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A Class of Cubic Splines Obtained

Through Minimum Conditions

By D. Bini and M. Capovani

Abstract. A class of cubic spline minimizing some special functional is investigated. This class

is determined by the solution of a quadratic programming problem in which the minimizing

function depends linearly on a parameter a < 2. For a = 1/2 natural splines are obtained.

For a = -1 the spline minimizing the mean value of the third derivative is obtained. It is

shown that this spline has the best convergence order.

1. Introduction. Suppose that we are given a function / e C4[a, b] and a mesh

A„ = {a = x0 < xx < ■ • • < xn = b}, such that x¡ = x0 + ih, h = (b - a)/n. A

function snix) is called a cubic spline interpolant to f(x) with respect to A„ if:

sn is a cubic polynomial on [jc,  l5 jc,],       /' = 1,2,..., «;

(1.1) s„GC2[a,b];

s,Áx,)=yn     #-/(*/).     z = o,i.«.

The importance of cubic spline interpolation is described in detail in [1], Conditions

(1.1) lead to a system of « — 1 equations and « + 1 unknowns. Two more equations

can be given in various ways. For example, if we know f'(x0) and f'(xn) or f"(xQ)

and f"(xn) we can set s'n(x¡) = f'(x¡) or s'n'(x¡) = f"(x¡), i = 0,«, obtaining in

this way convergence of s^'^jc) to fU)(x) of order 0(h4'), i = 0,1,2, 3 uniformly

over [a, b] [5]. In the absence of such information, usually the following equations

are considered

(1.2) s'„'(xQ) = s„'(x„) = 0.

The kind of spline function obtained in this way is known as natural spline, and it

is the spline interpolant to f(x) minimizing the functional

F2(s)=fh(s"(x))2dx,
J a

which is related to the mean curvature of the graph of the function s(x). For natural

spline functions the following result holds [4]

|'i°(*)-/(0(*)|- 0(h2-'),    a<x^b, 1 = 0,1;

|*i°(*) -/(0(*)|= 0(h4-'),    ä < jc< b, i = 0,1,2;

5 — a = b — b = 0( h log h ).
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192 D. BINI AND M. CAPOVANI

Recently, another variational condition has been analyzed [3]. The spline minimiz-

ing the functional

Fx(s) =fis'(x))2dx,

has been shown useful for computational purposes.

In this paper we consider cubic splines which minimize some special functionals.

This set of splines is obtained by considering the functionals Fx and F2, two other

functionals F0 and F3, involving the functions six) and s'"(x) respectively, and

convex combinations of F0, Fx, F2 and F3.

In Section 2, we show that such splines can be obtained by solving a quadratic

programming problem in which the minimizing function depends linearly on a

parameter a, -1 < a < 31/32. In particular, for a = 1/2 we find the natural spline,

for a = 7/8 the function minimizing Fx. We widen the class by showing that for any

a < 1 the quadratic programming problem has a solution and that there exists a

positive integer « 0 such that the quadratic programming problem has a solution for

any « > «0 if and only if a < 2.

In Section 3, using the properties of a special class of matrices defined in [2], we

determine the best spline interpolating / in the class of splines depending on a,

a < 2. We show that the best spline in this class is the spline which minimizes the

functional

FA')- L fi+1i'"'ix)fdx,
n-l

I
i-0 'x¡

obtained with a = 1. For this spline we get the following result

\'n°ix) -fa)(x)\= 0(h3i),     a^x <£>,/ = 0,1,2;

kVH-x) -/<'>(*) | = Oih4->),    ä^x^b,i = 0,1,2,3,

ä — a = b — b = O(hlogh).

Thus, one gains one order of convergence and the convergence of one more

derivative, compared to natural splines.

