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Abstract. This paper deals with a certain class of optimization methods, based on conservative
convex separable approximations (CCSA), for solving inequality-constrained nonlinear programming
problems. Each generated iteration point is a feasible solution with lower objective value than the
previous one, and it is proved that the sequence of iteration points converges toward the set of
Karush–Kuhn–Tucker points. A major advantage of CCSA methods is that they can be applied to
problems with a very large number of variables (say 104–105) even if the Hessian matrices of the
objective and constraint functions are dense.

Key words. nonlinear programming, constrained minimization, convex approximations, method
of moving asymptotes,

AMS subject classifications. 49M37, 65K05, 90C30

PII. S1052623499362822

1. Introduction. The purpose of this paper is to present and investigate a new
class of optimization methods which we call conservative convex separable approx-
imation (CCSA) methods. These methods are intended for inequality-constrained
nonlinear programming problems, which are assumed to be written as minimization
problems with less than or equal to constraints. There are outer and inner iterations
in the methods. An outer iteration starts from the current iterate x(k) and ends up
with a new iterate x(k+1). In each inner iteration, within a given outer iteration, a
convex subproblem is generated and solved. In this subproblem, the original objective
and constraint functions are replaced by certain convex separable functions which ap-
proximate the original functions around x(k). The optimal solution of the subproblem
is either accepted or rejected. If accepted, it becomes x(k+1) and the outer iteration
is completed. If rejected, a new inner iteration is made, with a modified subprob-
lem based on somewhat modified approximating functions. These inner iterations are
repeated until the approximating objective and constraint functions become greater
than or equal to the original functions at the optimal solution of the subproblem.
When this happens, we say that the approximating functions are conservative. This
does not imply that the feasible set of the subproblem is completely contained in the
original feasible set, but it does imply that the optimal solution of the subproblem is a
feasible solution of the original problem, with lower objective value than the previous
iterate. Each new outer iteration requires function values and first order derivatives
of the original objective and constraint functions, calculated at the current iterate
x(k). Each new inner iteration requires function values, but no derivatives, calculated
at the optimal solution of the most recent subproblem.

To use an approach based on solving a sequence of convex subproblems is not
a new idea. It is used also in, e.g., sequential quadratic programming (SQP) where,
at each iteration, a convex quadratic programming (QP) problem is solved and a
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linesearch on a merit function is performed; see, e.g., [5] and [2]. However, the (linear)
constraints in the QP subproblems do not in general force the iteration points to be
feasible with respect to the original constraints, and thus they are not conservative in
the above meaning. In contrast to SQP methods, CCSA methods introduce curvature
both in the objective function and in the constraint functions of the subproblem.
This curvature is updated in the inner iterations until the approximating functions
become conservative, and then there is no need for any linesearch. Another class of
methods which generate feasible iteration points is interior point methods, see, e.g.,
[1], [3], and [4]. But in these methods feasibility is typically preserved by adding a
logarithmic barrier function to the objective function, and not by using conservative
approximations of the constraint functions as in CCSA methods.

It should be emphasized that a major benefit of CCSA methods is that they can
be successfully applied to problems with a very large number of variables, even if the
Hessian matrices of the objective and constraint functions are dense. This property
is to a large extent due to the usage of separable approximations.

One of the CCSA methods presented here, namely the method of moving asymp-
totes (MMA), has a background in the structural optimization field, where function
and gradient evaluations are very time-consuming (involving huge finite element calcu-
lations), and where the users often consider it important that the generated iteration
points are feasible. The original version of MMA, presented in [7], usually worked
quite well in practice but was not globally convergent and sometimes failed on certain
problems. A later version, presented in [8], was globally convergent but turned out
to be too slow in practice. The version of MMA presented in this paper apparently
outperforms both of these earlier versions, in theory as well as in practice. Moreover,
MMA is now just one of several alternative methods within the concept of CCSA
methods, which is introduced here and for which a convergent proof has not appeared
before.

The paper is organized as follows. In section 2, a convenient formulation of
inequality-constrained optimization problems is suggested and shown to have some
important properties. In particular, the set of Karush–Kuhn–Tucker (KKT) points is
nonempty. In sections 3 and 4, a general description of CCSA methods is given, and
then some specific CCSA methods are described in sections 5 and 6. In section 7, it is
proved that CCSA methods are globally convergent in the following sense: From any
starting point, the sequence of generated iteration points converges towards the set
of KKT points. In section 8, finally, numerical results on some large scale problems
are presented.

