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SUMMARY 
We investigate the generalized mid-point algorithms for the integration of elastoplastic constitutive equa- 
tions for the pressure-dependent Gurson-Tvergaard yield model. By exact linearization of the algorithms 
and decomposition of the stresses into hydrostatic and deviatoric parts, a formula for explicitly calculating 
the consistent tangent moduli with the generalized mid-point algorithms is derived for the Gurson- 
Tvergaard model. The generalized mid-point algorithms, together with the consistent tangent mo.duli, have 
been implemented into ABAQUS via the user material subroutine. An analytical solution of the Gurson- 
Tvergaard model for the plane strain tension case is given and the performances of the generalized mid-point 
algorithms have been assessed for plane strain tension and hydrostatic tension problems and compared with 
the exact solutions. We find that, in the two problems considered, the generalized mid-point algorithms give 
reasonably good accuracy even for the case using very large time increment steps, with the true mid-point 
algorithm (a = 0.5) the most accurate one. Considering the extra non-symmetrical property of the consistent 
tangent moduli of the algorithms with a < 1, the Euler backward algorithm (a = 1) is, perhaps, the best 
choice. 
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1. INTRODUCTION 

The integration of constitutive equations is the most important part of any numerical scheme 
employed for the analysis of elastoplastic problems. Efficient schemes which are both fast and 
accurate are needed. The algorithms employed for the integration of constitutive equations can be 
classified into two groups: those based on an explicit technique and those based on an implicit 
technique. Recently, implicit algorithms, falling within the category of return mapping algo- 
rithms, have become more and more popular.'-' Within the framework of operator splitting 
methodology, Simo and Ortiz6 have proposed a new class of return mapping algorithms 
applicable to a general class of plastic and viscoplastic constitutive models. 

In recent years, there has been growing interest in the analysis of plastic flow localization and 
fracture behaviour of ductile porous metals. Unlike the conventional von Mises model, however, 
the yield models for porous solids exhibit a dependence on hydrostatic pressure. It is now well 
established that the fracture of ductile metals results from the initiation, growth and coalescence 
of microscopic voids. In order to accurately predict the limit to ductility of structural metals, it is 
necessary to have a constitutive theory which properly incorporates the inelastic straining 
resulting from the nucleation and growth of voids. Gurson'** has developed a theory of 
dilatational plasticity for this purpose, which has been modified by Tvergaardg* l o  in order to 
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bring it into better correspondence with his numerical studies. The Gurson-Tvergaard modified 
model has been applied more than any other model for the studies of the failure of ductile 
metals.'' In the Gurson-Tvergaard model, not only the hydrostatic pressure but the material 
damage parameter, void volume fraction f, has been incorporated into the yield function. It is 
known that an essential ingredient in the overall performance of the numerical integration 
algorithm is the development of consistent tangent moduli, obtained by linearization of the 
numerical integration algorithm. Due to the non-trivial task of obtaining the consistent tangent 
moduli with return mapping algorithms for the Gurson-Tvergaard model, Euler forward 
algorithms, based on the use of elastoplastic tangent moduli, are widely used.g, lo* I 2 - l 4  However, 
recently Worswick and Pick' have indicated that the application of the Euler forward algorithm 
for the Gurson-Tvergaard model requires very small time steps in order to avoid numerical 
instability. A Euler backward integration algorithm for the Gurson-Tvergaard model has been 
presented by Aravas.16 Aravas also gave a formulation for the calculation of the consistent 
tangent moduli with his Euler backward algorithm. However, the calculation of the consistent 
tangent moduli is very complicated and sometimes impossible. Recently an explicit expression for 
the consistent tangent moduli with the Euler backward algorithm for the Gurson-Tvergaard 
model has been given by Zhang.17 Zhang'7-'8 has also studied the accuracies of the return 
mapping algorithms using iso-error maps, by formulating a class of generalized mid-point 
algorithms for the Gurson-Tvergaard model. 

In this paper, the generalized mid-point algorithms formulated in Reference 18 are modified in 
order to derive the consistent tangent moduli. Within the framework of the return mapping 
algorithms, and based on the decomposition of stress increments into hydrostatic and deviatoric 
components, a seven-constant formula for explicitly calculating the tangent moduli consistent 
with the generalized mid-point algorithms is presented for the Gurson-Tvergaard model. Like 
the methodology in the Euler backward algorithm," the significant advantage of this methodo- 
logy is that no matrix inversion is required in the consistent tangent moduli expression. These 
generalized mid-point algorithms have been incorporated into the finite element program 
ABAQUS via the user material subroutine. The performances of the generalized mid-point 
algorithms have been assessed for practical plane strain tension and hydrostatic tension prob- 
lems, and compared with exact solutions. General conclusions about the choice of the algorithms 
are given. 