2. Preliminaries. Following Stoer & Bulirsch [5] we set

s Ax) = Mj(xJ+x - xf/(6h) + MJ+x(x - xjf/(6h) + at(x - Xj) + ßJt

Xj < x < xj+1, j = 0,1,...,« - 1;

so that, from (1.1), we obtain

ß]=f(x))-MJh2/b;

(2.2)
«j = (/(*/+1) -fixj))/h - h(MJ + x - Mj)/6;

where the (« + l)-vector M = ( M-) fulfills the relation

(2.3) AM = b,
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A CLASS OF CUBIC SPLINES 193

where A is the («-1)X(« + 1) matrix

(2.4)

1     4    1
1     4    1

1    4    1

b = ib,),    bi = 6(f(xi+1)-2f(xi)+f(xi_l))/h2,       / = 1,2,...,«-1.

Consider the following functionals

F0(s) = "¿Zfi+1(s(x)-ri(x))2dx,
, = 0    -\

r,ix) = ix - xl)(yi+x -y¡)/(xi+1 - x¡) + y,:

Fx(s) = f (s'(x))2dx;

h

(2.5)

F2is)=f   is"ix))2dx;
J a

FA')=Lfl+li'"'ix)fdx.
1 = 0

The functional F01/2 is related to the area included between the graph of s(x) and

the line obtained by connecting the point (x¡,y¡) to the point (xj+x, yi+x), i =

0,1,...,« - 1. The spline which minimizes F0 is as close as possible to this

polygonal line.

The functional Fx/2 is an average of the slope of the graph of s(x) and the spline

which minimizes Fx has been analyzed in [3].

The functional F2X/2 is related to the mean curvature of the graph of s(x) and the

spline minimizing F2 is known as the natural spline; it satisfies s"(x0) = s"(xn) = 0.

The functional F31/2 has a less easy geometric interpretation and we can look at it

as a number related to the mean curvature of the graph of s'(x).

Other functionals can be obtained by taking any convex combination of F¡(s),

i = 0,1,2,3.

By direct computation we can show the following result:

Proposition 1. Consider the quadratic programming problem:

(2.6)
Min MTAaM,

AM = b,

where A and b are defined in (2.4), M = (M¡), i = 0,1,..., «, is an (« + \)-vector

and Aa is the (« + 1)X(« + 1) matrix given by

A„ =

a

2     «

2a

2     «
a     1
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194 D. BINI AND M CAPOVANI

Then (2.6) has a solution if -1 < a < 31/32 and this solution defines, through

(2.1), (2.2), a cubic spline interpolating f(x) which minimizes the functional

F0    if a = 31/32,        Fx    if a = 7/8,

F2    if a = 1/2,        F3    z/a=-l,

3

£ ö.i?,    //-I < a < 31/32, for some 0, = 0,(a) > 0.
( = 0

A similar result holds also in the case in which the knots x¡ are not uniformly

spaced.

It is interesting to point out that the same matrix formulation (2.6) allows us to

deal with all the different conditions given in (2.5).

Two questions arise at this point:

- Are there other values of a, besides those in the range [-1,31/32], for which the

problem (2.6) has a solution?

- Is there a best value of a in the range of the feasible values, for which the

convergence of s„l) to /(,) is best possible?

In order to deal with these two questions we introduce a special class of matrices

which has been used in [2],

Let rm be the linear space spanned by the set {I, H, H2,..., H"' x}, where

H = (h¡ j) is the m X m matrix such that «, , + 1 = hl + Xi =1, i = 1,2,..., m — 1,

«,■ • = 0 otherwise. Observe that rm is closed under the row-column product, and

AB = BA for any A, B e rm, that is,t„, is a commutative algebra; moreover, A £ t„,

if and only if

(2.7) AH - HA = 0.

Writing down condition (2.7), we get

'',7+1 + a,-,,-, = a, + lj + a,_

ao.j = a, lm+l.j i.m+1 0,
i,j = 1,2,..., m.

The relation, called cross-sum condition, allows us to build up all the entries of

any matrix A G rm starting with the first row, or the first column, of A. Moreover,

we have the following properties [2]:

If A e rm, then:

A is symmetric, i.e., a¡■ ■ = aJ,,;

A is persymmetric, i.e., a¡ ¡ = am_l + Xm_J + l;

(2.8) If F = [¡2/im + 1) sin(irij/(m + 1))) then F is

symmetric and orthogonal and FA F is diagonal;

The eigenvalues of H are given by 2cos(7r/'/(m + 1)).

