
Turk J Math
(2019) 43: 1061 – 1079
© TÜBİTAK
doi:10.3906/mat-1807-184

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

A class of finite difference schemes for singularly perturbed delay differential
equations of second order

Pramod Chakravarthy PODILA∗ , Kamalesh KUMAR
Department of Mathematics, Visvesvaraya National Institute of Technology, Nagpur, India

Received: 25.07.2018 • Accepted/Published Online: 27.02.2019 • Final Version: 29.05.2019

Abstract: In this paper, we proposed a new class of finite difference schemes for solving singularly perturbed delay
differential equation of second order. The proposed schemes are oscillation-free and more accurate than conventional
schemes on a uniform mesh. These schemes are easily adaptable on special meshes like Shishkin mesh or Bakhvalov
mesh and are uniformly convergent with respect to the perturbation parameter. The error analysis has been carried out
and numerical examples are presented to show the accuracy and efficiency of the proposed schemes.
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1. Introduction
Singular perturbation problems (SPPs) arise very frequently in fluid dynamics, elasticity, aerodynamics, plasma
dynamics, magneto hydrodynamics, rarefied gas dynamics, oceanography, and other domains of the great world
of fluid motion. These problems depend on a small positive parameter in such a way that the solution varies
rapidly in some parts of the domain and varies slowly in some other parts of the domain. Thus, typically there
are thin transition layers where the solution varies rapidly or jumps abruptly while away from the layers, the
solution behaves regularly and varies slowly. If we apply the existing standard numerical methods for solving
these problems, large oscillations may arise and pollute the solution in the entire interval because of the boundary
layer behavior. A more general type of the differential equations, often called functional differential equations, is
one in which the unknown function occur with various different arguments. The simplest functional differential
equations are ’delay differential equations’. Delay differential equations are similar to ordinary differential
equations, but their evolution involves past values of the state variable. The solution of delay differential
equations therefore requires knowledge of not only the current state, but also the state a certain time previously.
In the last few decades, there has been a growing interest in the study of delay differential equations due to
their occurrence in a wide variety of application fields such as biosciences, control theory, economics, material
science, medicine, and robotics. Any system involving a feedback control will almost always involve time delays.
These arise because a finite time is required to sense the information and then to react to it. The delays or
lags can represent gestation times, incubation periods, transport delays. Delay models also being prominent in
describing several aspects of infectious disease dynamics such as primary infection, drug therapy, and immune
response etc. Delays have also appeared in the study of chemostat models, circadian rhythms, epidemiology,
the respiratory system, tumor growth and neural networks. Statistical analysis of ecological data has shown
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that there is evidence of delay effects in the population dynamics of many species. A singularly perturbed delay
differential equation is a differential equation in which the highest order derivative is multiplied by a small
parameter and involving at least one delay term. SPPs are generally the first approximation of the considered
physical model. Hence, in such cases, a more realistic model should include some of the past and the future states
of the system; hence, a real system should be modeled by differential equations with delay or advance. Such
type of equation arises frequently in the mathematical modeling of various practical phenomena, for example,
in the modeling of the human pupil-light reflex, model of HIV infection, the study of bistable devices in digital
electronics, variational problem in control theory, first exist time problems in modeling of activation of neuronal
variability, immune response, mathematical ecology, population dynamics, the modeling of biological oscillators
and in a variety of models for physiological process. Lange and Miura [11–13] studied the asymptotic analysis
of singularly perturbed boundary value problems for differential-difference equations. This study motivated
many researchers to work on numerics of singularly perturbed differential-difference equations. Kadalbajoo and
Sharma [8–10] gave a series of papers on singularly perturbed delay differential equations with small delay.
Amiraliyev and Cimen [1] proposed an exponential fitted difference scheme on a uniform mesh for singularly
perturbed differential equations with large delay. The method is found to be first order accurate. Subburayan
and Ramanujam [16, 17] developed an initial value method for singularly perturbed delay differential equations
on Shishkin mesh. In [18], they proposed an asymptotic initial value method for singularly perturbed delay
differential equations in which coefficient of convection-diffusion term is discontinuous.

Standard central difference schemes on uniform mesh are unstable and gives oscillatory solution for these
problems. To get an oscillatory-free solution, more mesh points are required in the layer region. If prior
knowledge about the location of the layer is available, one can use adaptive meshes developed by Bakhvalov
[2], Gartland [6], and Shishkin [14]. Shishkin meshes are used widely because of their simplicity. The major
drawback of Shishkin meshes is the requirement of prior information of the location of the layer regions. Since
standard finite difference schemes fail to capture the layer region perfectly, here we developed new finite difference
schemes on uniform mesh by taking infinite terms in Taylor’s expansions. We followed the step of He and Wang
[22–24] to propose new finite difference schemes.

The paper is organized as follows: We stated the problem under consideration in Section 2. Construction
of finite difference schemes for constant coefficient problems and variable coefficient problems are discussed in
Section 3. Error estimates are derived in Section 4. To demonstrate the efficiency and applicability of the
proposed schemes, numerical experiments are carried out for four test problems and results are given in Section
5. The paper ends with conclusion in the last section.

