
identify all the kinds of storage which the supervisor 
implements. This class of channels will not be con- 
sidered further. 

The following simple principle is sufficient to block 
all legitimate and covert channels. 

Masking: A program to be confined must allow its 
caller to determine all its inputs into legitimate and 
covert channels. We say that the channels are masked 
by the caller. 

At first sight it seems absurd to allow the customer to 
determine the bill, but since the service has the right 
to reject the call, this scheme is an exact model of the 
purchase order system used for industrial procurement. 
Normally the vendor of the service will publish specifi- 
cations from which the customer can compute the bill, 
and this computat ion might even be done automatically 
from an algorithmic specification by a trusted inter- 
mediary. 

In the case of the covert channels one further point 
must be made. 

Enforcement: The supervisor must ensure that a con- 
fined program's  input to covert channels conforms to 
the caller's specifications. 

This may require slowing the program down, generating 
spurious disk references, or whatever, but it is con- 
ceptually straightforward. 

The cost of enforcement may be high. A cheaper 
alternative (if the customer is willing to accept some 
amount  of leakage) is to bound the capacity of the 
covert channels. 

Operating C. Weissman 
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A new dynamic memory allocation algorithm, the 
Fibonacci system, is introduced. This algorithm is 
similar to, but seems to have certain advantages over, 
the "buddy" system. A generalization is mentioned 
which includes both of these systems as special cases. 
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Summary 

From consideration of a number of examples, we 
have proposed a classification of the ways in which a 
service program can transmit information to its owner 
about the customer who called it. This leakage can 
happen through a call on a program with memory,  
through misuse of storage facilities provided by the 
supervisor, or through channels intended for other uses 
onto which the information is encoded. Some simple 
principles, which it might be feasible to implement, can 
be used to block these paths. 
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Introduction 

For  many applications, there is a need for dy- 
namically reserving (and releasing) variable-size blocks 
of  contiguous memory cells. Several algorithms have 
been formulated and compared [3, 4]. The buddy system, 
introduced by Knowlton [1, 2], is preferred to other 
algorithms such as first-fit and best-fit on the basis of 
simulations conducted [3, 4]. 

One scheme for memory allocation transforms 
storage area requests (which can ask for any integral 
number of memory  cells up to a maximum of maxreq) 
into block requests, where the number of permissible 
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block sizes is relatively small. Memory is originally 
broken into "pages"  of fixed uniform size p > maxreq. 
If a particular block size is not immediately available, a 
bigger block (if any are available) is broken into two 
smaller blocks (this is done until a block of the re- 
quested size is available). If none is available, the 
request will be put on a queue. Upon release, smaller 
blocks will be recombined with their original buddies 
(if they are available) to re-form bigger blocks. We are 
concerned here with assigning one block per area re- 
quest. 

In any system following this general approach (the 
buddy system is one such), there will be inefficiencies in 
memory utilization. These are caused by two factors--  
external fragmentation (the inability to service big 
requests because the available memory is contained in 
blocks that are of insufficient size), and internal frag- 
mentation (the inaccessibility of unused memory that is 
included in blocks that are bigger than the area request 
that is being serviced). The inefficiency resulting from 
internal fragmentation has been observed to be of 
greater importance [5]. 

Expected Allocation 

We derive easily computable expressions for ex- 
pected waste due to internal fragmentation and ex- 
pected allocation size as follows: 

Let the input distribution of request sizes be de- 
scribed by a probability density function (pdf) and its 
cumulative distribution function (cdf). There are n 
levels of blocks of sizes L1, L2 . . . .  , L~ = p. Define 
L0 = 0, de = L~ - Li_~, i = 1 . . -n .  Then expected 
waste for a single request 

L i  

= k f pdf (x) ( L i - x )  dx, 
i = l  

L i - - 1  
L i L i  

= -  ± f x pdf ( x ) d x  + ~ Li f pdf (x) dx, 
i = 1  1 

L i -  1 L i - - I  

J 

but 

J = L~[cdf (L0 -- cdf (L;_~)] = p - ~ d; cdf(L~_l) 
1 I 

thus expected waste 

P 

= p -- f x pal  (x) dx - ~ di cdf (L,:-a). 
1 

0 

Expected number of cells allocated = avg request + 
avg waste 

= P - k d lcdf  (Li_l). 
1 

Example. For k levels, equally spaced from 0 to 

p(d = p /k ) ,  pdf = constant = l /p. Expected waste 

P 

f = p - x /p  dx - p / k  ~_. ( i -  1)/k,  
1 

0 

= p - p / 2  - p ( k  - 1 ) / 2 k  = p / 2 k .  

