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Abstract

In this paper, we study a class of Finsler metrics defined by a Rieman-

nian metric and a 1-form. We characterize these metrics with isotropic

S-curvature.

1 Introduction

The S-curvature is one of the most important non-Riemannian quantities in
Finsler geometry which was first introduced by the second author when he stud-
ied volume comparison in Riemann-Finsler geometry [10]. The second author
proved that the Bishop-Gromov volume comparison holds for Finsler manifolds
with vanishing S-curvature. He also proved that the S-curvature and the Ricci
curvature determine the local behavior of the Busemann-Hausdorff measure of
small metric balls around a point [16]. Recent study shows that the S-curvature
plays a very important role in Finsler geometry (cf. [8][12][15]). It is known
that, for a Finsler metric F of scalar flag curvature, if the S-curvature is almost
isotropic, i.e.,

S = (n+ 1)cF + η, (1)

where c = c(x) is a scalar function and η is a closed 1-form, then the flag
curvature must be in the following form

K =
3c̃xmym

F
+ σ, (2)

where σ = σ(x) and c̃ = c̃(x) are scalar functions with c − c̃ = constant [4].
Therefore it is an important problem to study and characterize Finsler metrics
of (almost) isotropic S-curvature.

In Finsler geometry, there is an important class of Finsler metrics—Randers
metrics which were introduced and studied by G. Randers. A Randers metric
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is a Finsler metric expressed in the form F = α+ β, where α =
√

aij(x)yiyj is
a Riemannian metric and β = bi(x)y

i is a 1-form with ‖βx‖α < 1. Let

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i),

rj := birij, sj := bisij ,

where bi|j denote the covariant derivatives of β with respect to α. In [5], we prove
that the Randers metric F = α+β has isotropic S-curvature, S = (n+1)c(x)F ,
if and only if

rij + bisj + bjsi = 2c(aij − bibj). (3)

See [1] [17] for related work. In this paper, we generalize the above result as
follows.

Theorem 1.1 Let
F = k1

√

α2 + k2β2 + k3β

be a Finsler metric of Randers type where k1 > 0 and k3 6= 0. F is of isotropic
S-curvature, F = (n+ 1)cF if and only if β satisfies

rij + τ (sibj + sjbi) =
2c(1 + k2b

2)k2
1

k3

(

aij − τbibj

)

, (4)

where

τ :=
k2
3

k2
1

− k2.

If a Randers metric is of scalar flag curvature, then (1) and (2) are actually
equivalent ([7], [18]). In particular, if a Randers metric is of constant flag
curvature, then it must be of constant S-curvature ([1], [2]). We have classified
Randers metrics of scalar flag curvature and isotropic S-curvature ([4], [7]).
Further, we have characterized the locally projectively flat Finsler metrics with
isotropic S-curvature ([6]).

It is natural to consider general Finsler metrics defined by a Riemannian
metric α =

√

aijyiyj and a 1-form β = biy
i with ‖βx‖α < bo. They are

expressed in the form F = αφ(s), s = β/α, where φ(s) is a C∞ positive function
on (−bo, bo). It is known that F = αφ(β/α) is a (positive definite) Finsler metric
for any α and β with ‖βx‖α < bo if and only if φ satisfies the following condition
(cf. [13][14]):

φ(s) − sφ′(s) + (ρ2 − s2)φ′′(s) > 0, (|s| ≤ ρ < bo). (5)

Such a metric is called an (α, β)-metric. Clearly, Finsler metrics of Randers
type are special (α, β)-metrics.

For a positive C∞ function φ = φ(s) on (−bo, bo) and a number b ∈ [0, bo),
let

Φ := −(Q − sQ′)
{

n∆ + 1 + sQ
}

− (b2 − s2)(1 + sQ)Q′′,

where ∆ := 1 + sQ+ (b2− s2)Q′ and Q := φ′/(φ− sφ′). In this paper, we prove
the following
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Theorem 1.2 Let F = αφ(s), s = β/α, be an (α, β)-metric on a manifold and
b := ‖βx‖α. Suppose that φ 6= k1

√
1 + k2s2 + k3s for any constants k1 > 0, k2

and k3. Then F is of isotropic S-curvature, S = (n + 1)cF , if and only if one
of the following holds

(i) β satisfies
rj + sj = 0 (6)

and φ = φ(s) satisfies
Φ = 0. (7)

In this case, S = 0.

(ii) β satisfies

rij = ǫ
{

b2aij − bibj

}

, sj = 0, (8)

where ǫ = ǫ(x) is a scalar function, and φ = φ(s) satisfies

Φ = −2(n + 1)k
φ∆2

b2 − s2
, (9)

where k is a constant. In this case, S = (n+ 1)cF with c = kǫ.