2. Considered problem and some basic properties. Inequality-constrained
nonlinear programming problems are often written in the following form, where x =
(x1, . . . , xn)T ∈ R

n is the vector of variables, xmin
j and xmax

j are given real numbers,
and f0, f1, . . . , fm are given, typically twice continuously differentiable, real-valued
functions:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n.

(2.1)

In this paper, however, any problem of this type is transformed into a closely related
problem of the following extended form where, in addition to the variables x ∈ R

n,



CONVEX APPROXIMATION METHODS FOR OPTIMIZATION 557

there also appear “artificial” variables y = (y1, . . . , ym)T ∈ R
m:

minimize f0(x) +

m∑
i=1

ciyi

subject to fi(x) − yi ≤ 0, i = 1, . . . ,m,

xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n,

yi ≥ 0, i = 1, . . . ,m.

(2.2)

If the constants ci are chosen as very large numbers, then typically ŷ = 0 in any
optimal solution (x̂, ŷ) of (2.2), and then the corresponding x̂ is an optimal solution
of (2.1).

We prefer to work with (2.2) instead of (2.1) for several reasons. First, there
always exist feasible solutions of (2.2), and also at least one optimal solution. Further,
each optimal solution (local or global) of (2.2) always satisfies the KKT conditions.
There is also a reason from a modelling point of view: In many applications, the user
should be able to give a rough overestimate (possibly very large) of how much he
would require in improved objective value in order to accept a unit increase of the
right-hand side of a certain constraint in (2.1). Such an overestimate could then be
used as the corresponding coefficient ci in (2.2), and then problem (2.2) would be at
least as relevant as problem (2.1).

As mentioned above, and as will be proved below, there always exists at least one
KKT point of (2.2), i.e., a point which satisfies the KKT conditions of the problem.
The following relations between KKT points of (2.1) and (2.2) can be readily seen by
comparing the KKT conditions for the two problems. First, assume that x̂ is a KKT
point of (2.1) with Lagrange multipliers λi for the constraints fi(x) ≤ 0, and assume
that ci ≥ λi for all i. Then (x, y) = (x̂, 0) is a KKT point of (2.2) with precisely
these values λi on the Lagrange multipliers for the constraints fi(x) − yi ≤ 0. Next,
assume that (x, y) = (x̂, 0) is a KKT point of (2.2) with Lagrange multipliers λi for
the constraints fi(x)−yi ≤ 0 (which will of necessity satisfy λi ≤ ci for all i). Then x̂
is a KKT point of (2.1) with precisely these values λi on the Lagrange multipliers for
the constraints fi(x) ≤ 0. If there happens to be no KKT point of (2.1), then there is
no KKT point of (2.2) with y = 0, no matter how large the coefficients ci are chosen.
In this case, however, there is always at least one KKT point of (2.2) with y �= 0.

For the remainder of this paper, we will in fact consider a further extended prob-
lem formulation, with one more “artificial” variable z ∈ R. This formulation contains
(2.2) as a special case, but also some other important problem classes such as least
squares problems and minimax problems. The (small) price we have to pay for this
generality is that the formulation of the problem may look a bit messy at first sight,
namely as follows:

minimize f0(x) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i )

subject to fi(x) − aiz − yi ≤ 0, i = 1, . . . ,m,

xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n,

z ≥ 0 and yi ≥ 0, i = 1, . . . ,m.

(2.3)

Here, f0, f1, . . . , fm are given, twice continuously differentiable, real-valued functions,
while a0, ai, ci, and di are given real numbers such that a0 > 0, ai ≥ 0, ci ≥ 0, di ≥ 0,
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and ci + di > 0 for i = 1, . . . ,m. Further, aici > a0 for all i such that ai > 0. Finally,
xmin
j and xmax

j are given real numbers such that xmin
j < xmax

j for j = 1, . . . , n.
Problem (2.2) is obtained as a special case of (2.3) by letting ai = di = 0 for

i = 1, . . . ,m and a0 = 1, since then z = 0 in any optimal solution of (2.3).
As will be shown below, the considered problem (2.3) is equivalent to the following,

typically nonsmooth, problem (2.4) in the variables x = (x1, . . . , xn) ∈ R
n:

minimize f0(x) + a0 max
i∈A1

{
f+
i (x)

ai

}
+
∑
i∈A0

(
cif

+
i (x) + 1

2di(f
+
i (x))2

)
subject to x ∈ X,

(2.4)

where we have used the notation

X = {x ∈ R
n | xmin

j ≤ xj ≤ xmax
j , j = 1, . . . , n},

A1 = { i ∈ {1, . . . ,m} | ai > 0 },
A0 = { i ∈ {1, . . . ,m} | ai = 0 }, and

f+
i (x) = max{0, fi(x)}.