2. GURSON-TVERGAARD MATERIAL MODEL AND TWO SOLUTIONS 

A detailed review of the continuum mechanics framework for analysing plastic flow localization 
has been recently given by Needleman and T~ergaa rd . '~  Under quasi-static loading conditions, it 
is believed that the material constitutive features play an important role in the initiation of shear 
bands. It has been found that the von Mises model with a smooth yield surface is quite resistant to 
localization and, as a consequence, localization predictions are very sensitive to the deviations 
from this classical constitutive description. It has been shown that the Gurson-Tvergaard model, 
which can incorporate the explicit softening processes, such as the softening arising from 
microvoid nucleation and growth, has been getting increasingly popular for simulating plastic 
flow localization and ductile fracture. The Gurson-Tvergaard constitutive model is the object of 
this study. Obviously the method presented in this paper can be easily extended to other material 
models, for example, to the lower bound yield mode1.20,21 In the following text, a brief summary 
of the Gurson-Tvergaard model for completeness is provided first. Then two case solutions of the 
Gurson-Tvergaard model are given. 
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2.1. Gurson-Tvergaard material model 

Based on an approximation of a solid with a volume fractionf; of voids, as a spherical body 
with a concentric spherical void, and carrying out an approximate rigid-plastic upper bound 
analysis of this thick-walled spherical cell, with matrix material idealized as rigid-perfectly plastic 
and obeying the von Mises yield criterion, Gurson’.* obtained the following dilational yield 
condition (ql = 1 and q2 = 1) for a porous plastic solid, which is a good fit to his upper bound 
yield load locus: 

where constants q1 and 42  were introduced by Tvergaard’.’’ to bring predictions of the model 
into closer agreement with his full numerical analyses of a periodic array of voids. nf is the 
average matrix flow stress; q and p are the effective and pressure parts of the average macroscopic 
Cauchy stress IS. It is easy to see that the material loses load carrying capacity if freaches the 
limit l /ql ,  because all the stress components have to vanish in order to satisfy (1). It is clear that 
the effect of Tvergaard‘s modification is merely to decrease the critical void volume fraction fc, at 
which the material will lose load carrying capacity. Since only for small values off; the equivalent 
von Mises stress becomes close to the flow stress, it is evident that the Gurson-Tvergaard model 
is strongly dependent on the ratio of the hydrostatic stress to the flow stress. 

In general the evolution of the microvoid volume fraction results from the growth of existing 
microvoids and the nucleation of new microvoids can be written as 

The increase of the void volume fraction due to the growth of existing voids is determined from 
the condition that the matrix material is plastically incompressible such that 

The contribution resulting from the nucleation of new voids is usually taken to be either strain 
controlled or stress controlled. Here, we only consider the plastic strain controlled case as 

where SP is the equivalent plastic strain in the matrix material. The parameter A is chosen such 
that void nucleation follows a normal distribution as suggested by Chu and Needleman:” 

with fN the volume fraction of void-nucleating particles, cN the mean strain for void nucleation 
and SN the corresponding standard deviation. Moreover, the equivalence of the overall rate of 
plastic work and that in the matrix material leads to 

V:dEP = (1 - f)ofdEP (6) 
or equivalently 
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The plastic part of the macroscopic strain increment is taken to be proportional to the normal 
&$/do of the yield function: 

2.2. Solution for plane strain tension problem 

We shall present the solution of the Gurson-Tvergaard model to the plane strain tension 
problem. Figure 1 shows an element under plane strain tension with a Cartesian co-ordinate 
system (x, y, z) defined in such a way that y is the tensile axis. In Figure 1 a. is the initial length of 
the element. The only unknown stress for the problem is n,, as n, is a function of 0,. Using the 
equations just described and enforcing the consistency condition to determine dA we obtain, after 
some algebraic manipulations, the following equations describing the problem: 

~ day - E [ 1 - Y - V -  deP dc;] _-  do, day dsP 
de, 1 - v2 ds, ds, ’ de, de, de, 

- v - - E Y  

where 

Figure 1. Plane strain tension 
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E and v are Young’s modulus and Poisson’s ratio, respectively, gy and E ~ P  are the strain and plastic 
strain in the y-direction and 6,” is the plastic strain in the z-direction. 