(iii) β satisfies
rij = 0, sj = 0. (10)

In this case, S = 0, regardless of the choice of a particular φ.

It is easy to see that (10) implies (8), while (8) implies (6). The condition
(6) is equivalent to that b := ‖βx‖α = constant. See Lemma 3.2 below. Thus
(7) and (9) are independent of x ∈M .

The mean Landsberg curvature J is another important non-Riemannian
quantity. It has been proved that for an (α, β)-metric F = αφ(β/α), if β
has constant length and φ satisfies (7), then F is a weakly Landsberg metric,
i.e., J = 0. See [9].

We have the following two interesting examples.

Example 1.1 Let F = α+β be the family of Randers metrics on S3 constructed
in [3] (see also [16]). It is shown that rij = 0 and sj = 0. Thus for any C∞

positive function φ = φ(s) satisfying (5), the (α, β)-metric F = αφ(β/α) has
vanishing S-curvature.

Example 1.2 Let F = αφ(β/α) be an (α, β)-metric defined on an open subset
in R3. At a point x = (x, y, z) ∈ R3 and in the direction y = (u, v, w) ∈ TxR

3,
α = α(x,y) and β = β(x,y) are given by

α :=
√

u2 + e2x(v2 +w2),

β := u.

Then β satisfies (8) with ǫ = 1, b = 1 . Thus if φ = φ(s) satisfies (9) for some
constant k, then F = αφ(β/α) is of constant S-curvature S = (n + 1)cF .
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2 Volume forms

The S-curvature is associated with a volume form. There are two important
volume forms in Finsler geometry. One is the Busemann-Hausdorff volume
form and the other is the Holmes-Thompson volume form.

The Busemann-Hausdorff volume form dVBH = σBH (x)dx is given by

σBH (x) =
ωn

Vol
{

(yi) ∈ Rn|F
(

x, yi ∂
∂xi

)

< 1
}

and the Holmes-Thompson volume form dVHT = σHT (x)dx is given by

σHT (x) =
1

ωn

∫

{

(yi)∈Rn |F
(

x,yi ∂

∂xi

)

<1
}

det(gij)dy.

Here Vol denotes the Euclidean volume and

ωn := Vol(Bn(1)) =
1

n
Vol(Sn−1) =

1

n
Vol(Sn−2)

∫ π

0

sinn−2(t)dt

denotes the Euclidean volume of the unit ball in Rn. When F =
√

gij(x)yiyj is
a Riemannian metric, both volume forms are reduced to the same Riemannian
volume form

dVBH = dVHT =
√

det(gij(x))dx.

For an (α, β)-metric, we have the following formulas for the volume forms
dVBH and dVHT .

Proposition 2.1 Let F = αφ(s), s = β/α, be an (α, β)-metric on an n-dimensional
manifold M . Let dV = dVBH or dVHT . Let

f(b) :=















∫

π

0
sinn−2 tdt

∫

π

0

sinn−2 t
φ(b cos t)n

dt
if dV = dVBH

∫

π

0
(sinn−2 t)T (b cos t)dt

∫

π

0
sinn−2 tdt

if dV = dVTH ,

where T (s) := φ(φ− sφ′)n−2[(φ− sφ′)+(b2 − s2)φ′′]. Then the volume form dV
is given by

dV = f(b)dVα,

where dVα =
√

det(aij)dx denotes the Riemannian volume form of α.

Proof: In a coordinate system, the determinant of gij := 1
2 [F 2]yiyj is given by

(cf. [14])

det(gij) = φn+1(φ− sφ′)n−2[(φ− sφ′) + (b2 − s2)φ′′] det(aij).

First we take an orthonormal basis at x with respect to α so that

α =
√

∑

(yi)2, β = by1,
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where b = ‖βx‖α. Then the volume form dVα = σαdx at x is given by

σα =
√

det(aij) = 1.

In order to evaluate the integrals

Vol{(yi) ∈ Rn
∣

∣F
(

x, yi ∂

∂xi

)

< 1} =

∫

F (x,y)<1

dy =

∫

αφ(β/α)<1

dy

and
∫

F (x,y)<1

det(gij)dy =

∫

αφ(β/α)<1

det(gij)dy,

we take the following coordinate transformation, ψ : (s, ua) → (yi):

y1 =
s√

b2 − s2
ᾱ, ya = ua, (11)

where ᾱ =
√

∑n
a=2(u

a)2. Then

α =
b√

b2 − s2
ᾱ, β =

bs√
b2 − s2

ᾱ.