Now consider problem (2.6) and partition the matrices A and Aa in the following

way:

A„ = A =
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A CLASS OF CUBIC SPLINES 195

Since

(2.9) Äa = 21 + <xH,       Ä = 41 + H,

we have Äa, A e rm, m = « - 1. Expressing the components Mx, M2,..., Mn_x as

a function of M0 and M„, by using the constraints AM = b and substituting in the

quadratic function, we get

(2.10a)

(2.10b)

MTAaM=(M0,Mn)

M0

M„
2(M0,MJ

Pi
Pi

<f> = e[*¿\ = e„-iBaen^x;        $ = e\Bae„_x = eTn_xBaex,

Pi = <?îR + ai"1 - I)b;        p2 = eT_ABa + «i"1 - /)&;

Ba = I-2aÄ-l+A-lÄJ-x^rn_x;

where e,, en_j are the first and the last columns of the (« - 1) X (« - 1) identity

matrix. Relations (2.10) hold in view of the symmetry and persymmetry of the

matrix Ba e Tn_x.

Since the 2x2 matrix in (2.10a) is a principal submatrix of Ba, it is positive

definite whenever Ba is positive definite. This fact allows us to prove the following

Proposition 2. For any a < 1, the problem (2.6) has a solution.

Proof. It is sufficient to prove that if a < 1 the matrix Ba is positive definite. Now

the eigenvalues X, of Ba can be obtained by (2.10b), (2.9) and (2.8). We have in fact

A,. = 1 +(2 - 2a(4 + c,))/(4 + 2c,)2,       c,. = cos(w//«).

Therefore, Ba is positive definite if and only if a < (9 + 2c,2 + 8c,)/(4 + c,).

Now, since (9 + 2c2 + 8c,)/(4 + c¡) > 1, /' = 1,2,..., « - 1, we get the result.

We can further widen the set of a for which problem (2.6) has a solution if we

look at this issue from an asymptotic point of view. First we must compute the

values to which m and \p converge as n tends to infinity.

Lemma 1. We have

<p = (2 - «)/v/3 + 9„,       \6„\< (2/(3«2))(l +|«|);

* = O + 0„',       |0,;|<(l6/(3«2))(l+|a|).

Proof. Since Ba G rn_x, from (2.8), (2.9), (2.10b) we have

FfiaF=Diag(X1,\2,...,X„_1),

A,• = 1 +(2 - 2a(4 + c,))/(4 + 2c,)2,    c¡ = cos(wí/n).

Therefore, <p = cpx + a<p2, ip = \px + cup2, where
n-l

\2\

(2.11a)

(2.11b)

•Pi = iVn) E (l + 2/(4 + 2c,.)2)*2,
;=1

/l-l

<P2 = (2/«) E ((8 + 2c,.)/(4 + 2C,)2)i,2,       j,. = sin(77//«);
i = i

*i-(2/«)"¿1(l + 2/(4 + 2cl)2)(-l),+V,
í=i

«r-2 = (2/«)"E ((8 + 2c,)/(4 + 2c,)2)(-l)' + V.
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196 D. BINI AND M. CAPOVANI

Moreover, the quantities (2.11a) can be viewed as the result of applying the

trapezoidal quadrature formula to suitable continuous functions with step 77/« on

the interval [0, m\. Therefore, we get (see [5, p. 121])

<p, = (2/tt) r (l + 2/(4 + 2cosx)2)sin2;c¿x + kx/(6n2);

<p2 = (2/m) f   ((8 + 2cos;c)/(4 + 2cosx)2)sin2jcáx + k2/(6n2);

where \k¡\, i = 1,2, can be bounded by the maximum absolute value which the

second derivative of the corresponding integrand function takes on over [0, it].