2.3. Solution for hydrostatic tension problem 

This problem has been solved by Aravas.16 Figure 2 shows the element dimensions. The 
derivation of the equations is simpler than the plane strain case. We can easily get the following 
equations describing the problem, which can be integrated numerically: 

c 

Y 

Figure 2. Hydrostatic tension 
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where K is the bulk modulus, E, is the logarithmic volumetric strain, e,  = 3 In(1 + u/ao), u is the 
prescribed displacement and 

3Ox 

Of 
fjj =,- 

B = f4142.fSinh(342@ 
A small error in Reference 16 has been corrected in the expression of A. 

3. GENERALIZATION OF ELASTOPLASTIC CONSTITUTIVE RELATIONS 

The same elastoplastic constitutive relations as in Reference 18 are used here. For completeness 
and simplicity, this section just presents the related formulas. The class of elastoplastic materials 
considered here can be characterized by means of the following equations: 

( 16a) 

( 16b) 

( 164 

(164 

E = E' + EP 

d& = dEe + dz?' 
B = D': E' 

+(a, H) = 4(p,  4. H) = 0 

dH = h(deP, B, H) = h(deP, p ,  4, H) (16f) 
where, following standard notation, E, E~ and E~ denote the total, elastic and plastic strain tensors, 
respectively, and H signifies some internal state variables. In the paper, linear isotropic elasticity 
is assumed: 

0i"jlil = (K - $G)6ij6k, + 2G6ik6jl (17) 

where 6's are the Kronecker delta and G is the elastic shear modulus. In the general yield function 
(1 6d), p and 4 can be calculated: 

p =  -;a:[ - 
q = J+S 

I and S are the second-order unit tensor and deviatoric stress, respectively 
The plastic flow rule is given by (16e), where d l  is a positive scalar and g is the flow potential. In 

the literature, the associated flow rule is commonly applied to porous solids. Here, the associated 
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Bow rule alone is used, which means g = 4. However, there are no difficulties in applying the 
method to the non-associated flow rule. Equation (16f) expresses the general internal state 
variable evolution rule, which could include both plasticity and damage evolution rules. For 
rate-independent materials, h must be homogeneous of degree one in dc". 

4. A CLASS OF GENERALIZED MID-POINT ALGORITHMS 

A class of generalized mid-point algorithms has been formulated by Zhang" for the pres- 
sure-dependent Gurson-Tvergaard model. It was found later that it is difficult to derive the 
corresponding consistent tangent moduli for the generalized mid-point algorithms, because of the 
simplification made in Reference 18. This difficulty has been overcome in this paper by a modifi- 
cation such that it is possible to derive the consistent tangent moduli. Here and subsequently, the 
subindice n + c1 is used to identify the value of the various state variables at time tn+,. 

The generalized mid-point algorithms, in the context of displacement finite element analysis, 
take the following forms: * 

& n + t  = & n + A & n + l  (194 

~ ; f + ~  = De:(&; + A E , + ~ )  (1 9b) 

where one writes 

and the algorithmic parameter c1 takes values in the interval [0, I]. For a = 1, one obtains the 
closest point return algorithm or the Euler backward algorithm,I6 whereby the elastic predictor is 
relaxed into the closest point on the updated surface. A theoretical analysis given by Ortiz and 
Popov' shows that the algorithm is second-order accurate for a = 0.5 and unconditionally stable 
for a 2 0.5 regardless of the shape of the yield surface. 

For the constitutive model considered, we can separate any stress tensor into its deviatoric and 
hydrostatic components 

where 
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is the unit vector in the deviatoric space normal to the yield surface and S is the deviatoric stress. 
Likewise, the plastic strain increment can be decoupled into volumetric (A&;) and deviatoric (A&:) 
parts: 

where the subindice n + 1 of is omitted for convenience. The above equation with a = 1 was 
used by Aravas in the Euler backward algorithm forrnulations.l6 The following equation was 
used by Zhang" in formulating the generalized mid-point algorithms: 

where gT+ is obtained from a:+ by equation (18b). However, one still faces difficulties when 
applying (23) to derive the corresponding consistent explicit tangent moduli. In this paper, we 
found that using the following equation guarantees the derivation of the explicit consistent 
tangent moduli: 

where 

AE,, = - AI($) 
n + a  

= AI- - (25b) 
% + a  qn (::)n + a  

Please note the differences between (22), (23) and (24). With (22), we have no simple equation 
(30b) so that a4,+ /aA&, can be directly solved. This makes the generalized mid-point algorithms 
impossible. Secondly, using (23) instead of (24), equation (38) would not be available and the 
deriving of the explicit consistent tangent moduli would be extremely difficult, if not impossible. 