Thus

F = αφ(β/α) =
bφ(s)√
b2 − s2

ᾱ

and the Jacobian of the transformation ψ : (s, ua) → (yi) is given by

b2

(b2 − s2)3/2
ᾱ.

Then

Vol{(yi) ∈ Rn|F (x, y) < 1} =

∫

bφ(s)√
b2−s2

ᾱ<1

b2

(b2 − s2)3/2
ᾱdsdu

=

∫ b

−b

b2

(b2 − s2)3/2

[

∫

ᾱ<

√
b2−s2

bφ(s)

ᾱdu
]

ds

=
1

n
Vol(Sn−2)

∫ b

−b

b2

(b2 − s2)3/2

(

√
b2 − s2

bφ(s)

)n

ds

=
1

n
Vol(Sn−2)

∫ b

−b

(b2 − s2)(n−3)/2

bn−2φ(s)n
ds

=
1

n
Vol(Sn−2)

∫ π

0

sinn−2 t

φ(b cos t)n
dt (s = b cos t).

Therefore

σBH =

∫ π

0
sinn−2 tdt

∫ π

0
sinn−2 t

φ(b cos t)n dt
. (12)
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Let
T (s) := φ(φ− sφ′)n−2[(φ− sφ′) + (b2 − s2)φ′′]. (13)

Then
det(gij) = φ(s)nT (s) det(aij).

By a similar argument, we get

σHT =
1

ωn

∫

F (x,y)<1

φ(s)nT (s)dy1 · · ·dyn

=
1

nωn
Vol(Sn−2)

∫ b

−b

b2

(b2 − s2)3/2

(

√
b2 − s2

b

)n

T (s)ds

=

∫ π

0 (sinn−2 t)T (b cos t)dt
∫ π

0
sinn−2 tdt

.

Thus

σHT =

∫ π

0
(sinn−2 t)T (b cos t)dt

∫ π

0
sinn−2 tdt

. (14)

The above formulas for σBH and σHT are given in a special coordinate system
at x and σα = 1. Thus dV = f(b)dVα. This proves the proposition. Q.E.D.

Note that if b = constant, then f(b) = constant. In this case, both dVBH

and dVHT are constant multiples of dVα.

It is surprised to see that dVTH = dVα for certain functions φ.

Corollary 2.2 Let F = αφ(s), s = β/α, be an (α, β)-metric on an n-dimensional
manifold M . Let T = T (s) be defined in (13). Suppose that T (s) − 1 is an odd
function of s. Then dVTH = dVα.

Proof: Let h(s) = T (s) − 1. By assumption h(−s) = −h(s). It is easy to see
that

∫ π

0

(sinn−2 t)h(b cos t)dt = 0.

Thus
∫ π

0

(sinn−2 t)T (b cos t)dt =

∫ π

0

sinn−2 tdt.

This implies that σHT = 1 in the above special coordinate system at x. Then
in a general coordinate system σHT = σα. Q.E.D.

If φ = 1 + s, then T = 1 + s and T (s) − 1 is an odd function of s. Then for
a Randers metric, dVHT = dVα. This fact is known to Y. B. Shen.
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3 The S-Curvature

In this section, we are going to find a formula for the S-curvature of an (α, β)-
metric on an n-dimensional manifold M .

Let F = F (x, y) be a Finsler metric on an n-dimensional manifold M . Let
G = yi ∂

∂xi − 2Gi ∂
∂yi denote the spray of F and dV = σdx be a volume form on

M . The spray coefficients Gi are defined by

Gi =
1

4
gil

{

[F 2]xjylyj − [F 2]xl

}

.

Then the S-curvature (with respect to dV ) is defined by

S =
∂Gm

∂ym
− ym ∂

∂xm

(

lnσ
)

.

By the definition, S-curvature S(y) measures the average rate of changes of
(TxM,Fx) in the direction y ∈ TxM . An important property is that S = 0
for Berwald spaces with respect to the Busemann-Hausdorff volume form dVBH

[10][11].

Definition 3.1 Let F be a Finsler metric on an n-dimensional manifold M .
Let S denote the S-curvature of F with respect to dVBH . F is of isotropic
S-curvature if

S = (n + 1)cF,

where c = c(x) is a scalar function. F is of constant S-curvature if c = constant.

We now compute the S-curvature of an (α, β)-metric on a manifold. Let

F = αφ(s), s = β/α.