2. Statement of the problem

We consider a second-order singularly perturbed delay differential equation of the form:

−εy
′′
(x) + a(x)y

′
(x) + b(x)y(x− 1) = f(x), x ∈ Ω, (1)

subject to the interval and boundary conditions

y(x) = ϕ(x), x ∈ Ω0,

y(2) = β, (2)
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where Ω = (0, 2) , Ω0 = [−1, 0] and ε is a small perturbation parameter (0 < ε ≪ 1) , a(x) ≥ α > 0 with α

being a constant and a(x) , b(x) , f(x) are supposed to be smooth functions on Ω , ϕ(x) is a smooth function
on Ω0 and β is a given constant. The boundary value problem (1), along with (2), has unique solution [4]. It
also exhibits a boundary layer at x = 2 .

Lemma 2.1 [15] Assume that a(x) ≥ α > 0 and a(x) , b(x) , f(x) , ϕ(x) are sufficiently smooth. Then the
solution y of (1) with homogeneous Direchlet boundary conditions satisfy

|y(n)(x)| ≤ C

[
1 + ϵ−n exp

(
− α

2− x

ϵ

)]
, n ∈ Z+, for 0 ≤ x ≤ 2,

where C is a generic constant which is independent of ε .

3. Construction of finite difference schemes
We develop the finite difference methods for constant coefficient problems and variable coefficient problems
separately. We divide the interval Ω̄ = [0, 2] into 2N equal parts with constant mesh size h . We choose the mesh
size h such that the delay x = 1 must be a mesh point. Let x0 = 0, x1, x2, ..., xN = 1, xN+1, xN+2, ..., x2N = 2

be the mesh points. Namely, xi = ih for i = 0, 1, 2, ..., 2N .

3.1. Constant coefficient problems

In this subsection, we will derive the new class of schemes for problem (1), when a(x) and b(x) are constants.
From (1), we have

y(2)(x) =
a

ε
y(1)(x) +

b

ε
y(x− 1)− 1

ε
f(x),

y(3)(x) =
a2

ε2
y(1)(x) +

ab

ε2
y(x− 1) +

b

ε
y(1)(x− 1)− a

ε2
f(x)− 1

ε
f (1)(x),

y(4)(x) =
a3

ε3
y(1)(x) +

a2b

ε3
y(x− 1) +

ab

ε2
y(1)(x− 1)

b

ε
y(2)(x− 1)− a2

ε3
f(x)− a

ε2
f (1)(x)− 1

ε
f (2)(x),

.

.

.

y(n)(x) =
(a
ε

)n−1

y′(x) +
b

ε

n−2∑
j=0

(a
ε

)n−2−j

y(j)(x− 1)− 1

ε

n−2∑
j=0

(a
ε

)n−2−j

f (j)(x).

This y(n)(x) can be rewritten as

y(n)(x) =
(a
ε

)n−1

y′(x) +
1

ε

n−2∑
j=0

(a
ε

)n−2−j

[by(j)(x− 1)− f (j)(x)]. (3)

Taylor’s expansions of y at mesh points xi+1 and xi−1 are respectively given by

yi+1 = yi + hy
′

i +
h2

2!
y

′′

i +
h3

3!
y

′′′

i + ...+
hn

n!
yni + ..., (4)
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yi−1 = yi − hy
′

i +
h2

2!
y

′′

i − h3

3!
y

′′′

i + ...+ (−1)n
hn

n!
yni + .... (5)

Using (3) in the above Taylor’s series expansions, we have

yi+1 = yi + hy
′

i +

∞∑
n=2

hn

n!

[(a
ε

)n−1

y′i +
1

ε

n−2∑
j=0

(a
ε

)n−2−j

(by
(j)
i−N − f

(j)
i )

]

= yi +

∞∑
n=1

hn

n!

(a
ε

)n−1

y′i +

∞∑
n=2

hn

n!

[1
ε

n−2∑
j=0

(a
ε

)n−2−j

(by
(j)
i−N − f

(j)
i )

]
.

Now, we rewrite yi+1 as

yi+1 = yi +
ε

a
(er − 1)y

′

i +Ai. (6)

Similarly,

yi−1 = yi +
ε

a
(e−r − 1)y

′

i +Bi. (7)

Here

r =
ah

ε
,

Ai =

∞∑
n=2

hn

n!

[1
ε

n−2∑
j=0

(a
ε

)n−2−j

(by
(j)
i−N − f

(j)
i )

]

=

∞∑
n=0

εn+1

an+2

[
er −

n+1∑
s=0

rs

s!

]
(by

(n)
i−N − f

(n)
i ),

and

Bi =

∞∑
n=0

εn+1

an+2

[
e−r −

n+1∑
s=0

(−r)s

s!

]
(by

(n)
i−N − f

(n)
i ).

Eliminating y
′

i , from (6) and (7), we have

yi−1 − (e−r + 1)yi + e−ryi+1 = Hi, (8)

where

Hi =

∞∑
n=0

εn+1

an+2

[ n+1∑
s=0

rs

s!
[(−1)s+1 − e−r]

]
(by

(n)
i−N − f

(n)
i ).

Let Yi is the approximate solution of (1), then taking the first m terms of Hi , we have

Yi−1 − (e−r + 1)Yi + e−rYi+1 = H∗
i for 1 < i < 2N − 1, (9)
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where

H∗
i =

m∑
n=0

εn+1

an+2

[ n+1∑
s=0

rs

s!
[(−1)s+1 − e−r]

]
(bY

(n)
i−N − f

(n)
i ).