Therefore, by evaluating the primitives and the second derivatives of these functions,

we get

<p, = 2/1/3 + kx/(6n2),       l*il<4,

<p2 = -1/J3 + k2/(6n2).
(2.12)

|*2|< 3.

Concerning \px and \¡/2, observe that each formula in (2.11b) can be viewed as the

difference of two quadrature formulas applied to the same function with the same

step, but with different knots. Therefore, we have

(2.13)
*x = 0 + 4k3/(3n2), \k   I < 4

*2 = 0 + 4Â:4/(3«2),        |*4|«3.

Now we are ready to prove the following

Proposition 3. There exists a positive integer «0 such that, for every n > «0, the

problem (2.6) has a solution for any f e C4[a, b] if and only if a < 2.

Proof. The assertion follows from Lemma 1, since the existence of a solution, for

any / e C4[a, b], is equivalent to the positive definiteness of the matrix [$ *].

3. Convergence. From relation (2.10a), under the hypothesis a < 2, we have that

the point in which the function MTAaM takes on its minimum value is given by:

M0

AT

Pi

Pi

that is,

(3.1)    M0 -UPl - <fP\)/W - ^2)> Mn =  -i^Pl - <PP2)/(<P2 - ^2)-

Our aim is to find out how M0 and Mn depend on a, then determine the value of

a for which one obtains best convergence. Since we already know tp and 1//, we have

to compute px and p2. As a first step of this evaluation, observe that from (2.10b)

we have

n-l

Pi = E «A.    « = (",)»    « = [Ba + «-Í"1 - l)ex-
; = 1

Now, since B„ + a A' I = 2(1 — 2a) A 2 we have

u = 2(1 - 2a)Ä~2ex.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A CLASS OF CUBIC SPLINES 197

Moreover, since Ä 2 g t„_x is symmetric and persymmetric, we have that the z'th

component of Ä~2en_x is equal to the /th component of A~2ex; therefore

n-l n-l

px = 2(1 - 2a) E o,b„        p2 = 2(1 - 2a) E »„-A,

(3.2) , = 1 i=1
v = (v¡), v = Ä~2ex.

Now our task has been reduced to the computation of b and v. As far as the

vector b is concerned we have the following

Lemma 2. ///<= C4[a,b] and k = maxaaS;(aiè|/(4)(x)|, /«e«

b, = 6(/"(a) + /«/ '"(a) + h\),       bn_, = 6(f"(b) - ihf '"(b) + h28t),

\y,\,\S,\<(l/l2 + i2/2)k.

Proof. In view of (2.4), applying Taylor's formula to f(x) at the point x¡ with step

« and -« yields

bl = 6(f"(x,) + i,h2),       \i,\<k/U.

Applying Taylor's formula again to the function f"(x) at the point a and b with

step /« and -/'«, respectively, yields

f"(xi)=f"(a) + ihf'"(a)+{(ih)2/2)Vi,

f"(x„_i)=f"(b) - ihf'"(b) +{iih)2/2)vi,       |t,,|, |r,|< *,

which completes the proof.

Concerning the computation of the vector u, we use the properties of class jm to

prove the following

Lemma 3. Let d = (2 - v^). 77/e« f«e /jeczor v = ^i~2e, satisfies the relation

v. = (_i)'+1W+i(l - d2"-2')/il - d2) + ju,.,       1/1,1 < «2¿" + 1.

Proof. First observe that Ä = 41 + H and that the matrix C = 41 - H satisfies

C = Z>iD, where i) = Diag(l, -1,1, -1,..., (-1)"). Therefore,

/ °°
C"2 = (1/16)    ¿Z HJ/^

\j=o

has positive entries and, since Ä'2 = DC~2D, we have v¡ = (-l)'+1|/;,l where 1^1 are

the elements of the first row of C~2.

Now, in order to compute |u,-|, observe that the elements c, of the first row of C"1

are given by c, = dn_i_1/d„_1, where d¡ satisfies the difference equation

d, + i=4di-dl_2,    d0 = l,    dx = 4.