By eliminating A l  from the above two equations one obtains 

or more simply 

where 

hs,P + AsqQ = 0 (27) 

p , Q " ( Z )  n + a  

Q = r $ ) n  + a 

% + a  

Substituting (24) into (19c) yields 
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By separating an+ and 6:+ into deviatoric and hydrostatic components according to (20) and 
using the mid-point rule for Sn+., we obtain 

Pn+l = P:+I + KAcp (304 

where pT+l and Sg+l are obtained from a;+,. After obtaining S n f l ,  q n + l  can be computed 
through (18b). 

In the present mid-point algorithms the general internal state variable evolution rules (19f) can 
be written more specifically: 

(31) A K + 1  = h n + a ( A E p ,  A~qy P n + a ,  q(S)n+a,Hn+a) 
Through the above preliminary work, the integration problem of the elastoplastic equations can 
be reduced to the solution of the following non-linear equations: 

AE,P + A E ~ Q  = 0 (324 

AHn+ 1 = hn+a(AEp, Atq, Pn+a,  q ( S ) n + a ,  H n + a )  (324 
These equations can be solved by Newton’s method using p p  and pq as the corrections for Acp and 
BE, and treating (32a) and (32b) as the two basic equations in which p ,  S and AH are updated by 
(32c)-(32e), we obtain the following two scalar Newton equations: 

A l l P , +  A12Pq = b l  

A21 Pp + A22 Pq = b2 
(33) 

where the constants Aij and bi are given in Appendix I. Taking A E ~  and A&,, as zero in the 
beginning of the solution, these equations are solved for p p  and pq; and the values of 
are updated by 

and 

= A E ~  + p p  

AE,, = AE,, + pq 

Then, the values p, S and AH are updated using (32c)-(32e). The iteration is continued until the 
solution converges. In the numerical problem presented here, the convergence is controlled by the 
requirement I $I,,+ I < 1E - 7. 

(34) 

5. EXPLICIT CONSISTENT TANGENT MODULI WITH THE 
GENERALIZED MID-POINT ALGORITHMS 

It has been shown5 that for rate-independent elastoplastic problems, the consistency between the 
tangent moduli and the integration algorithms employed in the solution of the incremental 
problem plays a crucial role in preserving the quadratic rate of asymptotic convergence of 
iterative solution schemes based on Newton’s method. The so-called consistent tangent moduli 
are defined by exact linearization of the algorithms, (19c) and enforcing the plasticity consistency 
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condition at the end of the step t ,+ 

Dconsis.  = (') 
n +  1 

(35 )  

Dconsis.  depends on the algorithm used for the integration of the constitutive equations and is, in 
general, different from the so-called 'elastoplastic tangent moduli' derived from the 'continuum' 
rate equations by enforcement of the consistency condition5 An explicit expression of the 
consistent tangent moduli with the Euler backward algorithm (u = 1) has been given by Zhang.17 
€n the following, we shall derive the explicit expression for the consistent tangent moduli with the 
whole family of the generalized mid-point algorithms proposed. Based on the decomposition of 
the return mapping process described above, we will derive the consistent tangent moduli 
separately from both the hydrostatic and deviatoric components. First we consider the deviatoric 
stress plane in which we have 

S n t a  S,+ 1 = ST+ 1 - ~ G A E ,  - 
q n  

By differentiating the above equation and rearranging we obtain 

Substituting as,'+ = 2GasD, where &D is the deviatoric component of&,+ 1 ,  into the last equation 
gives 

2G - 9 qn ah&, sn+a 1 as,+, = 1 + 3GuA~, /q ,  

For all the cases in which three direct strains are defined by the kinematic solution we have 

a P n t l  = - m a &  + KaE, 

ao,+l = - apn+iI  + dSn+l 

(40) 

(41) 

where J is the fourth-order unit tensor. By substituting asn+ and a p n +  into (41) and rearranging 
we obtain 

where 

Z =  ) I , ,  (43) 

For the present pressure-dependent elastoplasticity model, using the same method as Aravas,' 
by linearization of the flow (32a) and yield (32b) conditions, we obtain the following equations: 

ClldAE,+ Cl2aAcq = (BIlI  + B I Z n n + a ) : a o  

c Z l a A E p +  C 2 2 a A ~ q  = ( B ~ ~ I +  ~ ~ , n , + , ) : a ~  
(44) 
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where the constants Cij  and Bij  are shown in Appendix 11. Substitution of (42) into (44) gives 

where the constants Dij  are given in Appendix 111. 