We have the following formula for the spray coefficients Gi of F :

Gi = Ḡi + αQsi
0 + Θ

{

− 2Qαs0 + r00

}yi

α
+ Ψ

{

− 2Qαs0 + r00

}

bi,

where Ḡi denote the spray coefficients of α and

Q :=
φ′

φ− sφ′ , Θ =
Q− sQ′

2∆
, Ψ =

Q′

2∆
, (15)

where ∆ := 1 + sQ + (b2 − s2)Q′.
It is easy to see that if φ = φ(s) satisfies

b2Q+ s = 0,

then
φ = a0

√

b2 − s2,
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where a0 is a number independent of s.
If φ = φ(s) satisfies

Ψ = constant,

then
φ = k1

√

1 + k2s2 + k3s,

where k1, k2 and k3 are numbers independent of s.

To compute the S-curvature, we need the following identities:

∂s

∂ym
=

1

α

{

bm − s
ym

α

}

,

∂α

∂ym
=
ym

α
,

∂Ḡm

∂ym
= ym ∂

∂xm

(

lnσα

)

.

Using the above identities, we obtain

∂Gm

∂ym
= ym ∂

∂xm

(

lnσα

)

+ 2Ψ(r0 + s0) − α−1 Φ

2∆2
(r00 − 2αQs0),

where
Φ := −(Q − sQ′){n∆ + 1 + sQ} − (b2 − s2)(1 + sQ)Q′′. (16)

By Proposition 2.1, dV = σdx = f(b)σαdx. Thus

ym ∂

∂xm

(

lnσ
)

=
f ′(b)

f(b)
ym ∂b

∂xm
+ ym ∂

∂xm

(

lnσα

)

.

ym ∂b

∂xm
=
bibi|my

m

b
=
r0 + s0

b
. (17)

Then the S-curvature is given by

S =
{

2Ψ − f ′(b)

bf(b)

}

(r0 + s0) − α−1 Φ

2∆2
(r00 − 2αQs0). (18)

Lemma 3.2 Let β be a 1-form on a Riemannian manifold (M,α). Then b(x) :=
‖βx‖α = constnt if and only if β satisfies the following equation:

rj + sj = 0. (19)

Proof: This follows immediately from (17). Q.E.D.
In the case when b = constant, the S-curvature is given by

S = −α−1 Φ

2∆2
(r00 − 2αQs0). (20)

We can prove the following
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Proposition 3.3 Let F = αφ(β/α) be an (α, β)-metric on an n-manifold. If β
and φ satisfy conditions in Theorem 1.2 (i) or (ii) or (iii), then F has isotropic
S-curvature.

Proof: If β satisfies (6) and φ satisfies (7), then it follows from (18) that S = 0.
If β satisfies (8), then

r00 = ǫ(b2 − s2)α2, r0 = 0, s0 = 0.

By (9) and the above equations, we get from (18) that

S = −αǫ(b2 − s2)
Φ

2∆2
= (n+ 1)kǫαφ = (n + 1)kǫF.

If β satisfies (10), then

r00 = 0, r0 = 0, s0 = 0.

It follows from (18) that S = 0. Q.E.D.

To prove the necessary conditions in Theorem 1.2, we consider an (α, β)-
metric F = αφ(β/α) with isotropic S-curvature, S = (n + 1)cF . By (18), the
equation S = (n+ 1)cF is equivalent to the following equation:

α−1 Φ

2∆2
(r00 − 2αQs0) − 2Ψ(r0 + s0) = −(n + 1)cF + θ, (21)

where

θ := − f ′(b)

bf(b)
(r0 + s0). (22)

To simplify the equation (21), we choose special coordinates. Fix an arbi-
trary point x. Take a local coordinate system at x as in (11). We have

r1 = br11, rα = br1α,

s1 = 0, sα = bs1α.

Let

r̄10 :=

n
∑

α=2

r1αy
α, s̄10 :=

n
∑

α=2

s1αy
α r̄00 :=

n
∑

α,β=2

rαβy
αyβ ,

r̄0 :=

n
∑

α=2

rαy
α s̄0 :=

n
∑

α=2

sαy
α.

We have
r̄0 = br̄10, s̄0 = bs̄10.

Let θ = tiy
i. Then ti are given by

t1 = −f
′(b)

f(b)
r11, tα = −f

′(b)

f(b)
(r1α + s1α). (23)
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(21) is equivalent to the following two equations:

Φ

2∆2
(b2 − s2)r̄00 = −

{

s
( sΦ

2∆2
− 2Ψb2

)

r11 + (n+ 1)cb2φ− sbt1

}

ᾱ2, (24)

( sΦ

∆2
− 2Ψb2

)

(r1α + s1α) − (b2Q+ s)
Φ

∆2
s1α − btα = 0. (25)

Let

Υ :=
[ sΦ

∆2
− 2Ψb2

]′
.