By solving the above recurrence, we get dt■ = (d~'~x - d'+1)/(2^3), where

d = (2 - v/3 ). Hence

(3.3) c, = (J' - d2"-')/il - d2") = d' + y„        |y,| < dn+x.

Now set C'x = G + £, where G e t„_, is defined by its first row gx . = d7. Since

C e t„_!, then E g t,,^, hence G£ = EG and, setting |u| = i\v¡\), we have |i;| =

(G + E)2ex = (G2ex + w),w = 2EGex + E2ex. Therefore ||w|| < 2||£|| ||Ge,|| +||£||-

H^eJI, where ||w|| = max|w,| and ||£|| = max.iHjZi\elj\. Now, from (3.3) we have

ll^iH < d" + x, \\Gex\\ < d and, using the cross-sum condition, ||£|| < d" + 1n2/4,

whence ||w|| < d"+2n2/2 + d2n+2n2/4 < n2dn+x.
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Now, to complete the proof, we must still show that the elements of z = G2ex are

given by z,. = idi+l(l - d2"-2i)/(l - d2).

We proceed by induction on /. The result holds for / = 1 and /' = 2, by

construction of G. Suppose that it holds for r and r — 1 ; by the cross-sum condition

we have

n - 1 n - 1

Zr+1 =   E d'Sr+1., =   E ¿'(#,,/-l + gr.i + 1 - 8r-l,i)
í=l i-1

= d(zr - rf""V»-i) + d~\zr - dgrl) - zr_x.

Since gr„_x = d"~r, we get

•      zr+x = zrid + d-x)-zr_x-d2"-'-d',

and, by the inductive assumptions

zr+x = rdr+xi\ - d2"-2r)id + d~x)/(l - d2)

-(r- \)dr(l - d2"-2r+2)/(l - d2) - d2"-r - dr

= (r+ l)dr+2(\ - d2"-2r-2)/(\ - d2),

which completes the proof.

From the above lemma we get the following relation:

v. = ((-l)i + 1idl + l/(l - d2) + O,),        \6,\ < 2n2d" + l.

Now we are ready to compute px and p2- From the above relation, Lemma 2 and

(3.2) we have

px = 12(1 - 2a)(a/"(fl) + hpf '"(a) + tcxh2) + 0(n3d"),

p2 = \2il - 2a)(a/"(è) + hpf '"ib) + w2«2) + 0(«V"),

where

n -1 n -1

\'+ij'+ia= ¿Z(-\),+ >d¡+l/(\-d2)+ Eö,.
í=l ;=1

p=E1(-i)'+1í2^'+1/(i-^2) + "e^,
í-i í=i

n-l

|wiM"2l<^ E (l/12 + /2/2)/W' + 1/(l - d2).
i = l

Now, by using the difference equation technique (see [5, p. 438]) it is easy to prove

that

Z(-iy+1idi+i/(i-d2)
; = 1

= v/3 /36 + d"+1(n - d/(d + 1))/((1 + d)(l - d2)),

E (-i)i+1i2di+1/(i - d2)
i-1

= 1/36 +(«2/(l + d) -2nd/(\ - df + d(d- 1)/(1 + df)dn+l/(l - d2),

00 oc

I«! |, |co2|<^/12E^'+1/(l - d2) + k/2¿Zi3dí+1/(l - d2)
i=i /=i

= (A:/vTT)(1/24 + 1) = 25Ä:/(24vT2") < Jfc/3
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A CLASS OF CUBIC SPLINES 199

where, for the sake of simplicity, we have assumed « even. Therefore, we have

Px = (yj/3)(l - 2a)(/"(a) + (l/v1>/ '"(a) + 0(«2)),

/>2 = (vJ/3)(l - 2a)(/"(ft) + (l/yT )«/ '"(6) + 0(«2)).

From relations (3.4), (3.1) and Lemma 1, we finally get the following

Proposition 4. The second derivatives M0, Mn at the points a and b, respectively,

of the spline function obtained by (2.6), are given by

M0 = ((2a - l)/(a - 2))(f"(a) +(l/^3 )«/ '"(a)) + 0(h2),

M„ = ((2a - l)/(« - 2))(f"(b)+(l/ß)hf '"(b)) + 0(h2).