For different positive integer values of m , we have different finite difference schemes.

Numerical algorithm:
Step 1: We obtain the reduced problem by setting ε = 0 in (1) with appropriate interval condition. Let

y0(x) be the solution of reduced problem of (1)-(2), i.e.

a(x)y
′

0(x) + b(x)y0(x− 1) = f(x),

with interval condition
y0(x) = ϕ(x), −1 ≤ x ≤ 0.

By using the Runge–Kutta method, we solved the above problem in 0 ≤ x ≤ 1 to obtain y0(1) .
Step 2: To obtain the solution on 0 < x < 1 , we consider the numerical scheme from (9) which is of the

form
Yi−1 − (e−r + 1)Yi + e−rYi+1 = H∗

i for 1 < i < N − 1,

where

H∗
i =

m∑
n=0

εn+1

an+2

[ n+1∑
s=0

rs

s!
[(−1)s+1 − e−r]

]
(bϕ

(n)
i−N − f

(n)
i ).

We solve the above system with the boundary conditions

Y (0) = ϕ(0), Y (N) = y0(N),

using Thomas Algorithm [7].
Step 3: Now, to obtain the solution on 1 < x < 2 , we consider the numerical scheme from (9) which is

of the form
Yi−1 − (e−r + 1)Yi + e−rYi+1 = H∗

i for N + 1 < i < 2N − 1,

where

H∗
i =

m∑
n=0

εn+1

an+2

[ n+1∑
s=0

rs

s!
[(−1)s+1 − e−r]

]
(bY

(n)
i−N − f

(n)
i )

along with the boundary conditions,

Y (N) = y0(N), Y (2N) = β.

To apply the above scheme, we need to have the derivatives of y on the interval (0, 1) . For n = 1, we obtain
y

′

i from (6) and (7) as

y
′

i =
a

ε

(
yi+1 − yi−1 +Bi −Ai

er − e−r

)
.
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3.2. Constant coefficient problems with discontinuous source term

Motivated by the work of [5, 20, 21], we consider the case of discontinuity in source term f(x) . We assumed
that f(x) has a jump discontinuity at x = 1 , i.e., f(1−) ̸= f(1+) . Now, the problem under consideration will
be of the form:

−εy
′′
(x) + a(x)y

′
(x) + b(x)y(x− 1) =

{
f1(x), 0 < x < 1,

f2(x), 1 < x < 2.

The numerical scheme (9) will be reduced to{
Yi−1 − (e−r + 1)Yi + e−rYi+1 = H∗

i for 1 < i < N − 1,

Yi−1 − (e−r + 1)Yi + e−rYi+1 = H∗∗
i for N + 1 < i < 2N − 1,

(10)

with

H∗
i =

m∑
n=0

εn+1

an+2

[ n+1∑
s=0

rs

s!
[(−1)s+1 − e−r]

]
(bϕ

(n)
i−N − f

(n)
1,i ),

H∗∗
i =

m∑
n=0

εn+1

an+2

[ n+1∑
s=0

rs

s!
[(−1)s+1 − e−r]

]
(bY

(n)
i−N − f

(n)
2,i ).

To obtain the numerical results, we used the numerical algorithm described in the previous subsection.

3.3. Variable coefficient problems

In this subsection, we will derive schemes for problem (1), when a(x) and b(x) are not constants. From (1),
nth order derivative of y can be written as

y(n)(x) =
1

ε
[a(x)y

′
(x) + b(x)y(x− 1)− f(x)](n−2). (11)

Using (1) recursively, it is possible to rewrite y(n)(x) in terms of y′(x) and the derivatives of f(x) as follows:

y(n)(x) =

n−1∑
s=1

P sy
′
(x) +

n−3∑
j=0

[ n−j−1∑
s=2

Qs
j

]
f (j)(x) +

n−3∑
j=0

[ n−j−1∑
s=2

Rs
j

]
y(j)(x− 1)−

1

ε
[f (n−2)(x)− b(x)y(n−2)(x− 1)],

where P s , Qs
j and Rs

j are the coefficients with respect to 1/εs .

To derive finite difference schemes, first of all, we consider all the terms which are with respect to 1/εn−1

for n ≥ 2 , on the RHS of (10) are taken into account. After simplification, we get

y(n)(x) ≈ an−1(x)

εn−1
y

′
(x) +

an−2(x)

εn−1
b(x)y(x− 1)− an−2(x)

εn−1
f(x). (12)

For the interior point xi , substituting (12) into Taylor’s expansions (4)-(5), and multiplying them by e−ri , we
get

e−riyi+1 ≈ e−riyi + Ciy
′

i +Di(biyi−N − fi), (13)
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e−riyi−1 ≈ e−riyi + C∗
i y

′

i +D∗
i (biyi−N − fi), (14)

where

ri =
aih

ε
,

Ci =
ε

ai
(1− e−ri), Di =

ε

a2i
(1− e−ri − rie

−ri),

C∗
i =

ε

ai
(e−2ri − e−ri), D∗

i =
ε

a2i
(e−2ri − e−ri + rie

−ri).