We see that Υ = 0 if and only if

sΦ

∆2
− 2Ψb2 = b2µ,

where µ is a number independent of s. We shall divide the problem into three
cases: (i) Φ = 0, (ii) Φ 6= 0, Υ = 0 and (iii) Φ 6= 0, Υ 6= 0.

4 Φ = 0

In this section, we study the simplest case when Φ = 0.

Proposition 4.1 Let F = αφ(β/α) be an (α, β)-metric. Assume that Φ = 0
but φ 6= k1

√
1 + k2s2 for any constants k1 > 0 and k2. If F has isotropic

S-curvature, then
r0 + s0 = 0.

In this case, S = 0.

Proof: Take a special coordinate system at x as in (11). (24) and (25) are
reduced to

s
{ f ′(b)

bf(b)
− 2Ψ

}

b2r11 + (n+ 1)cb2φ = 0 (26)

{ f ′(b)

bf(b)
− 2Ψ

}

b2(r1α + s1α) = 0. (27)

Letting s = 0 in (26) yields
c = 0

and
{ f ′(b)

bf(b)
− 2Ψ

}

r11 = 0. (28)

If
f ′(b)

bf(b)
− 2Ψ = 0,

then
φ = k1

√

1 + k2s2 + k3s,
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where k1 > 0, k2 and k3 are numbers independent of s. Plugging it into the
equation Φ = 0 yields that k3 = 0 and

φ = k1

√

1 + k2s2.

But this is impossible by assumption. Thus

f ′(b)

bf(b)
− 2Ψ 6= 0.

From (26) and (27), we conclude that

r11 = 0, r1α + s1α = 0.

Q.E.D.

5 Φ 6= 0, Υ = 0

First, note that Υ = 0 implies that

sΦ

∆2
− 2Ψb2 = b2µ, (29)

where µ is a number independent of s. First, we prove the following

Lemma 5.1 Let F = αφ(β/α) be an (α, β)-metric. Assume that Φ 6= 0 and
Υ = 0. If F has isotropic S-curvature, S = (n + 1)cF , then β satisfies

rij = kaij − ǫbibj +
1

b2
(ribj + rjbi), (30)

where k = k(x), ǫ = ǫ(x), and φ = φ(s) satisfies the following ODE:

(k − ǫs2)
Φ

2∆2
=

{

ν + (k − ǫb2)µ
}

s− (n+ 1)cφ, (31)

where ν = ν(x). If s0 6= 0, then φ satisfies the following additional ODE:

Φ

∆2
(Qb2 + s) = b2(µ+ λ), (32)

where λ = λ(x).

Proof: Since Φ 6= 0, it follows from (24) and (25) that in a special coordinate
system (s, ya) at a point x,

rab = kδab, (33)

s
( sΦ

2∆2
− 2Ψb2

)

r11 + (n+ 1)cb2φ+ k
Φ

2∆2
(b2 − s2) = bst1, (34)

( sΦ

∆2
− 2Ψb2

)

(r1α + s1α) − (b2Q+ s)
Φ

∆2
s1α − btα = 0. (35)
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Let
r11 = −(k − ǫb2).

Then (30) holds. By (29), we have

sΦ

2∆2
− 2Ψb2 = b2µ− sΦ

2∆2
.

Then (34) and (35) become

b(k − ǫs2)
Φ

2∆2
= st1 + sbµ(k − b2ǫ) − (n+ 1)cbφ. (36)

b2µ(r1α + s1α) − Φ

∆2
(Qb2 + s)s1α − btα = 0. (37)

Letting t1 = bν in (36) we get (31).
Suppose that s0 6= 0. Rewrite (37) as

{

b2µ− Φ

∆2
(Qb2 + s)

}

s1α = bta − b2µr1α.

We can see that there is a number λ such that

µb2 − Φ

∆2
(Qb2 + s) = −b2λ.

This gives (32). Q.E.D.

Lemma 5.2 Let F = αφ(β/α) be an (α, β)-metric. Assume that Υ = 0. Then
b = constant.

Proof: Suppose that b 6= constant. Then b can be viewed as a variable over the
manifold. By assumption,

sΦ

∆2
− 2Ψb2 = b2µ,

where µ = µ(x). Note that ∆2
(

sΦ
∆2 − 2Ψb2 − b2µ

)

is a polynomial of degree six

in b by (15). More precisely, we have

−µQ′2b6 −
{

Q′2 − 2µQ′(1 + sQ− s2Q′)
}

b4 + (· · ·)b2 + (· · ·) = 0. (38)

Thus
µQ′2 = 0, Q′2 − 2µQ′(1 + sQ− s2Q′) = 0.