We are now ready to determine the value of a for which one obtains best

convergence of snix) to fix). For this purpose we use the following result [4].

Proposition 5. Ifsnix) is any cubic spline interpolating fix) g C4[a, b], then

max    \sínj)ix)-fU)ix)\^i\/23-J)h2-JLi,       j = 0,1,2,
Xj < X < Xj + j

wAere L, = (l/8)«2¿ + max{|/"(*,) - M,|, |/"(x, + 1) - M, + 1|}  W  |/<4>(x)| < k,

x g [a, ft].

In view of Proposition 5 we have to determine a in such a way that the values

\f"(xi) - A/,.| are as small as possible.

Let R be the (« + l)-vector whose components are f"(x¡), /' = 0,1,..., «, and

consider the vector R - M. Using the cubic spline condition (2.3) and the definition

of Ä in (2.9) yields

R-M= if'ia) - M0,wTÄ-x,f"(b) - Mn)T,

(3.5) w = AR-b + M¿e1 + MHen_l,

R = (f"(xx),f"(x2),...,f"(xn_x))T.

Since, by Taylor's formula,

fix,) = (/U-i) - 2/U) +/(*, + 1))/«2 +(«2/24)/<4>U,) +(«2/24)/<4>(tj,),

•X; < £/ < Xi+l, X¡_x < r/, < x¡,

we can write

ÄR-b= (-2f"(xx) +f"(x2) +(h2/2)6x,

f"(xx) -2f"(x2) + f"(x3) +(h2/2)62,...,

f"(x„_3) - 2f"(xn_2) +f"(xn_x)+(h2/2)en_2,

f"(x„_2)-2f"(x„_1)+(h2/2)9„.1)T,

|0,|< k=   max |/<4)(*)|-

Again using Taylor's formula, we find

/"(*,+,) - 2/"U) + /"(*,_i) = (A2/2)(/(4)(l,) +/(4'(î),)),

*, < I, < Xi + 1, X,_i   < T), < X¡,  i =  1,2,...,« -  1.
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Therefore, we have

w=(M0- 2f"(xx) +f"(x2)+(h2/2)ex, (3/2)h%,...,(3/2)h2èn_2,

(3-6) f"(xn_2) - 2/"(x„_1) + Mn +(h2/2)8„_x)T,

\9i\<k.

Now, from (3.5) and (3.6), the value of a for which we have the best uniform

convergence on [a, ft] is a = -1. In fact, in this case, since from Proposition 4

M0=f"ia)+(h/j3)f'"ia) + Oih2),

Mn=f"ib)+ih/j3)f'"(b) + 0(h2),

we have

r - m = (-( h/j3)f '"(a) + 0(h2), wTÄ~x, -(h/ifï)f '"(ft) + 0(h2))\

(3.7) w = ((Vv/3)/'"(«) + 0(«2),(3/2)«2c)2,...,

(3/2)h2en_2,(h/]/3)f'"(b) + 0(h2))T.

Using relations (3.7), we can prove the following

Proposition 6. The spline function snix) obtained by (2.6) with a = -1 fulfills the

conditions:

I'n'Kx) ~f(i)ix) | < (V2)3~'(y + 0(h)),       i = 0,1,2, a < x < ft,

where y = max(|/ '"(a)|, |/'"(ft)|).

Proof. Since

U"-all = (1/4)E(-1)' + 1^74'
/ = 0

oo

< (1/4) E (1/4')IIH\\' = (1/4) I 1/2' = 1/2,
i=0 i=0

we have ||yi-1w|| < (l/2)||w||. Therefore, from (3.7) we get

max|/"(^,)-M,|<(Vv^)max(|/"'(a)|,|/"'(ft)|) + 0(«2),

which, in view of Proposition 5, completes the proof.