By eliminating y
′

i , from (13) and (14), we get

Iiyi−1 − Jiyi +Kiyi+1 = Mi(biyi−N − fi) for 1 ≤ i ≤ 2N − 1, (15)

where

Ii = −e−riCi, Ji = e−ri(C∗
i − Ci),

Ki = e−riC∗
i , Mi = (CiD

∗
i − C∗

i Di).

To derive another finite difference scheme, we collect the terms which are with respect to 1/εn−1 and 1/εn−2

in y(n) , for n ≥ 3 . After simplification, the nth order derivative of y can be expressed as

y(n)(x) ≈
[an−1(x)

εn−1
+

(n− 1)(n− 2)

2

an−3(x)a
′
(x)

εn−2

]
y

′
(x)+

[an−2(x)

εn−1
+

n(n− 3)

2

an−4(x)a
′
(x)

εn−2

](
b(x)ϕ(x− 1)− f(x)

)
+

an−3(x)

εn−2

(
b
′
(x)ϕ(x− 1) + b(x)ϕ

′
(x− 1)− f

′
(x)

)
.

For the interior point xi , substituting y(n) for n ≥ 3 into Taylor’s expansions (4)-(5), and multiplying
them by e−ri , we get

e−riyi+1 ≈ e−riyi + (Ci + Ei)y
′

i + (Di + Fi)(biyi−N − fi) +Gi(b
′

iyi−N + biy
′

i−N − f
′

i ), (16)

e−riyi−1 ≈ e−riyi + (C∗
i + E∗

i )y
′

i + (D∗
i + F ∗

i )(biyi−N − fi) +G∗
i (b

′

iyi−N + biy
′

i−N − f
′

i ), (17)
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where

Ei =
ε2a

′

i

2a3i
[(r2i − 2ri + 2)− 2e−ri ],

E∗
i =

ε2a
′

i

2a3i
[e−2ri(r2i + 2ri + 2)− 2e−ri ],

Fi =
ε2a

′

i

2a4i
[r2i − 2ri + (r2i + 2ri)e

−ri ],

F ∗
i =

ε2a
′

i

2a4i
[(r2i − 2ri)e

−ri + (r2i + 2ri)e
−2ri ],

Gi =
ε2

a3i
(1− e−ri − rie

−ri − r2i e
−ri

2!
),

G∗
i =

ε2

a3i
(e−2ri − e−ri + rie

−ri − r2i e
−ri

2!
).

By eliminating y
′

i , from (16) and (17), we get

Iiyi−1 − Jiyi +Kiyi+1 = Mi(biyi−N − fi) +Ni(b
′

iyi−N + biy
′

i−N − f
′

i ), (18)

where

Ii = −e−ri(Ci + Ei),

Ji = e−ri(C∗
i + E∗

i )− e−ri(Ci + Ei),

Ki = e−ri(C∗
i + E∗

i ),

Mi = (Ci + Ei)(D
∗
i + F ∗

i )− (C∗
i + E∗

i )(Di + Fi),

Ni = (Ci + Ei)G
∗
i − (C∗

i + E∗
i )Gi.

To apply the above scheme, we need to have the derivatives of y on the interval (0, 1) . We obtain y
′

i

from (16) and (17) as

y
′

i =
Giyi−1 + (Gi +G∗

i )yi −G∗
i yi+1 + (G∗

i (Di + Fi)−Gi(D
∗
i + F ∗

i ))(biyi−N − fi)

Ni
.

To derive another finite difference scheme, we may collect the terms which are with respect to 1/εn−1, 1/εn−2

and 1/εn−3 in y(n) , for n ≥ 4 and proceed as above. Applying the same concept, we may easily obtain different
finite difference schemes.

The numerical algorithm which has been described in subsection (3.1) has been applied to get the
numerical results.

4. Error analysis

In this section, we derived an error estimate for the finite difference scheme (9).
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From (6) and (7), we have

yi+1 = yi +
ε

a
(er − 1)y

′

i +Ai,

and
yi−1 = yi +

ε

a
(e−r − 1)y

′

i +Bi.

After neglecting the higher order terms of ε , yi+1 and yi−1 can be rewritten as

yi+1 = yi +
ε

a
(er − 1)y

′

i +

2∑
n=0

εn+1

an+2

[
er −

n+1∑
s=0

rs

s!

]
(by

(n)
i−N − f

(n)
i ) +R∗

i , (19)

yi−1 = yi +
ε

a
(e−r − 1)y

′

i +

2∑
n=0

εn+1

an+2

[
e−r −

n+1∑
s=0

(−r)s

s!

]
(by

(n)
i−N − f

(n)
i ) +R∗∗

i , (20)

where

R∗
i =

ε4

a5

[
er −

4∑
s=0

rs

s!

]
(by

(3)
i−N − f

(3)
i ),

R∗∗
i =

ε4

a5

[
e−r −

4∑
s=0

(−r)s

s!

]
(by

(3)
i−N − f

(3)
i ).

Adding (19) and (20), we get

yi+1 + yi−1 =2yi +
ε

a
(er + e−r − 2)y

′

i+

2∑
n=0

εn+1

an+2

[
ere−r −

n+1∑
s=0

rs + (−r)s

s!

](
by

(n)
i−N − f

(n)
i

)
+R∗

i +R∗∗
i .