the generalized mid-point algorithms: 
By substituting (45) into (42), we obtain an expression for the consistent tangent moduli with 

8~ = M:Z:& (46) 
where 

M =  J-M'-M" 

M' = K(D11 I 0 I + 0121 0 nn+, + D13I O nn+ I 1 (47) 

Finally, by multiplying M and Z and using the relationship between I and n, we obtain the 
following explicit expression for the consistent tangent moduli: 

D c o n s i s ~ = d ~ J + d l I O I + n , + , O ( d 2 n n + a + d ~ n n + l ) + d ~ ~ n + a O I +  IO(dsn,+,  +d6n ,+ , )  
(48) 

where the seven constants are given by 

2G 
1 + 3GaAe,/qn 

do = 

ds = - doKD12 

d6 = - dOKD13 

It should be noted that no matrix inversion is involved in the present consistent tangent moduli 
(48). Equation (48) represents a general form of the consistent tangent moduli. It can be seen that 
there are two parts which make the consistent tangent moduli non-symmetric. The first part is 
attributed to the algorithm used and is represented by the third and last term of (48). Obviously, if 
and only if o! = 1, then the third term makes no contribution to the non-symmetry of (48). Similar 
results for the ideal-plastic von Mises model found by Simo and Taylor4 and Ortiz and Martin23 
show that only the fully implicit or the classical Euler backward algorithm preserves symmetry of 
the consistent tangent moduli. It is easy to see that if we enforce the plasticity consistency 
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condition (16d) not at the end of the increment, but at mid-point time t ,+ , ,  i.e. &,+, = 0, as 
suggested by Simo and Taylor4 and Simo and G ~ v i n d j e e ~ ~ ,  then the third part of (48) is 
symmetric. However, it needs special formulations in real finite element application to enforce 
& + u  = 0, because, by doing so, the momentum balance should also be enforced for the mid-point 
value stresses on+,. On the other hand, even for the algorithm where the consistency is enforced at 
time tn+u, i.e. $,+, = 0, for example, the Euler backward algorithm (a = l), there is still one part 
represented by the last two terms of (48) which makes the consistent tangent moduli possibly 
non-symmetric (d4 # d5  + ds).  The values of the last two terms of (48) depend on the material 
model. For the von Mises model with the classical Euler backward algorithm (a = l), it has been 
provedI7 that d4 = d ,  + d6 = 0. For the present pressure-dependent Gurson-Tvergaard material 
model, the non-symmetry of the consistent tangent moduli for the Euler backward algorithm has 
been demonstrated by numerical test. However, as pointed out by Aravas,I6 the lack of symmetry 
is not expected to degrade the convergence of the Newton iterations for equilibrium if we 
approximate Dconsis. with its symmetric part. 

6. NUMERICAL PERFORMANCE AND DISCUSSION 

The generalized mid-point algorithms described in the previous sections have been implemented 
with the explicit consistent tangent moduli in the general purpose finite element program 
ABAQUS25 via the user material subroutine. The performance of the generalized mid-point 
algorithms has been assessed for two problems, plane strain tension and hydrostatic tension. 

6.1. Stress-strain curve of the matrix material 

considered: 
The same uni-axial stress-strain relation as used by Aravas16 is used for all the problems 

where oso is the initial tensile yield stress of the matrix. The elastic-plastic properties of the matrix 
material are specified by afo/E = 1/300, v = 0.3, N = 0.1, q1 = 1.5 and q2 = 1.0. The void 
nucleation parameters in (5 )  are fN = 0.04, EN = 0.3 and S N  = 0.1. 

6.2. Plane strain tension problem 

A 8-node parabolic element with reduced integration (CPE8R) in ABAQUS was used for the 
finite element analysis. The element dimensions are shown in Figure 1, where x , y  are the 
symmetric axes. Displacement-controlled loading with equal displacement increment size was 
applied at the top of the element. The problem was solved with zero initial void volume fraction. 
The exact solution of the problem is numerically obtained by integrating the set of equations 
(9)-(12), using a Euler forward scheme with 200000 increments performed from the initial yield 
strain to a strain of 1.0. The initial yield point in the loading path can be easily determined by 
using the analytical equations derived. There is no need to find the transition point between the 
elastic to the elastoplastic deformation in the present finite element implementation, because the 
implicit algorithms can find it automatically. In order to test the performance of the mid-point 
algorithms formulated in Section 5,  three values of a are chosen, 0.5, 0.75 and 1. Two displace- 
ment increment sizes were tested in the finite element analysis. The comparisons of the stresses 
between the finite element results of both increment sizes and the numerically obtained exact 
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results are shown in Table I as a function of the logarithmic strain cy = In (1 + u/ao), where u is 
the prescribed y-direction displacement and a. is the initial element length. In Table I, the results 
are compared at ten steps only, which cut the whole displacement history equally into ten. In the 
analysis using 80 increments, a negative system eigenvalue problem in the global Newton 
iteration appeared at increment 51 in the true mid-point algorithm (a = 05) which discontinued 
the analysis. The asterisks in Table I indicate that these values are not available because of the 
problem encountered. 

