 
be a strong test against Weibull alternatives. For our simulation study, critical 
values for M (two-sided rejection region) were found for sample sizes of n = 20 
and n -- 50 by extensive simulations (10 6 replications). A severe deficiency of the 
test based on M, is the effect on M of inaccurate measurements of the values of 
Xj close to zero. 

(iv) The W*-test. This test was originally proposed by Shapiro and Wilk 
(1972) to test the more general hypothesis 

/}o: P(X > t) = exp(-/k(t - 0)), t > O, for some X, 0 ($ > 0). 

It was modified by Stephens (1978) to test the hypothesis H0 of exponentiality 
with origin (= 0) known. The test statistic is 

[ 1 ( n + l  ~ 2 -  (y'~.j:IXj) 2 n ) ~j=l Xj n 

As a general test for exponentiality a two-sided rejection region must be used. 
Since 

1 I~S~ 
w *  = l + ( n +  

= 1 + n + 1 _ 1) 2 
n j=l 

n X with Sn 2 = n -1 Y'~-j=I( J - )(n) 2, we see that the test merely aims at investigating 
the first two moments of the underlying distribution and thus, it is not an omnibus 
procedure. Since W* has the same null distribution as the statistic WE of Shapiro 
and Wilk (1972) for a sample of size n + 1, their tables may be used to obtain 
critical points. 

(v) The QFtest .  This test was recently proposed by Patwaxdhan (1988) as 
a (purportedly) omnibus procedure for assessing exponentiality. It rejects the 
hypothesis H0 of exponentiality for large values of 

(4.1) 

where 

Q1 = ( Y o - / ~ ) ' ~ o ( Y o - 5 )  + (n + 1), 

(4.2) Yo = (Y(1),.-., Y(n)) t, Y(j) ~- X ( j ) / f ( n  
J 1 

(4.3) 6 = ( 6 1 , . . . , 6 n ) ' ,  6j = E n _ k + l  
k=l 

(1 < j <_n), 

and E 0 is a generalized inverse of the covariance matrix of Y0 for which an ex- 
plicit expression is given by Patwardhan (1988). In the notation given above, c' 
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generically denotes the transpose of a column vector c. Since E[Y0] = 5, the 
quadratic form occuring in (4.1) represents a standardized deviation of a plot of 
Y0) versus 5j (j = 1 , . . . ,  n) from a straight line. An alternative expression for Q1 
is (Patwardhan (1988)) 

Q1 n + l ~  - U ~ , j ,  
n j = l  

where Un,j denotes the normalized scaled spacing 

Un,j = (n - j + 1)(Y(j) - Y(j-1)) (j = 1,. . . ,  n, Y(0): = 0). 

Although a test for exponentiality based on Q1 has an extreme poor power com- 
pared to the other tests under discussion (and thus should not be recommended at 
all for testing H0), its consistency against a large class of alternative distributions 
may be proved (this was conjectured by Patwardhan (1988)). The reasoning is 
as follows: Let X1 have distribution function F and density function f,  where 
F(0) = 0 and E[X1] = 1. From Renyi's representation of order statistics from a 
uniform distribution and Taylor expansion, we have 

Q1 

n + l  

n 

- -  --~ 1 E ( n - j  + 1)2 
j = l  

• + + E ,  _ ::-+_ 

\ -~ +-I]E-~+~ ] ( (n + 1)En+~ ] / 

_1 0 nEn+l n ;  1 f2(F-I(Wj,~)) '  
j = l  

where El ,  • •.,  En+l axe i.i.d, unit exponential variates with arithmetic mean En+l, 
and 

EI + " . +  Ej-1 EI + . " +  Ej 
(n --~ 1).En+ 1 ~ wj 'n ~- (n + 1)/~n+l ' 

The symbol " ~ "  denotes equality in distribution. Under suitable regularity con- 
ditions on f ,  Q1/(n + 1) is stochastically equivalent to 

n - -"-~ j=l n ,.(, 
which converges stochastically to 

(4.4) 2f0 ~ (1 -~-~F(t))2 dt 

as n ~ c~ provided that f o [ ( 1  - F(t))/f(t)]4f(t)dt < cx). Since the asymptotic 
null distribution of nl/2(Q1/2n - 1) is standard normal (see Patwardhan (1988)) 
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and the quantity occuring in (4.4) has a minimum value (= 2) if and only if 
X1 ~ Exp(1) (use Jensen's inequality), the consistency of a test based on Q1 
follows. 