Then Q′ = 0, which implies that φ = 1 + cs. This is impossible. Q.E.D.
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Proposition 5.3 Let F = αφ(β/α) be an (α, β)-metric. Suppose that b2Q+s 6=
0, Φ 6= 0 and Υ = 0. If F has isotropic S-curvature, S = (n+ 1)cF , then

rij = ǫ(b2aij − bibj), sj = 0, (39)

where ǫ = ǫ(x) is a scalar function, and φ = φ(s) satisfies

ǫ(b2 − s2)Φ = −2(n+ 1)cφ∆2. (40)

If ǫ 6= 0, then c/ǫ = constant.

Proof: First by Lemma 5.2 and Lemma 3.2, we have

r0 + s0 = 0.

Then by (18), we get

S = −α−1 Φ

2∆2

{

r00 − 2αQs0

}

.

By Lemma 5.1,

r00 = (k − ǫs2)α2 +
2s

b2
r0α.

Then

S = −(k − ǫs2)
Φ

2∆2
α+

Φ

b2∆2
(b2Q+ s)s0.

By (31), we get

S = −s
{

ν + (k − ǫb2)µ
}

α+
Φ

b2∆2
(b2Q+ s)s0 + (n+ 1)cφα. (41)

By our assumption, S = (n + 1)cF , we get from (41) that

−s
{

ν + (k − ǫb2)µ
}

α+
Φ

b2∆2
(b2Q+ s)s0 = 0. (42)

Letting yi = δbi for a sufficiently small δ > 0 yields

−δ
{

ν + (k − ǫb2)µ
}

b2 = 0.

We conclude that
ν + (k − ǫb2)µ = 0. (43)

Then (42) is reduced to
Φ

b2∆2
(b2Q+ s)s0 = 0.

Since Φ 6= 0 and b2Q+ s 6= 0, we conclude that

s0 = 0.
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Then
r0 = −s0 = 0.

It follows from (30) that
rij = kaij − ǫbibj . (44)

Contracting (44) with bi gives

rj = (k − ǫb2)bj = 0.

Since β 6= 0, we get
k = ǫb2 (45)

and (44) becomes
rij = ǫ(b2aij − bibj).

Finally, (40) follows from (31), (43) and (45).
If ǫ 6= 0, then letting s = 0 in (40) yields that c/ǫ = constant since b =

constant. Q.E.D.

6 Φ 6= 0 and Υ 6= 0

In this section, we shall consider the case when φ = φ(s) satisfies

Φ 6= 0, Υ 6= 0. (46)

First we need the following

Lemma 6.1 Let F = αφ(s), s = β/α, be an (α, β)-metric on an n-dimensional
manifold. Assume that φ = φ(s) satisfies (46). Suppose that F has isotropic
S-curvature, S = (n+ 1)cF . Then

rij = kaij − ǫbibj − λ(sibj + sjbi), (47)

where λ = λ(x), k = k(x) and ǫ = ǫ(x) are scalar functions of x and

−2s(k − ǫb2)Ψ + (k − ǫs2)
Φ

2∆2
+ (n + 1)cφ− sν = 0, (48)

where

ν := − f ′(b)

bf(b)
(k − ǫb2). (49)

If in addition s0 6= 0, then

−2Ψ − QΦ

∆2
− λ

( sΦ

∆2
− 2Ψb2

)

= δ, (50)

where

δ := − f ′(b)

bf(b)
(1 − λb2). (51)
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Proof: By assumption, Φ 6≡ 0. It follows from (24) that there is a number k at
x, independent of s, such that

r̄00 = kᾱ2, (52)

s
( sΦ

2∆2
− 2Ψb2

)

r11 + (n+ 1)cb2φ+ k
Φ

2∆2
(b2 − s2) = sbt1. (53)

Let
r11 = k − ǫb2,

where ǫ is a number independent of s. By (23), t1 = bν, where ν is given by
(49). Plugging them into (53) yields (48).

Suppose that s0 = 0. Then

bs1α = sα = 0.

Then (25) is reduced to

( sΦ

∆2
− 2Ψb2

)

r1α − btα = 0. (54)

By assumption, Υ 6= 0, we know that sΦ
∆2 − 2Ψb2 6= constant. It follows from

(54) that
r1α = 0, tα = 0.