This formulation (2.4) will not be used for solving problem (2.3), but it shows
that least squares problems, minimum 1-norm problems, and minimax problems are
all special cases of problem (2.3). It is also used in the proof of Proposition 2.3 below.

Proposition 2.1. If x ∈ X is held fixed in problem (2.3), the corresponding
optimal values of the variables y and z are unique. These unique optimal values are
as follows: If A1 = ∅, then z = 0 and yi = f+

i (x) for i ∈ {1, . . . ,m}. If A1 �= ∅,
then z = maxi∈A1{ f+

i
(x)

ai
}, yi = 0 for i ∈ A1 , and yi = f+

i (x) for i ∈ A0.

Proof. If A1 = ∅, the result follows from the assumptions that a0 > 0 and
ci + di > 0 for all i. If A1 �= ∅, one also has to use the assumptions that aici > a0 for
all i ∈ A1.

This implies that the variables yi and z can formally be eliminated from problem
(2.3). The resulting problem is precisely (2.4). This gives our next proposition.

Proposition 2.2. The vector (x̂, ŷ, ẑ) is a global optimal solution of problem
(2.3) if and only if x̂ is a global optimal solution of problem (2.4) while ŷ and ẑ are
as in Proposition 2.1.

Proof. The proof follows from Proposition 2.1.
Proposition 2.3. There is at least one global optimal solution of problem (2.3).
Proof. In problem (2.4), the objective function is continuous on the compact set

X. Thus, there is at least one global optimal solution of problem (2.4). But then
Proposition 2.2 implies that there is at least one global optimal solution of problem
(2.3).

Proposition 2.4. If (x̂, ŷ, ẑ) is an optimal solution, local or global, of problem
(2.3), then there are Lagrange multipliers which together with (x̂, ŷ, ẑ) satisfy the KKT
conditions.

Proof. It is well known (see, e.g., section 9.4 in [6]) that if x̂ is an optimal solution
of a problem of the form

minimize h0(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m,

x ∈ R
n,

(2.5)
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and if there is a vector ∆x such that ∇hi(x̂)∆x < 0 for all i > 0 such that hi(x̂) = 0
(i.e., the inner product of ∆x and the gradient vector of any active constraint is strictly
negative), then there are Lagrange multipliers λi, i = 1, . . . ,m, which together with
x̂ satisfy the KKT conditions, which in this case are

∂h0

∂xj
(x̂) +

m∑
i=1

λi
∂hi

∂xj
(x̂) = 0, j = 1, . . . , n (∂L/∂xj = 0),

hi(x̂) ≤ 0, i = 1, . . . ,m (primal feasibility),

λi ≥ 0, i = 1, . . . ,m (dual feasibility),

λihi(x̂) = 0, i = 1, . . . ,m (compl slackness).

This result shall now be applied to problem (2.3). Assume that (x̂, ŷ, ẑ) is an opti-
mal solution of problem (2.3) and construct a corresponding vector (∆x,∆y,∆z) as
follows. For j = 1, . . . , n, let ∆xj = 1 if x̂j = xmin

j , ∆xj = −1 if x̂j = xmax
j , ∆xj = 0,

otherwise. For i = 1, . . . ,m, let ∆yi = 1 +
∑n

j=1 | ∂fi∂xj
(x̂)|. Finally, let ∆z = 1.

Then it is easily checked that the inner product of (∆x,∆y,∆z) and the gradient
vector, calculated at (x̂, ŷ, ẑ), of any active constraint in problem (2.3) is strictly
negative.

3. General description of a CCSA method. A CCSA method for solving
problems of the form (2.3) consists of “outer” and “inner” iterations. The index k
is used to denote the outer iteration number, while the index � is used to denote
the inner iteration number. Within each outer iteration, there may be zero, one,
or several inner iterations. The double index (k, �) is used to denote the �th inner
iteration within the kth outer iteration.