After rearranging the terms, we have

yi+1 + yi−1 − 2yi =
ε

a
(er + e−r − 2)y

′

i +
ε

a2
(er + e−r − 2)(byi−N − fi)+

2∑
n=1

εn+1

an+2

[
er + e−r −

n+1∑
s=0

rs + (−r)s

s!

](
by

(n)
i−N − f

(n)
i

)
+R∗

i +R∗∗
i .

Multiplying this equation with a2/ε(er + e−r − 2) , we have

a2

ε

yi+1 + yi−1 − 2yi
er + e−r − 2

=ay
′

i + byi−N − fi+

2∑
n=1

εn

an

[
er + e−r −

n+1∑
s=0

rs + (−r)s

s!

] (by(n)i−N − f
(n)
i )

(er + e−r − 2)
+

a2

ε

(
R∗

i +R∗∗
i

er + e−r − 2

)
.

From (1) we have, ay
′

i + byi−N − fi = εy
′′

i . Putting this value in above equation, we get

a2

ε

yi+1 + yi−1 − 2yi
er + e−r − 2

=εy
′′

i +

2∑
n=1

εn

an

[
er + e−r −

n+1∑
s=0

rs + (−r)s

s!

] (by(n)i−N − f
(n)
i )

(er + e−r − 2)
+

a2

ε

(
R∗

i +R∗∗
i

er + e−r − 2

)
.
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Now define a new operator D2 as,

D2yi =
a2

ε2
yi+1 + yi−1 − 2yi

er + e−r − 2
−

2∑
n=1

εn−1

an

[
er + e−r −

n+1∑
s=0

rs + (−r)s

s!

] (by(n)i−N − f
(n)
i )

er + e−r − 2
− a2

ε2
R∗

i +R∗∗
i

er + e−r − 2
. (21)

Subtracting (20) from (19), we get

yi+1 − yi−1 =
ε

a
(er − e−r)y

′

i +

2∑
n=0

εn+1

an+2

[
er − e−r −

n+1∑
s=0

rs − (−r)s

s!

]
(by

(n)
i−N − f

(n)
i ) +R∗

i −R∗∗
i .

Multiplying this equation with a/ε(er − e−r) , we have

a

ε

yi+1 − yi−1

er − e−r
=y

′

i +

2∑
n=0

εn

an+1

[
er − e−r −

n+1∑
s=0

rs − (−r)s

s!

] (by(n)i−N − f
(n)
i )

(er − e−r)
+

a

ε

(
R∗

i −R∗∗
i

er − e−r

)
.

Now define a new operator D as,

Dyi =
a

ε

yi+1 − yi−1

er − e−r
−

2∑
n=0

εn

an+1

[
er − e−r −

n+1∑
s=0

rs − (−r)s

s!

]by(n)i−N − f
(n)
i

er − e−r
− a

ε

R∗
i −R∗∗

i

er − e−r
. (22)

Putting this operator values in (1), we get

−εD2yi + aDyi + byi−N = fi +Ri, (23)

where

Ri = −a2

ε

R∗
i +R∗∗

i

er + e−r − 2
+

a2

ε

R∗
i −R∗∗

i

er + e−r
.

Let Yi is the numerical solution of (1). Neglecting the remainder terms, we have

−εD2Yi + aDYi + bYi−N = fi. (24)

Subtracting (24) from (23) and putting yi − Yi = ei , we have

−εD
2
ei + aDei = Ri, (25)

where

D
2
ei =

a2

ε2
ei−1 − 2ei + ei+1

er + e−r − 2
, Dei =

a

ε

ei+1 − ei−1

er − e−r
.

From standard central difference operators, we have

δ2ei =
ei−1 − 2ei + ei+1

h2
=

er + e−r − 2

r2
D

2
ei,

δei =
ei+1 − ei−1

2h
=

er − e−r

2r
Dei.

1070



PODILA and KUMAR/Turk J Math

Using δ2ei and δei values in (25), we get

−ε
r2

er + e−r − 2
δ2ei +

2ar

er − e−r
δei = Ri. (26)

Lemma 4.1 [24] Assume U0 = {u | u = {ui | 0 ≤ i ≤ 2N}, u0 = u2N = 0} , then for all u ∈ U0 , the following
conclusions hold

h

2N−1∑
i=1

(−δ2ui)ui = h

2N−1∑
i=1

(−δui−1/2)
2 = |u|21,

∥u∥∞ = max
0≤i≤2N

|ui| ≤
√
xe − xs

2
|u|1,

∥u∥2 =

√√√√h

(
u2
0

2
+

2N−1∑
i=1

u2
i +

u2
2N

2

)
≤ xe − xs√

6
|u|1,

where |u|1 , ∥u∥∞ , ∥u∥2 denote H1 semi-norm, L∞ norm and L2 norm respectively and xs , xe are the
starting point and end point of the domain.

Theorem 4.2 If y is the exact solution of (1) and Y be the numerical solution obtained using the scheme (9),
the error at the mesh point xi be ei = yi − Yi , then, the following inequality holds

∥e∥∞ ≤ Mh2

12
√
3a

,

where M = max
0≤i≤2N

|by(3)i−N − f
(3)
i | .