(vi) The test of Sarkadi (Sarkadi (1975)). Sarkadi (1975) proved that a test 
for exponentiality rejecting the hypothesis H0 for small values of 

n 

s - -  - n )  2 
1)2 , 

where Y(0 and ~ are given in (4.2) and (4.3) respectively, is consistent against 
general alternatives. Note that, apart from a constant factor, S is the empirical 
correlation coefficient of (6i, Y(0), i = 1 , . . . ,  n. It will be seen that although being 
consistent, the test based on S shows poor power performance and thus, should 
not be recommended. 

Among the alternative distributions considered are the Gamma, the Weibull 
and the Lognormal family of distributions with scale parameter 1 and shape pa- 
rameter ~ as well as the Uniform, the Half-Normal, the Half-Cauchy and the 
X 2 distribution. Other families included are the Power distributions (density 
~-1x(1-°)/~, 0 <_ x < 1), the LIFR (linear increasing failure rate) distributions 
(density (1 + ~x)exp( - (x  + (~/2)x2))) and the JSHAPE family of distributions 
(density (1 + t)x)-(~+l)/°). 

These distributions include widely used, more complex alternatives to the ex- 
ponential model so as to satisfy the analyst's interest to detect the existence of 
such a situation. Apart from distributions with increasing and decreasing haz- 
ard rates, models with U-shaped (Power(t)) for # > 1) and inverted U-shaped 
hazard functions (Lognormal(~)) have been included. The JSHAPE(~)) family has 
J-shaped densities with heavier tails than the exponential distribution which arises 
as limiting case as ~) --+ 0. 

Estimates of powers are shown in Tables 4 and 5. Each number represents the 
percentage of 5000 Monte Carlo samples declared to be significant by the various 
tests under discussion, rounded to the next integer. An asterisk denotes power 
100%. The level of significance is 5%, and the sample size is n = 20 for Table 4 and 
n = 50 for Table 5. All simulations were run on an IBM PS/2 personal computer. 
Using a linear congruential method to generate uniform random numbers, pseudo- 
random numbers of all distributions given above were generated using standard 
techniques (acceptance-rejection method, polar method or direct inversion). 

The main conclusions that can be drawn from the simulation results are the 
following: 

1) The tests of Patwardhan (1988) and Sarkadi (1975) have poor power over 
the whole range of alternatives in comparison with the other procedures under dis- 
cussion and thus should not be recommended as omnibus tests for exponentiality. 

2) The new test based on T(1) is slightly less powerful than M but slightly 
more powerful than both C 2 and A 2 for Gamma alternatives with ~ > 1. In the 
case of these alternatives it clearly dominates W*. 

3) For Weibull alternatives with ~) < 1, T(.1) provides the best results, followed 
by M. In this case T(1) is slightly less powerful, but comparable to C 2 and A s. 
For Weibull alternatives with ~ > 1, T(1) is slightly better than all the other tests. 
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4) For the Lognormal family, T(1) is comparable in power to the omnibus 
tests C 2 and A 2. The same holds for LIFR distributions. For the JSHAPE family 
it slightly dominates over C 2 and A a. 

5) For the Power(9) family the performance of the various procedures depends 
markedly on the value of 9. 

6) Of the three new tests under discussion, T(.1) provides the best results 
for some alternatives having infinite density at zero (Weibull(9) for 0 < 1, 
Lognormal(9) for small 0, )/2 and Power(9) for large 9). T(10) works best for 
some alternative distributions with markedly different tail behaviour compared 
with the exponential distribution (Half-Cauchy, Uniform(0, 1) and Lognormal(9) 
for large 9). 

Over the whole range of alternative distributions considered, T(1) constitutes 
a serious competitor to the omnibus tests of Cram~r-von Mises and Anderson- 
Darling, both based on the empirical distribution function. 
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