The first iteration point (x(1), y(1), z(1)) is obtained by first choosing an x(1) ∈ X,
and then calculating y(1) and z(1) in accordance with Proposition 2.1.

An outer iteration, going from the kth iteration point (x(k), y(k), z(k)) to the
(k + 1)th iteration point (x(k+1), y(k+1), z(k+1)), can be described as follows.

Given (x(k), y(k), z(k)), an approximating subproblem is generated and solved.
This subproblem is obtained from (2.3) by replacing X with a certain convex sub-
set X(k) and by replacing the functions fi(x) with certain strictly convex separable

functions g
(k,0)
i (x) satisfying g

(k,0)
i (x(k)) = fi(x

(k)). The optimal solution of this
subproblem is denoted (x̂(k,0), ŷ(k,0), ẑ(k,0)).

If g
(k,0)
i (x̂(k,0)) ≥ fi(x̂

(k,0)) for all i = 0, 1, . . . ,m, the next iteration point becomes
(x(k+1), y(k+1), z(k+1)) = (x̂(k,0), ŷ(k,0), ẑ(k,0)), and the outer iteration is completed
(without any inner iterations needed).

Otherwise, an inner iteration is made, which means that a new subproblem is

generated and solved at x(k), with new approximating functions g
(k,1)
i (x), still satis-

fying g
(k,1)
i (x(k)) = fi(x

(k)) but more conservative than g
(k,0)
i (x) for those indices i for

which the above inequality was violated. The optimal solution of this new subproblem
is denoted (x̂(k,1), ŷ(k,1), ẑ(k,1)).

If g
(k,1)
i (x̂(k,1)) ≥ fi(x̂

(k,1)) for all i = 0, 1, . . . ,m, the next iteration point be-
comes (x(k+1), y(k+1), z(k+1)) = (x̂(k,1), ŷ(k,1), ẑ(k,1)), and the outer iteration is com-
pleted. Otherwise, another inner iteration is made, with new approximating functions

g
(k,2)
i (x), etc.

These inner iterations are repeated until g
(k,�)
i (x̂(k,�)) ≥ fi(x̂

(k,�)) for all i =
0, 1, . . . ,m, which always happens after a finite number of inner iterations. Then the
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next iteration point becomes (x(k+1), y(k+1), z(k+1)) = (x̂(k,�), ŷ(k,�), ẑ(k,�)), and the
outer iteration is completed (with � inner iterations needed).

4. Requirements on the approximating functions. The CCSA subproblem
looks as follows, for k ∈ {1, 2, 3, . . .} and � ∈ {0, 1, 2, . . .}:

minimize g
(k,�)
0 (x) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i )

subject to g
(k,�)
i (x) − aiz − yi ≤ 0, i = 1, . . . ,m,

x ∈ X(k), y ≥ 0, z ≥ 0,

where the set X(k) and the approximating functions g
(k,�)
i (x) will be specified below.

The set X(k) is chosen as X(k) = X(x(k), σ(k)), where σ(k) = (σ
(k)
1 , . . . , σ

(k)
n )T is

a vector of strictly positive parameters, and X(ξ, σ) is the subset of X defined by

X(ξ, σ) = {x ∈ X | xj ∈ [ξj − 0.9σj , ξj + 0.9σj ], j = 1, . . . , n} .

Thus,

X(k) = {x ∈ X | xj ∈ [x
(k)
j − 0.9σ

(k)
j , x

(k)
j + 0.9σ

(k)
j ], j = 1, . . . , n} .

How to choose values on the parameters σ
(k)
j will be discussed later. For the moment,

it is sufficient to know that each vector σ(k) belongs to a given compact set S of the
form

S = {σ ∈ R
n | σmin

j ≤ σj ≤ σmax
j , j = 1, . . . , n} ,(4.1)

where σmin
j and σmax

j are given real numbers such that 0 < σmin
j < σmax

j < ∞.

The approximating functions g
(k,�)
i (x) in the CCSA subproblem are chosen as

g
(k,�)
i (x) = vi(x, x

(k), σ(k)) + ρ
(k,�)
i wi(x, x

(k), σ(k)), i = 0, 1, . . . ,m,(4.2)

where vi(x, ξ, σ) and wi(x, ξ, σ) are real-valued functions defined on the set D defined
by

D = {(x, ξ, σ) | ξ ∈ X, σ ∈ S, x ∈ X(ξ, σ)}.