Proof Multiplying (26) with hei and taking summation from i = 1 to 2N − 1 , we get

r2εh

er + e−r − 2

2N−1∑
i=1

(−δ2ei)ei +
2arh

er − e−r

2N−1∑
i=1

(δei)ei = h

2N−1∑
i=1

Riei. (27)

From Lemma 4.1

h

2N−1∑
i=1

(−δ2ei)ei = |e|21

and

2N−1∑
i=1

(δei)ei =
1

2h
[(e2 − e0)e1 + (e3 − e1)e2 + (e4 − e2)e3 + ...+ (e2N − e2N−2)e2N−1],

=
1

2h
[e2Ne2N−1 − e0e1],

= 0.
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Using these values in (27), we get

r2ε

er + e−r − 2
|e|21 = h

2N−1∑
i=1

Riei

≤ ∥R∥2∥e∥2,

using Lemma 4.1

r2ε

er + e−r − 2
|e|21 ≤ ∥R∥2

√
2

3
|e|1,

can be rewritten as

|e|1 ≤
√

2

3
∥R∥2

er + e−r − 2

r2ε
.

From Lemma 4.1, L∞ norm is defined as

∥e∥∞ ≤ 1√
2
|e|1,

≤ 1√
3
∥R∥∞

er + e−r − 2

r2ε
.

Let M = max
0≤i≤2N

|by(3)i−N − f
(3)
i | , then

∥R∥∞ = max
0≤i≤2N

∣∣∣∣− a2

ε

R∗
i +R∗∗

i

er + e−r − 2
+

a2

ε

R∗
i −R∗∗

i

er + e−r

∣∣∣∣.
Using this value, we get

∥e∥∞ ≤ Ma2√
3ε

er + e−r − 2

r2ε

∣∣∣∣ 2r2 + r4/12

er + e−r − 2
− 2r + r3/3

er − e−r

∣∣∣∣ ε4a5 ,
≤ Mε2√

3a3

∣∣∣∣1 + r2

12
− (

2

r
+

r

3
)
er + e−r − 2

er − e−r

∣∣∣∣.
It is trivial that ( 2r + r

3 ) ≥ 2
√
2/3 for r > 0 ; thus,

∥e∥∞ ≤ Mε2√
3a3

r2

12
+

Mε2√
3a3

∣∣∣∣1− 2
√
2√
3

er + e−r − 2

er − e−r

∣∣∣∣
≤ Mε2√

3a3
r2

12

≤ Mh2

12
√
3a

.

Hence, the proof. 2
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5. Numerical examples
To demonstrate the efficiency and applicability of the proposed finite difference methods, we applied them on
four test problems. Maximum pointwise errors are tabulated. Maximum point wise errors are calculated using
the following double mesh principle [3] for the problems where the exact solutions are not available:

EN
ε = max

0≤i≤N
| UN (xi)− U2N (x2i) |,

where UN (xi) denote the numerical solution obtained on a mesh containing N subintervals.
The numerical rate of convergence is calculated using the formula

RN
ε =

log
(
EN

ε − E2N
ε

)
log 2 .

Example 1[16] Consider the following singularly perturbed delay differential equation with constant coefficient:

−εy
′′
(x) + 3y

′
(x)− y(x− 1) = 0, 0 < x < 2,

y(x) = 1, −1 ≤ x ≤ 0, y(2) = 2.

The exact solution of this problem is given by

y(x) =

{
1 + c1(e

3x
ε − 1) + x

ε , 0 ≤ x ≤ 1

c2 +
x
ε + (x−1)2

18 + εx
27 − c1x

3 − c1x
3 e

3(x−1)
ε + e

3(x−2)
ε

(
23
18 − 2ε

27 − c2 +
2c1
3 + 2c1

3 e
3
ε

)
, 1 ≤ x ≤ 2,

where

c1 = e
−6
ε

[ 4ε
9 − ε2

27 − 3

3− 4e−
6
ε + 2ε

3 (e
− 3

ε − e−
3
ε )

]
,

c2 =
1− 23

18e
− 3

ε + 2ε
27e

− 3
ε − ε

27

1− e−
3
ε

+
c1e

3
ε [1− e−

3
ε − 2

3e
− 6

ε ]

1− e−
3
ε

.

The maximum pointwise errors and rate of convergence are presented in Table 1 for different values of per-
turbation parameter ε . The numerical solution and exact solution using the scheme (9) with ε = 10−8 and
N = 16 is plotted in Figure 1a. Convergence order is plotted in Figure 1b.

Example 2 Consider the following singularly perturbed delay differential equation with discontinuous source
term:

−εy
′′
(x) + 5y

′
(x)− 1

2
y(x− 1) =

{
ex 0 < x ≤ 1,

−ex 1 ≤ x < 2,

y(x) = 1, −1 ≤ x ≤ 0, y(2) = 2.

The maximum pointwise errors and rate of convergence are presented in Table 2 for different values of pertur-
bation parameter ε . The numerical solution using the scheme (9) with ε = 10−10 and N = 16 is plotted in
Figure 2a. Convergence order is plotted in Figure 2b.
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Figure 1. Numerical solution of Example 1 and its convergence order.

Table 1. Maximum pointwise errors of the solution and corresponding rate of convergence for Example 1 for different
values of ε .