(average) = 0.025 = 7.5&,,, the errors are not excessive for all the algorithms considered. It must 
be noted that, in the present solution, the increment is controlled by displacement. Therefore, it is 
difficult to obtain equal strain increments by displacement-controlled loading in large displace- 
ment non-linear analysis. Table I shows that for the plane strain tension problem the true 
mid-point algorithm (a = 0.5) is the most accurate one in both small and large inrement sizes, 
except at the beginning of the analysis. It can be seen that the second-order accuracy of the true 
mid-point algorithm is not sensitive to the increment size in the present plane strain tension 
problem. By contrast, the Euler backward algorithm gives poorest accuracy, although the errors 
are not excessive at all. In general, the accuracy of the algorithms depends on the nature of the 
problem. In Reference 18, the accuracy of the generalized mid-point algorithms has been assessed 
by using different strain increment sizes and directions. In the assessment the initial stress location 
on the Gurson-Tvergaard yield surface (f= 0.03) was fixed at a point where the hydrostatic 
stress equals the initial yield stress. It was found that the second-order accuracy of the true 
mid-point has a limited range. In terms of the maximum error in all the increment sizes assessed, it 
was found that the optimal value of a is observed between 0.5 and 1. When the deviatoric strain 
increment is radial to the yield surface, the true mid-point algorithm is usually the most accurate 
one, no matter how large the increment size. However, when the deviatoric strain increment is 
tangent to the yield surface, the second-order accuracy disappears once the strain increment size 
increases. For the present plane strain tension problem, the stress increases almost proportionally 
( p / q  x - 0.55, point A in Figure 3) and the deviatoric strain increment is radial to the yield 
surface. Therefore, the strain increment scheme in the plane strain tension problem lies in the 

It can be seen that even for the very large increment size (40 increments) applied, 

Table I. Comparison of the stress by between the FE results and the exact results for plane strain 
tension problem. 40 and 80 equal displacement increments were applied in FE solution 

Exact values FEM-40 increments FEM-80 increments 

Exact a = 0.5 a = 0.75 a = 1 a = 0.5 a = 0.75 a = 1 
stress Exact error error error error error error 

EY 0, f (%I (Yo) (%I (%I (%I (%) 

0.159 
0295 
0.4 16 
0523 
0620 
0.709 
0.790 
0.865 
0.935 
1 *Ooo 

172.9 
174.2 
1708 
168.6 
165.7 
161.9 
157.6 
152.9 
148.0 
143.1 

00048 
0.0306 
00553 
0.07 14 
0.0868 
01027 
0.1191 
0.1358 
01526 
0.1693 

-087  -0.58 -052  -0.35 -029  
0.23 - 0.52 - 1.32 0.17 - 0.23 
0.23 - 0.59 - 1.46 0.12 - 0.29 
024 - 0.71 - 1.72 0.12 - 0.36 
0.36 - 0.84 - 2.11 0.18 - 0.42 
0.49 - 0.93 - 2.47 0.25 - 0.43 
0.63 - 1.02 - 2.79 - 0.51 

- 0.59 0.78 - 1.11 - 3.14 
- 068 0.81 - 1.28 - 3.51 
- 0.70 098 - 1.33 - 3.77 

* 
* 
* 
* 

- 029 
- 0.69 
- 0.70 
- 0.83 
- 1.03 
- 1.17 
- 1.40 
- 1.50 
- 1.76 
- 1.89 
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Figure 3. Locations on the yield surface: (A) plane strain tension problem; (B) hydrostatic tension problem 

second-order accuracy range of the true mid-point algorithm observed in Reference 18. The 
second-order accuracy of the true mid-point algorithm demonstrated by the plane strain tension 
problem has further proved the observation in Reference 18. These findings could lead to some 
general conclusions which will be stated later. 