In order to ensure that the functions g
(k,�)
i (x) in (4.2) have suitable properties, the

following conditions (4.3a)–(4.3k) must be satisfied for i = 0, 1, . . . ,m:

vi and wi are continuous functions on the set D,(4.3a)

∇xvi =

(
∂vi
∂x1

, . . . ,
∂vi
∂xn

)
exists and is continuous on D,(4.3b)

∇xwi =

(
∂wi

∂x1
, . . . ,

∂wi

∂xn

)
exists and is continuous on D,(4.3c)

the n× n Hessian matrix ∇2
xxvi exists and is continuous on D,(4.3d)

the n× n Hessian matrix ∇2
xxwi exists and is continuous on D,(4.3e)

vi(x, ξ, σ) = fi(x) if x = ξ ∈ X,(4.3f)
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wi(x, ξ, σ) = 0 if x = ξ ∈ X,(4.3g)

∇xvi(x, ξ, σ) = ∇fi(x) if x = ξ ∈ X,(4.3h)

∇xwi(x, ξ, σ) = (0, . . . , 0) if x = ξ ∈ X,(4.3i)

∇2
xxvi(x, ξ, σ) is positive semidefinite for all (x, ξ, σ) ∈ D,(4.3j)

∇2
xxwi(x, ξ, σ) is positive definite for all (x, ξ, σ) ∈ D.(4.3k)

Some choices of appropriate function vi and wi will be suggested in section 5. The

parameters ρ
(k,�)
i are strictly positive. The larger the ρ

(k,�)
i , the more conservative the

approximation will be. Within a given outer iteration k, the only differences between

two inner iterations are the values of these ρ
(k,�)
i . How to choose values on these

parameters will be described below.

It follows from the above conditions that the functions g
(k,�)
i are first order ap-

proximations of the original functions fi at the current iteration point, i.e.,

g
(k,�)
i (x(k)) = fi(x

(k)) and ∇g
(k,�)
i (x(k)) = ∇fi(x

(k)) .

Further, the approximating functions g
(k,�)
i are strictly convex since ρ

(k,�)
i > 0. In

addition to the above conditions (4.3a)–(4.3k), the approximating functions should
be separable, i.e., on the form

g
(k,�)
i (x) = g

(k,�)
i0 +

n∑
j=1

g
(k,�)
ij (xj).

This property is not used in the forthcoming theoretical analysis of global convergence,
but it is essential in practice when attacking large scale problems.

5. Four examples of CCSA functions. In this section we give four different
examples of CCSA functions vi and wi. In each of these four examples, and for each
fixed vector λ ≥ 0 ∈ R

m, the Lagrange function L(x, y, z, λ) corresponding to the
CCSA subproblem can easily be minimized analytically with respect to x ∈ X(k),
y ≥ 0, and z ≥ 0. If all di > 0 and a term εz2 is added to the objective function,
this analytical minimization gives a unique point (x̂(λ), ŷ(λ), ẑ(λ)). The concave dual
function ϕ(λ) = L(x̂(λ), ŷ(λ), ẑ(λ), λ) then becomes an explicit function, and the dual
problem of maximizing ϕ(λ) subject to the simple bounds λi ≥ 0, i = 1, . . . ,m, can
be solved by, e.g., a conjugate gradient or a Newton-type method, combined with an
active set strategy to take care of the nonnegativity constraints on the dual variables.
If λ̂ is an optimal solution of this dual problem, then (x, y, z) = (x̂(λ̂), ŷ(λ̂), ẑ(λ̂)) is
the unique optimal solution of the CCSA subproblem.

Example 5.1. Linear and separable quadratic approximations:

vi(x, ξ, σ) = fi(ξ) + ∇fi(ξ)(x− ξ), and

wi(x, ξ, σ) =
1

2

n∑
j=1

(
xj − ξj

σj

)2

, so that

g
(k,�)
i (x) = fi(x

(k)) + ∇fi(x
(k))(x− x(k)) +

ρ
(k,�)
i

2

n∑
j=1

(
xj − x

(k)
j

σ
(k)
j

)2

.