The above identities together with r11 = k−ǫb2 and t1 = bν imply the following
identities

rij = kaij − ǫbibj . (55)

Suppose that s0 6= 0. Then sαo
= bs1αo

6= 0 for some αo.
Differentiating (25) with respect to s yields

Υ r1α −
[QΦ

∆2
+ 2Ψ

]′
b2s1α = 0. (56)

Let
λ := − r1αo

b2s1αo

.

Plugging it into (56) yields

−λΥ −
[QΦ

∆2
+ 2Ψ

]′
= 0. (57)

It follows from (57) that

δ := −QΦ

∆2
− 2Ψ − λ

[ sΦ

∆2
− 2Ψb2

]
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is a number independent of s. By assumption that Υ 6= 0, we obtain from (56)
and (57) that

r1α + λb2s1α = 0. (58)

(52) and (58) together with r11 = k − ǫb2 implies that

rij + λ(bisj + bjsi) = kaij − ǫbibj. (59)

By (23) and (58),

tα =
f ′(b)

f(b)
(b2λ − 1)s1α.

On the other hand, by (25) and (58), we obtain

btα = δb2s1α.

Combining the above identities, we get (51). Q.E.D.

Lemma 6.2 Let F = αφ(s), s = β/α, be an (α, β)-metric. Suppose that φ =
φ(s) satisfies (46) and φ 6= k1

√
1 + k2s2 + k3s for any constants k1 > 0, k2 and

k3. If F has isotropic S-curvature, then

rj + sj = 0.

Proof: Suppose that rj + sj 6= 0, then b := ‖βx‖α 6= constant in a neighbor-
hood. We view b as a variable in (48) and (50). Since φ = φ(s) is a function
independent of x, (48) and (50) actually give rise infinitely many ODEs on φ.

First, we consider (48). Let

eq := ∆2
{

− 2s(k − ǫb2)Ψ + (k − ǫs2)
Φ

2∆2
+ (n + 1)cφ− sν

}

.

We have
eq = Ξ0 + Ξ2b

2 + Ξ4b
4,

where

Ξ4 :=
{

(ǫ − ν)s+ (n+ 1)cφ
} φ2

(φ− sφ′)4
(φ′′)2.

It follows from (48) that eq = 0. Thus

Ξ0 = 0, Ξ2 = 0, Ξ4 = 0.

Since φ′′ 6= 0, the equation Ξ4 = 0 is equivalent to the following Ode:

(ǫ − ν)s+ (n+ 1)cφ = 0.

we conclude that
ǫ = ν, c = 0.
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Then by a direct computation we get

Ξ0 + Ξ2s
2 = −1

2
(1 + sQ)

{

(n − 1)(k − ǫs2)(Q− sQ′) + 2kQ+ 2ǫs
}

.

Then Ξ0 = 0 and Ξ2 = 0 imply that

(n − 1)(k − ǫs2)(Q− sQ′) + 2kQ+ 2ǫs = 0, (60)

Suppose that (k, ǫ) 6= 0. We claim that k 6= 0. If this is not true, i.e., k = 0,
then ǫ 6= 0 and (60) is reduced to

−(n− 1)s(Q− sQ′) + 2 = 0.

Letting s = 0, we get a contradiction.
Now we have that k 6= 0. It is easy to see that Q(0) = 0. Let

Q̃ := Q(s) − sQ′(0).

Plugging it into (60) yields

(n− 1)(k − ǫs2)(Q̃− sQ̃′) + 2kQ̃+ 2(kQ′(0) + ǫ)s = 0.

Since Q̃ = qms
m + o(sm) where m > 1 is an integer, we see that kQ′(0) + ǫ = 0.

The above equation is reduced to

(n − 1)(k − ǫs2)(Q̃− sQ̃′) + 2kQ̃ = 0.

We obtain

Q̃ = c1
s

n+1
n−1

(k − ǫs2)
1

n−1

.

We must have c1 = 0, that is, Q̃ = 0. We get

Q(s) − sQ′(s) = 0.

Then it follows that
Q(s) = Q′(0)s.

In this case, φ = c1
√

1 + c2s2 where c1 > 0 and c2 are numbers independent of
s. This case is excluded in the assumption. Therefore k = 0 and ǫ = 0. Then
(47) is reduced to

rij = −λ(sjbi + sibj).

Then
rj + sj = (1 − λb2)sj .

By the assumption at the beginning of the proof, rj + sj 6= 0, we conclude that
1 − λb2 6= 0 and sj 6= 0. By Lemma 6.1, φ = φ(s) satisfies (50). Let

EQ := ∆2
{

− 2Ψ − QΦ

∆2
− λ

( sΦ

∆2
− 2Ψb2

)

− δ
}

.
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We have
EQ = Ω0 + Ω2b

2 + Ω4b
4,

where
Ω4 = (Q′)2(λ− δ).