Figures 4 and 5 show the comparisons between the stress and void volume fraction results of 
the Euler backward algorithm (a = 1) and the exact results. Although the Euler backward 
algorithm is not the most accurate one in the plane strain tension problem, very good accuracy 
has been demonstrated within the global behaviour, especially when the increment size is small. 

In ABAQUS, we only used the symmetric part of the consistent tangent moduli for global 
iteration, even though the convergence behaviour of all the algorithms assessed is very good. 
Table I1 shows the number of global iterations used in the large increment size (40 increments) 
analysis. It is seen that on average less than two iterations for each increment were needed and the 
true mid-point algorithm is the fastest one to converge and is much faster than the Euler 
backward algorithm. In the 80 increment analysis, there is no big difference in the convergence 
behaviour of the three algorithms, because the increment size is relatively small. 

6.3. Hydrostatic tension problem 

An 8-node brick element with reduced integration (C3D8R) in ABAQUS was used for testing 
the hydrostatic tension problem. The dimensions of the problem are shown in Figure 2. The 
boundary conditions are the same as those in Reference 16. Equal displacement increments are 
used so that a logarithmic volumetric strain of 0.4 is reached in 10 and 20 increments, respectively. 
The initial void volume fraction is 0.04, all the other parameters are the same as the plane strain 
tension problem. The finite element analysis results of three algorithms are compared with the 
numerically obtained exact results for two different increment sizes in Table 111. Similar to the 
plane strain tension problem, the results of the three algorithms agree very well with the exact 
results. It is interesting to note that for the hydrostatic tension problem, in which only the 
volumetric strain increment is available and the strain increment is exactly perpendicular to the 
yield surface (q = 0, point B in Figure 3), the accuracy of the generalized algorithms varies with 
the change of void volume fraction or the curvature of the yield surface at point B in Figure 3. In 
the beginning when the void volume fraction is small, the Euler backward algorithm is the most 
accurate one; however when the void volume fraction exceeds about 0.2, the true mid-point 
algorithm becomes the most accurate one. For both large and small increment sizes, the 
algorithm with a = 075 gives moderate accuracy during the whole history of the analysis. 
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The finite element analysis results of the hydrostatic stress and void volume fraction for the 
Euler backward algorithm (a = 1) using large increment steps are plotted as a function of E, in 
Figures 6 and 7, respectively. It can be seen that finite element results agree very well with the 
exact results, even when using very large increment steps. Due to the absence of deviatoric stress, 
the convergence in the global Newton iteration is very fast, only one iteration is needed in every 
increment, regardless of the algorithm chosen. 

6.4. General remarks 

From the numerical behaviour of the present finite element results and the observation in 
Reference 18, it can be concluded that the accuracy of the generalized mid-point algorithms 
depends on many factors, for example, the location of stress points on the yield surface, the yield 
surface curvature, the strain increment direction to the yield surface and the strain increment size. 
The second-order accuracy of the true mid-point algorithm depends strongly on the direction of 
the strain increment to the yield surface. As shown in the analysed plane strain tension case, the 
second-order accuracy of the true mid-point algorithm is almost insensitive to the strain 
increment size if the deviatoric strain increment is radial to the yield surface. Similar findings can 
be seen in the results of the von Mises model by Ortiz and POPOV.~ Therefore, it can be generally 
concluded that for the loading case, where the deviatoric strain increment is radial to the yield 
surface, the true mid-point algorithm is the most accurate one. The results in the plane strain 
tension problem have also shown that the true mid-point algorithm is not only the most accurate, 
but also the fastest in convergence in global Newton iteration. However, one thing which is 

Table 11. Number of iterations in the 40 increment 
analysis 

Algorithms a=O.5 a = 0 7 5  a = l  

No. of iterations 43 61 65 

Table 111. Comparison of hydrostatic pressure between FE results and the exact results for 
hydrostatic tension problem. 10 and 20 equal displacement increments were applied in FE solution 

Exact values FEM-10 increments FEM-20 increments 

a = 0 5  a=O.75 a =  1 u=O.5  a =0*75 u =  1 
Exact Exact error error error error error error 

E" ( - P) f (%) (%) (%I (%) ("/I (W 
0-042 201-4 
0-084 172.8 
0.126 148.7 
0.166 128.8 
0.207 112.1 
0.246 98.1 
0.285 86.3 
0.3 24 76.3 
0.362 67.8 
0.400 60.4 