We are now looking for numbers a', ft', such that a < a' < ft' < ft and

max   \sni)(x)~fii)(x)\=0(h4-i).
«'<X</>'

For this purpose, observe that from (3.7) we have

z = Ä~xw = ((A/i/3)/ '"(a) + 0(h2))A-lex

(3.8) +((h/ifï)f'"(b) + 0(h2))Ä~xe„_x +(3/2)h2Ä'xy,

y = (O,82,03,...,6n_x,O)T.
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Moreover, from the proof of Lemma 3, we have that the elements of the first

column of Ä-1 are given by (-1)'+V - d2n~')/(\ - d2"), d = 2 - {3. There-

fore, since \\Ä'l\\ < 1/2, \\y\\ < k and Ä g rn_x, we have

|z,|< (3/4)h2k+(h/y/3)(y + 0(h))(d' - d2"~' + d"''- d"+')/(l - d2n),

whereY = max{|/"»|,|/'"(ft)|}.

Now, if log ft/log d </'<«- log ft/log d, then

tdi _ din-: + dn-, _ d"+i)/(l - d2") ^ d< + dn~' + 0(d") < 2ft + 0(dn);

whence

(39) l*,l< «2((3/4)/c +(2//3 )y) + 0(h3),

if log ft/log í/ < i < n — log ft/log d.

Now we can apply Proposition 5 to get the following result.

Proposition 7. The spline function obtained by (2.6) with a = -1 fulfills the

conditions

\s\p(x) -r\x)\^(l/23-')h4--((l/%)k +(2/fi)y + 0(h)),

a' < x < ft', /' = 0,1,2;

k(,3)(*) -/(3)(*)|< 2«(£ + 2y/i/3),       a' < x < ft', jc # *,, y = 0,1,...,n;

wfttvt?   a' - a = b - b' = h log ft/log ¿/   a«ú?   /c = maxü<A<ft|/(4)(x)|,    y =

max{|/"»|,|/'"(ft)|}.

Proof. In view of (3.9) and (3.5) we have

max   \f"(xj) - Af.|< ft2((3/4)/c +(2/1/3)7) + 0(//3).

Therefore, from Proposition 5, we have the result relative to sl,'\x) - f0)(x),

i = 0,1,2. In the case of the third derivative, observe that the function g(x) = s'n'(x)

— fix) belongs to C2[x¡, xi+1], therefore, applying Taylor's formula at the point

x g [x¡, xi+x] with increment

. = i -A/2    if x > ixi+l + Xi)/2,

\   ft/2    ifx< ix, + l + x,)/2,

we get

s,:"(x) -f'"(x) = (s'n'(x + ft) -f"(x + ft) - s'„'(x) +f"(x))/h

-(ft/2)/<4>U),

where £ belongs to the inverval with endpoints x and x + ft. Therefore,

\s,;"(x)-f'"(x)\<    max   |^'(x) -/"(x) \/h +(h/4)k < 2ft(/c + (2/,/3)y).

F/«a/ Remarks. We have shown that, among the splines interpolating to f(x) and

satisfying (2.6), the best one is the spline S(x) minimizing the functional F3. The

computation of S(x) can be performed according to the following steps:

(1) Compute px = 6 Etf v,b„ p2 = 6 LU i>„_ A, (see (3.2));
(2) Compute M0 and Mn by means of (3.1);

(3) Solve the linear system AM = ft - M0ex - M„e„_x.
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Compared to natural splines, here we have to compute M0 and Mn with a

computational overhead of 2« + 0(1) multiplications. In this analysis we have

assumed that the numbers <p, \p and v¡, which do not depend on the data ft,, are

given constants which can be precomputed once and for all. Actually, in view of

(2.11a), the evaluation of <p and \p costs a linear time. Moreover, since the matrix

vector product Fa, where F is the matrix in (2.8), can be computed by means of fast

Fourier transform algorithms, the evaluation of v = Ä~2ex = FD'2Fex, D =

diag(4 + 2cos(7T/'/(« + 1))), can be carried out in 0(«log«) arithmetic operations.
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