By (50), EQ = 0. Thus

Ω0 = 0, Ω2 = 0, Ω4 = 0.

Since Q′ 6= 0, Ω4 = 0 implies that

δ = λ.

By a direct computation, we get

Ω0 + Ω2s
2 = (1 + sQ)

{

(n + 1)Q(Q− sQ′) −Q′ + λ
[

ns(Q − sQ′) − 1
]}

.

The equations Ω0 = 0 and Ω2 = 0 imply that Ω0 + Ω2s
2 = 0, that is,

(n + 1)Q(Q− sQ′) −Q′ + λ
[

ns(Q− sQ′) − 1
]

= 0.

We obtain

Q = − [k0n(n+ 1) − 1]λs ±
√

λk0(k0(1 + n)2 − 1 + λs2)

k0(n+ 1)2 − 1
.

Plugging it into Ω2 = 0 yields
k0λ = 0.

Then

Q =
λs

k0(n + 1)2 − 1
.

This implies that φ = k1

√
1 + k2s2 where k1 > 0 and k2 are numbers indepen-

dent of s. This case is excluded in the assumption of the lemma. Therefore,
rj + sj = 0. Q.E.D.

Proposition 6.3 Let F = αφ(s), s = β/α, be an (α, β)-metric. Suppose that
φ = φ(s) satisfies (46) and φ 6= k1

√
1 + k2s2 + k3s for any constants k1 > 0, k2

and k3. If F is of isotropic S-curvature, S = (n+ 1)cF , then

rij = ǫ(b2aij − bibj), sj = 0, (61)

where ǫ = ǫ(x) is a scalar function on M and φ = φ(s) satisfies

ǫ(b2 − s2)
Φ

2∆2
= −(n+ 1)cφ. (62)
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Proof: Contracting (47) with bi yields

rj + sj = (k − ǫb2)bj + (1 − λb2)sj . (63)

By Lemma 6.2, rj + sj = 0. It follows from (63) that

(1 − λb2)sj + (k − ǫb2)bj = 0. (64)

Contracting (64) with bj yields

(k − ǫb2)b2 = 0.

We get
k = ǫb2.

Then (47) is reduced to

rij = ǫ(b2aij − bibj) − λ(bisj + bjsi).

By (49),
ν = 0.

Then (48) is reduced to (62).
We claim that s0 = 0. Suppose that s0 6= 0. By (64), we conclude that

λ =
1

b2
.

By (51),
δ = 0.

It follows from (50) that
(b2Q+ s)Φ = 0.

This is impossible by the assumption Φ 6= 0. Q.E.D.

7 Proof of Theorem 1.1

Notice that in Lemma 6.1, there is no restriction on φ other than (46). Let
φ = k1

√
1 + k2s2 + k3s where k1 > 0, k2 and k3 are numbers independent of s.

It is easy to check that, if k3 6= 0, then φ satisfies (46). Let F = αφ(β/α), where
α is a Riemannian metric and β is a 1-form on an n-dimensional manifold. It
is easy to see that if F is a Finsler metric, then 1 + k2b

2 > 0, where b := ‖βx‖α.
By Lemma 6.1, we can easily prove Theorem 1.1.

Proof of Theorem 1.1: Assume that F is of isotropic S-curvature, S = (n+1)cF .
By Lemma 6.1, β satisfies (47) and φ satisfies (48) and further it satisfies (50)
if s0 6= 0.

First, we plug φ = k1

√
1 + k2s2 + k3s into

eq := −2s(k − ǫb2)Ψ + (k − ǫs2)
Φ

2∆2
+ (n+ 1)cφ− sν.
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By (48), the coefficients of the Taylor expansion of eq in s must be zero. We
obtain

c =
k3k

2(1 + k2b2)k
2
1

ν =
{( n

1 + k2b2
+ 1

)k2
3

k2
1

− k2

}

k

ǫ =
{k2

3

k2
1

− k2

}

k.

Assume that s0 6= 0. We plug φ = k1

√
1 + k2s2 + k3s into

EQ = −2Ψ − QΦ

∆2
− λ

( sΦ

∆2
− 2Ψb2

)

− δ.

By (50), the coefficients of the Taylor expansion of EQ in s must be zero. We
obtain

λ =
k2
3

k2
1

− k2

δ =
( n

1 + k2b2
+ 1

)k2
3

k2
1

− k2.

This proves the necessary conditions by (47).
Conversely, if β satisfies (4), then F is of isotropic S-curvature by (18). The

proof is direct, so is omitted. Q.E.D.
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