The Fibonacci System 

Is there another system that follows the same 
general scheme as the buddy system? 

If Li and L~_I are two adjacent levels, then Li -- 
L~_I must also be a level. This follows because it is 
possible to obtain L~_I from splitting L~. The dif- 
ference, therefore, must be utilized and is a level also. 
Therefore the level structure in this general scheme 
satisfies the difference equation: 

L~ = Li-1 + Li-k , for some k. 

For k = 1 we have the buddy system. 
Following Knuth's  suggestion [3], we introduce a 

new system, the Fibonacci system, which follows the 
general approach outlined above. It is similar to the 
buddy system except, instead of breaking a block of 
size 2 n into two blocks of size 2 n-l, it breaks a block of 
size f ,  (the nth Fibonacci number) into blocks of sizes 
f , -a  and f , - 2 .  In other words, the Fibonacci system 
corresponds to using k = 2 in the scheme above. 
Other possibilities Which are left for future research are 
those where k = 3, 4 . . . . .  

A Simulation Experiment 

A simulation was conducted comparing the buddy 
and Fibonacci systems. The input distribution of re- 
quest sizes was similar to the buffer request distribution 
of the Univac 1108 Exec 8 system at the University of 
Maryland [4]. This distribution is indicated in Ap- 
pendix A. As in [4], input request arrival times were 
Poisson distributed with exponential hold times (defined 
to be the length of time a block is in use). Output in- 
cluded snapshots of the system giving number of blocks 
allocated so far, presently being serviced, and on the 
queue, percentage utilization of memory, size distribu- 
tion of free blocks, and size distribution of block re- 
quests that are on the queue. When blocks become 
available, the biggest block request on the queue 
(needing that size or less) is fulfilled. After a pre- 
determined number of requests had been made, the 
system was allowed to wind down and a final output 
for the run included the following: total simulation 
time, average queue length, average nonzero queue 
length (the averages were taken from time t (equal to 
average hold time) after start-up to avoid initial 
transients until initiation of wind-down to avoid final 
transients), size distribution of blocks which had been 
queued, and the time spent on the queue, as well as 
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ever, the  average queue length,  number  of  requests  
queued,  and  to ta l  t ime spent  on queue were consis tent ly  
h igher  for b u d d y  than  for F ibonacc i  (at  t imes,  a fac tor  
o f  2 or  more) .  
2. Both systems were able  to  service big requests  under  
m o d e r a t e  l oad  cond i t ions  (queue not  growing in- 
definitely) ind ica t ing  tha t  r e c o m b i n a t i o n s  were oc- 
cur r ing  fair ly often. U n d e r  sa tu ra t ion  condi t ions ,  how- 
ever, bo th  systems de mons t r a t e d  a bu i ld -up  of  pre-  
domina n t l y  big requests  on the queue even though  big 
requests  on the queue had  pr ior i ty  over smal ler  ones 
(to minimize  the a fo remen t ioned  bui ld-up) .  
3. I t  was observed  that ,  under  mode ra t e  l oad  con- 
di t ions,  b u d d y  has  95 percent  u t i l iza t ion  of  m e m o r y  
while F ibonacc i  has only 90 percent ,  bu t  b u d d y ' s  95 is 
servicing less reques ted  space than  F i b o n a c c i ' s  90 per-  
cent. 

Overal l ,  the F ibonacc i  system seems preferable  to  
the b u d d y  system. 