00728 
01130 
01524 
0.191 1 
0.2287 
0.2645 
0.2980 
0,3290 
0,3575 
0.3838 

- 6-70 - 3-23 - 0.65 - 2.23 - 1-19 - 0.35 

- 1.14 - 0.54 - 0.2 - 0.34 - 0.20 - 0.13 
- 0.23 000 008 -008 0.00 0.00 

0.36 0.45 0.45 0.18 0.18 0.18 
0.67 072 0.76 0.25 0.3 1 0.37 
075 092 1.10 0.27 0.39 0.54 
069 1.04 1.40 0.25 0.47 0.72 
046 1.02 1.61 0.13 0.47 0.80 
0.26 1.04 1.85 0.08 0.5 1 0.94 

- 2.60 - 1.39 - 0.46 - 0.93 - 0.58 - 0.29 
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necessary to pay attention to is that, although the true mid-point algorithm is the most accurate 
and efficient one in the plane strain tension problem simulated by one element, an unexpected 
negative system eigenvalue problem once appeared in the true mid-point algorithm which 
discontinued the analysis (see Table I). The reason why the negative eigenvalue problem appeared 
only in the true mid-point algorithm was not clearly known to us; however, it may have 
something to do with the extra non-symmetry caused by the algorithm, as discussed in Section 5. 
We have not tried to enforce the consistent condition at time tn+.,  i.e. 4,,+= = 0, yet, to avoid the 
extra non-symmetry. Although we have not experienced the negative system eigenvalue problem 
in any other applications of the true mid-point algorithm, where the stress distribution was not 
uniform and more than one element was used, considering this incident of the true mid-point 
algorithm and the fact that the Euler backward algorithm has no extra non-symmetric term 
caused by the algorithm and is versatile, reasonably accurate, and has been widely used in the von 
Mises model, the Euler backward algorithm should be recommended. 

7. CONCLUSIONS 

A class of generalized mid-point algorithms for the increasingly popular Gurson-Tvergaard 
model has been presented and incorporated into the finite element program ABAQUS via user 
material subroutine. By decomposing the stress into hydrostatic and deviatoric parts, a seven- 
constant formula for calculating the corresponding consistent tangent moduli with the gener- 
alized mid-point algorithms has been presented. The formula presented in the paper is simple and 
can be regarded as a general form of the consistent tangent moduli. One interesting feature of the 
formula is that the non-symmetric property of the consistent tangent moduli can be easily 
identified and studied. The performance and accuracy of the generalized mid-point algorithms 
have been assessed by application to two cases, plane strain and hydrostatic tension problems. 
Results show that in all the cases considered, the class of the generalized mid-point algorithms is 
reasonably accurate. Furthermore, the accuracy of the algorithms seems to depend on many 
factors and it has been concluded that for the case where the deviatoric strain increment is radial 
to the yield surface, the true mid-point algorithm is the most accurate. However, considering the 
extra non-symmetric property of the consistent tangent moduli caused by the algorithms with 
a <  1-0, and the negative eigenvalue problem encountered in this study for the true mid-point 
algorithm, the Euler backward algorithm (a = 1) is perhaps the best choice for the wide 
application of the Gurson-Tvergaard model. 
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APPENDIX I 

CoefJlcients in equation (33) 

Treating and 

coefficients in (33): 

as the two independent unknowns and all other variables as a function of 
and A E ~ ,  and using Newton's method to solve (32a) and (32b), we obtain the following 
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Here wij is the inverse of 
ah: +or 6 ,  - a __ 
aH! + a 

and for the Gurson-Tvergaard model applied in the paper, 2 2 i, j 3 1. 

APPENDIX I1 

Coejicients in equation (44) 

which relate aAE,, dAEq and ac are obtained 
By linearization of (32a) and (32b) with respect to aAEp, BAc, and do(p,q), the coefficients in (44) 

ap 

a 

W n + ,  aHn+1 cll = -:- 
dHn+l ad&, 

W n + l  aHn+1 CZZ = -:- 
aHn+l aAEq 
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Bzl = - 1 [- a&+,  +--.--I a h , + ,  aHn+1 

3 a P n + l  aHn+1’apf l+ ,  

aHn+l’%n+l 

ah!+, 
- wij- 

aHt+ 1 

aA&, aAE, 

ah!+, 
- wij- 

w+ 1 

dAE, aAE, 

ah!+, m+ 1 

h + a  a P n + a  

ah!+, a H t +  1 

84. + a  % n + a  

where we have 

-- 

-- 

-- - wij- 

-- - wij- 

and for the Gurson-Tvergaard model applied in the paper, 2 2 i ,  j 2 1. In the derivation, 
dqn+a/aan + = ann+, has been used. 

APPENDIX I11 

where 

G is the shear modulus. 
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