ε N=24 N=25 N=26 N=27 N=28 N=29

10−1 8.7395e-04 2.2767e-04 5.7640e-05 1.4450e-05 3.6159e-06 9.0413e-07
1.9406 1.9818 1.9960 1.9987 1.9998

10−2 2.9080e-03 1.3232e-03 5.0106e-04 1.5202e-04 4.0518e-05 1.0300e-05
1.1360 1.4010 1.7208 1.9076 1.9759

10−3 3.2205e-03 1.6460e-03 8.1803e-04 3.9389e-04 1.7928e-04 7.1809e-05
0.9683 1.0087 1.0544 1.1356 1.3200

10−4 3.2517e-03 1.6783e-03 8.5085e-04 4.2696e-04 2.1248e-04 1.0460e-04
0.9542 0.9800 0.9948 1.0068 1.0224

10−5 3.2549e-03 1.6815e-03 8.5413e-04 4.3027e-04 2.1580e-04 1.0793e-04
0.9528 0.9772 0.9892 0.9956 0.9997

10−6 3.2552e-03 1.6818e-03 8.5446e-04 4.3060e-04 2.1613e-04 1.0826e-04
0.9527 0.9769 0.9887 0.9945 0.9974

10−7 3.2552e-03 1.6819e-03 8.5449e-04 4.3063e-04 2.1616e-04 1.0829e-04
0.9527 0.9769 0.9886 0.9943 0.9972

10−8 3.2552e-03 1.6819e-03 8.5449e-04 4.3064e-04 2.1617e-04 1.0829e-04
0.9527 0.9769 0.9886 0.9943 0.9972

10−9 3.2552e-03 1.6819e-03 8.5449e-04 4.3064e-04 2.1617e-04 1.0829e-04
0.9527 0.9769 0.9886 0.9943 0.9972

10−10 3.2552e-03 1.6819e-03 8.5449e-04 4.3064e-04 2.1617e-04 1.0830e-04
0.9527 0.9769 0.9886 0.9943 0.9972

Example 3 Consider the following singularly perturbed delay differential equation with variable coefficient:

−εy
′′
(x) + (3 + x2)y

′
(x)− y(x− 1) = ex, 0 < x < 2,

y(x) = ex, −1 ≤ x ≤ 0, y(2) = 2.
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Figure 2. Numerical solution of Example 2 and its convergence order.

Table 2. Maximum pointwise errors of the solution and corresponding rate of convergence for Example 2 for different
values of ε .

ε N=24 N=25 N=26 N=27 N=28 N=29

10−1 2.2795e-04 5.1521e-05 1.2480e-05 3.0993e-06 7.7311e-07 1.9317e-07
2.1455 2.0455 2.0096 2.0032 2.0008

10−2 3.7341e-04 9.0998e-05 2.0214e-05 4.1623e-06 9.1820e-07 2.1894e-07
2.0368 2.1705 2.2799 2.1805 2.0682

10−3 3.9536e-04 1.0246e-04 2.5824e-05 6.3578e-06 1.5149e-06 3.3947e-07
1.9482 1.9882 2.0221 2.0693 2.1579

10−4 3.9756e-04 1.0360e-04 2.6409e-05 6.6539e-06 1.6637e-06 4.1284e-07
1.9401 1.9719 1.9888 1.9998 2.0107

10−5 3.9778e-04 1.0372e-04 2.6468e-05 6.6835e-06 1.6786e-06 4.2030e-07
1.9393 1.9703 1.9856 1.9933 1.9978

10−6 3.9780e-04 1.0373e-04 2.6474e-05 6.6865e-06 1.6801e-06 4.2105e-07
1.9392 1.9702 1.9853 1.9927 1.9965

10−7 3.9780e-04 1.0373e-04 2.6474e-05 6.6868e-06 1.6802e-06 4.2112e-07
1.9392 1.9702 1.9852 1.9926 1.9963

10−8 3.9780e-04 1.0373e-04 2.6475e-05 6.6868e-06 1.6802e-06 4.2113e-07
1.9392 1.9702 1.9852 1.9926 1.9963

10−9 3.9780e-04 1.0373e-04 2.6475e-05 6.6868e-06 1.6802e-06 4.2113e-07
1.9392 1.9702 1.9852 1.9926 1.9963

10−10 3.9780e-04 1.0373e-04 2.6475e-05 6.6868e-06 1.6802e-06 4.2113e-07
1.9392 1.9702 1.9852 1.9926 1.9963

The maximum pointwise errors and rate of convergence are presented in Table 3 for different values of pertur-
bation parameter ε . The numerical solution using the scheme (18) with ε = 10−5 and N = 32 is plotted in
Figure 3a. Convergence order is plotted in Figure 3b.
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Figure 3. Numerical solution of Example 3 and its convergence order.

Table 3. Maximum pointwise errors of the solution and corresponding rate of convergence for Test Example 3 for
different values of ε .