Received September 1972; revised February 1973 

Appendix A. Evaluation of Expected Allocation/Request 
Ratio 

S i  

2 

to ta l  m e m o r y  requested,  a l located,  and  a l l o c a t i o n /  8 
request  rat io.  The a l l oca t i on / r eques t  ra t io  indicates  the 10 

15 
percentage of  unused m e m o r y  that  is tied up in blocks 25 
and hence inaccessible.  Thus, this ra t io  is a measure  of  3O 
internal  f ragmenta t ion .  35 5 

Several runs  were made  with each of  several average 40 5 
hold t imes (which var ied the load ing  factor) .  Each 50 10 

70 20 
run using the F ibonacc i  system was also run with 100 30 
identical  inputs  using the buddy  system. 2oo lOO 

Results of Simulation 

The results closely agreed with predic t ions  for inter- 
nal  f ragmenta t ion  for bo th  systems: 

Allocat ions~reques ts  buddy Fibonacci  
expected ratio 1.381 1.250 (see App. A) 
actual ratio max 1.388 1.252 

avg 1.381 1.248 
min 1.365 1.236 

The expected  ra t ios  are der ived (assuming the p d f  
in [4]) in A p p e n d i x  A. Note  tha t  1.250 means  tha t  
one- four th  more  space is a l loca ted  than  requested.  The 
ac tua l  ra t io  figures are the results  of  the s imula t ions  
conducted .  The average ac tua l  ra t io  closely agrees with 
the expected  rat io.  The variance is not  excessively large. 

Several  o ther  i tems were no ted  ( compar i sons  of  
request  sizes and  t imes were made  for  the same inputs) .  
1. To ta l  s imula t ion  t imes were roughly  the same;  how-  

617 

contr to 
del cdf (%) pdf (%) avg req 

0 
6 36 6 1.98 
2 44 4 .76 
5 54 2 1.30 

10 84 3 6.15 
5 94 2 2.8 

96.5 .5 .825 
97.5 .2 .38 
98.5 .1 .455 
99.3 .04 .484 
99.6 .01 .2565 

100 .004 .602 

Average request = 15.9925 
del = Si - Si_~. 
pdfl applies to range [Si_t , S~J. 
cdfl = cdfi_t + del X pdfi . 

li contr to avg req = ~-~4=z~_~+lj'pdfi. 
The pdf corresponds to that in [4]. 

Buddy F~o l lacc i  

Lz = di . t  cdfi (%) d,+l X cdf, Li  di+l cdl'~ (9~) X 
4 12 48 3 2 6 12 
8 36 288 5 3 18 54 

16 57 912 8 5 36 180 
32 95 3040 13 8 50 400 
64 99.06 6340 21 13 72 936 

128 99.712 12762 34 21 96 2016 
55 34 98.7 3356 

sum = 23390 89 55 99.49 5472 
144 89 99.776 8880 

sum = 21306 

Avg alloc = p -- di cdf (Li_~). 
Avg alloc: 256 -- 233.9 = 22.1 
Alloc/req ratio: 22.1/16 = 1.381 

233 -- 213 = 20 
20/16 = 1.250 
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Appendix B. Algorithm A and Algorithm R Appendix C. Buddy Finding in the Fibonacci System 

Blocks are available in ten sizes. They are referred to (from the 
smallest through largest) as types 2 through 11 (sizes 3 through 233). 
Algorithm A. Block Allocation for the Fibonacci System 
INPUT:  K = type wanted 
O U T P U T :  L = starting location, K = type allocated; if not 

allocatable at present, L = 0 
Address space starts at location 1 
A VAIL( i )  = location of  a free block of  type i 

= 0 if none available 
L I N K ( L )  = location of  next free block of  same type as block 

starting at location L 
= 0 if no more available 

T Y P E ( L )  = type of  block (2 through I 1) that starts at location L 
F I B S I Z ( i )  = size of block of type i 
I. Find mini  > K such that  A VAIL( i )  ~ 0 (if none, L : = 0 return) 
2. Remove block from list: L: = A V A I L ( i ) ;  

A VAIL ( i )  : = L I N K ( L )  

3. if i = K t h e n  return 
4. Split block: i f i  = 3 t h e n [ K  = i; return]; i = i - -  2; 

P := L + F I B S I Z ( i + I ) ;  T Y P E ( P )  := i; T Y P E ( L )  :=  i + 1 
5. i f i  + 1 = Kthen goto7 
6. Put bigger buddy on available list: 

L I N K ( L )  := A V A 1 L ( i + I ) ;  A V A I L ( i + I )  :=  L ; L  := P;  goto 3 
7. Put smaller buddy on available list and return: 

L I N K ( P )  : = A VAIL( i )  ; A VAIL ( i )  : - P;  return 
Algorithm R. Block Release for the Fibonacci System 
INPUT: block starts at location L and is of type K 

( T Y P E ( L )  : K )  
1. i f K  = M A X T Y P  then goto  8 [ M A X T Y P  = l lJ  
2. Is buddy smaller or bigger? [See Appendix C] 

N :=  (L rood233)  --  F 1 B S I Z ( K + I ) ;  

if K = 2 then goto 4; 
f o r i : =  l t o  13do 

[if L I S T ( i )  > N then goto 3; 
if L I S T ( i )  = N then 

[if K ~ VAL( i )  then goto 4 else goto 3]] 
3. Smaller buddy at higher location number  

(BL  = buddy loc.; B K  = buddy type): 
B L  := L + F I B S 1 Z ( K + I ) ;  B K  := K -- 1; goto 5 

4. Bigger buddy at lower location number:  
B L  := L --  F I B S I Z ( K + I ) ;  B K  := K + 1 

5. if block at buddy location is wrong size or not  available 
then goto 8; 

Remove buddy from list and combine:  
if A V A I L ( B K )  = B L  then [A V A I L ( B K )  : = L I N K ( B L )  ; goto 7]; 
J J  : = A V A I L ( B K )  

6. j :=  J J; J J  := L I N K ( j ) ;  

if JJ ~ BL then goto 6; 
L I N K ( j )  := L I N K ( B L )  

7. if BL < L then L := BL;  

K := m a x ( K ,  B K )  + 1; 
goto 1 

8. Put block on list K: 
L I N K ( L )  :=  A V A I L ( K ) ;  A V A I L ( K )  :=  L; T Y P E ( L )  := K; 

return 
F I B S I Z ( 2 : M A X T Y P ) :  

3, 5, 8, 13, 21, 34, 55, 89, 144, 233 
L I S T ( 1 : 1 3 )  : 

1 22 35 56 77 90 111 124 145 166 179 200 221 

VAL(1 :13 )  : 
9 3 4 5 3 6 3 4 7 3 4 5 3 

We are given a block of type K starting at location L'. Since 
memory is broken into pages of size 233, we find the location rela- 
tive to the beginning of the page L = (L' rood 233). We wish to 
find the type B K  and location B L  of  the original buddy of this block. 
In splitting blocks we always put the bigger buddy at the lower 
location number.  Therefore, if B K  = K + 1, then B L  = L --  
F I B S I Z ( K + I ) ;  if B K  = K -- 1, then B L  = L q- F I B S I Z ( K )  (see 
Figure 1). 

M e t h o d  I (used in Algori thm R). We first determine the 
Fibonacci storage layout (see Figure 2). F rom this we construct  
L I S T ,  which is simply an ordered sequence of locations (rood 233) 
at which a block of  type 5 or higher can start. V A L  is constructed to 
correspond to L I S T  such that blocks of  type V A L i  + 2 or lower 
start at location L I S T i .  

We wish to see if it is possible to have a bigger buddy (at lower 
location number).  That is, can a block of  type B K  = K -f- 1 start 
at location B L  = L --  F I B S 1 Z ( K + I )  and be " lef t -handed"?  We 
note that left-handedness of  a block of type T at location L occurs 
if and only if a block of  type T q- I can start at location L. There- 
fore we test to see if a block of  type B K  + I [ = K + 2 ]  can start at 
location B L  [ = L - - F I B S 1 Z ( K + I ) ]  which happens if and only if 
B L  is on L I S T  and the corresponding V A L  is at most ( B K + I ) - - 2  
[=K].  

M e t h o d  2. If L = 1, then the block must be left-handed, and 
therefore the buddy is smaller at a higher location, and B K  = K -- 1, 

B L  - L A- F I B S I Z ( K ) .  
If L > 1, then build up to L by successively adding the biggest 

F I B S I Z  possible without exceeding L. 
Then L - 1 = F I B S I Z ( i l )  -4- " "  + F IBSIZ ( i , , ) ,  where 

i l >  " '"  > i,,, > K. 
If i,, > K + 1, then buddy is right-handed, B K  = K -- 1. 

Otherwise L,, = K q- 1, and buddy is left-handed, B K  = K + 1 .  
As an example (see Figure 2) we add sizes A and B to get C 

or D. T Y P E ( A )  = 10, T Y P E ( B )  = 8, T Y P E ( C )  = 7, T Y P E ( D )  

= 6. Therefore C's buddy must  be left-handed (8 = 7 q- 1); D's  
buddy must be r ight-handed (8 = 6 -t- 2). 
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