ε N=24 N=25 N=26 N=27 N=28 N=29

10−1 1.0252e-04 3.0287e-05 6.8160e-06 1.6526e-0 4.0985e-07 1.0226e-07
1.7592 2.1517 2.0442 2.0115 2.0029

10−2 5.5691e-05 1.6152e-05 4.7920e-06 1.5496e-06 4.8674e-07 1.0949e-07
1.7857 1.7530 1.6287 1.6707 2.1524

10−3 5.3890e-05 1.4153e-05 3.6890e-06 9.7140e-07 2.6162e-07 7.3486e-08
1.9289 1.9398 1.9251 1.8926 1.8319

10−4 5.4057e-05 1.4167e-05 3.6233e-06 9.1794e-07 2.3269e-07 5.9270e-08
1.9319 1.9672 1.9808 1.9800 1.9730

10−5 5.4070e-05 1.4176e-05 3.6272e-06 9.1715e-07 2.3059e-07 5.7877e-08
1.9314 1.9665 1.9836 1.9919 1.9942

10−6 5.4071e-05 1.4176e-05 3.6275e-06 9.1737e-07 2.3065e-07 5.7825e-08
1.9314 1.9664 1.9834 1.9918 1.9960

10−7 5.4071e-05 1.4176e-05 3.6276e-06 9.1739e-07 2.3066e-07 5.7831e-08
1.9314 1.9664 1.9834 1.9917 1.9959

10−8 5.4071e-05 1.4176e-05 3.6276e-06 9.1739e-07 2.3066e-07 5.7831e-08
1.9314 1.9664 1.9834 1.9917 1.9959

10−9 5.4072e-05 1.4176e-05 3.6276e-06 9.1739e-07 2.3066e-07 5.7831e-08
1.9314 1.9664 1.9834 1.9917 1.9959

10−10 5.4068e-05 1.4177e-05 3.6275e-06 9.1740e-07 2.3066e-07 5.7831e-08
1.9312 1.9665 1.9834 1.9917 1.9959

Example 4[16] Consider the following singularly perturbed delay differential equation with variable coefficient:

−εy
′′
(x) + (x+ 10)y

′
(x)− y(x− 1) = x, 0 < x < 2,

y(x) = x, −1 ≤ x ≤ 0, y(2) = 2.
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The maximum pointwise errors and rate of convergence are presented in Table 5 for different values of pertur-
bation parameter ε . The numerical solution using the scheme (18) with ε = 10−8 and N = 32 , is plotted in
Figure 4a. Convergence order is plotted in Figure 4b.
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Figure 4. Numerical solution of Example 4 and its convergence order.

Table 4. Maximum pointwise errors of the solution and corresponding rate of convergence for Example 4 for different
values of ε .

ε N=24 N=25 N=26 N=27 N=28 N=29

10−1 7.2946e-06 7.3960e-07 5.6434e-08 6.0406e-09 1.4013e-09 3.5351e-10
3.3020 3.7121 3.2238 2.1079 1.9870

10−2 1.5783e-05 3.7988e-06 8.2911e-07 1.4557e-07 1.6997e-08 1.3635e-09
2.0547 2.1959 2.5098 3.0984 3.6399

10−3 1.6660e-05 4.2712e-06 1.0702e-06 2.6267e-07 6.2504e-08 1.3956e-08
1.9637 1.9968 2.0265 2.0712 2.1631

10−4 1.6729e-05 4.3130e-06 1.0936e-06 2.7478e-07 6.8601e-08 1.7010e-08
1.9556 1.9796 1.9928 2.0020 2.0118

10−5 1.6736e-05 4.3164e-06 1.0955e-06 2.7590e-07 6.9202e-08 1.7315e-08
1.9550 1.9782 1.9894 1.9953 1.9988

10−6 1.6737e-05 4.3168e-06 1.0957e-06 2.7599e-07 6.9253e-08 1.7344e-08
1.9550 1.9781 1.9892 1.9947 1.9974

10−7 1.6737e-05 4.3168e-06 1.0957e-06 2.7599e-07 6.9257e-08 1.7346e-08
1.9550 1.9781 1.9892 1.9947 1.9973

10−8 1.6737e-05 4.3168e-06 1.0957e-06 2.7599e-07 6.9258e-08 1.7347e-08
1.9550 1.9781 1.9892 1.9947 1.9973

10−9 1.6737e-05 4.3168e-06 1.0957e-06 2.7599e-07 6.9258e-08 1.7347e-08
1.9550 1.9781 1.9892 1.9947 1.9973

10−10 1.6737e-05 4.3168e-06 1.0957e-06 2.7599e-07 6.9258e-08 1.7347e-08
1.9550 1.9781 1.9892 1.9947 1.9973
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Table 5. Maximum errors and corresponding rate of convergence for Example 4.

N → 26 27 28 29

Proposed method EN 1.0957e-06 2.7599e-07 6.9258e-08 1.7347e-08
RN 1.9892 1.9947 1.9973

Method in [16] EN 2.6473e-03 8.3944e-04 2.5834e-04 8.0254e-05
RN 1.6570 1.7001 1.6866

6. Conclusion
In this paper, we proposed a class of finite difference schemes to solve singularly perturbed delay differential
equation of second order. The proposed schemes have different advantages. They give oscillation free solution
on uniform mesh. Results are more accurate than conventional methods. These schemes can keep convergence
order stable much better than conventional methods for very small values of perturbation parameter ε. Prior
information about the location and width of the layer is not required. These methods are easily extendable
for higher dimensional problems. The proposed numerical schemes converges uniformly with respect to the
perturbation parameter ε . Numerical results are carried out to show the efficiency and accuracy of the proposed
numerical schemes.
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