Example 5.2. Linear and separable logarithm approximations:

vi(x, ξ, σ) = fi(ξ) + ∇fi(ξ)(x− ξ), and
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wi(x, ξ, σ) = − 1
2

n∑
j=1

ln
(
1 − (xj − ξj)

2/σ2
j

)
, so that

g
(k,�)
i (x) = fi(x

(k)) + ∇fi(x
(k))(x− x(k))

− ρ
(k,�)
i

2

n∑
j=1

ln
(

1 − (xj − x
(k)
j )2/(σ

(k)
j )2

)
.

Example 5.3. Linear and separable square root approximations:

vi(x, ξ, σ) = fi(ξ) + ∇fi(ξ)(x− ξ), and

wi(x, ξ, σ) =

n∑
j=1

(
1 −

√
1 − (xj − ξj)2/σ2

j

)
, so that

g
(k,�)
i (x) = fi(x

(k)) + ∇fi(x
(k))(x− x(k))

+ ρ
(k,�)
i

n∑
j=1

(
1 −

√
1 − (xj − x

(k)
j )2/(σ

(k)
j )2

)
.

Example 5.4. MMA approximations: Here, the approximating functions are
chosen as

g
(k,�)
i (x) =

n∑
j=1

(
p
(k,�)
ij

u
(k)
j − xj

+
q
(k,�)
ij

xj − l
(k)
j

)
+ r

(k,�)
i ,

where the “moving asymptotes” l
(k)
j and u

(k)
j are given by

l
(k)
j = x

(k)
j − σ

(k)
j and u

(k)
j = x

(k)
j + σ

(k)
j ,

while the coefficients p
(k,�)
ij , q

(k,�)
ij , and r

(k,�)
i are given by

p
(k,�)
ij = (σ

(k)
j )2 max

{
0 ,

∂fi
∂xj

(x(k))

}
+

ρ
(k,�)
i σ

(k)
j

4
,

q
(k,�)
ij = (σ

(k)
j )2 max

{
0 , − ∂fi

∂xj
(x(k))

}
+

ρ
(k,�)
i σ

(k)
j

4
,

r
(k,�)
i = fi(x

(k)) −
n∑

j=1

p
(k,�)
ij + q

(k,�)
ij

σ
(k)
j

.

This means that

g
(k,�)
i (x) = vi(x, x

(k), σ(k)) + ρ
(k,�)
i wi(x, x

(k), σ(k)),

where, after some manipulations,

vi(x, ξ, σ) = fi(ξ) +

n∑
j=1

σ2
j
∂fi
∂xj

(ξ)(xj − ξj) + σj | ∂fi∂xj
(ξ)|(xj − ξj)

2

σ2
j − (xj − ξj)2

, and

wi(x, ξ, σ) = 1
2

n∑
j=1

(xj − ξj)
2

σ2
j − (xj − ξj)2

.
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Example 5.4 defines the new globally convergent version of MMA, which is a
further development of [8]. The original MMA, [7], can be considered as a special

case of the above by letting all ρ
(k,�)
i = 0. Consequently, no inner iterations were

performed in the original MMA, and global convergence could not be proved.

6. Rules for updating the parameters ρ
(k,�)
i and σ

(k)
j . We begin with the

parameters ρ
(k,�)
i . For � = 0, the following values are used, where ρmin

i is a fixed,
strictly positive “small” number, e.g., 10−5:

ρ
(1,0)
i = 1,(6.1a)

ρ
(k+1,0)
i = max{0.1ρ

(k,�̂(k))
i , ρmin

i },(6.1b)

where �̂(k) is the number of inner iterations needed within the kth outer iteration, so

that ρ
(k,�̂(k))
i is the latest value of ρ

(k,�)
i .

In each inner iteration, the updating of ρ
(k,�)
i is based on the solution of the most

recent subproblem. If g
(k,�)
i (x̂(k,�)) < fi(x̂

(k,�)), it is natural to choose ρ
(k,�+1)
i so that

g
(k,�+1)
i (x̂(k,�)) = fi(x̂

(k,�)),

which in view of (4.2) gives that ρ
(k,�+1)
i = ρ

(k,�)
i + δ

(k,�)
i , where

δ
(k,�)
i =

fi(x̂
(k,�)) − g

(k,�)
i (x̂(k,�))

wi(x̂(k,�), x(k), σ(k))
.

In order to get a globally convergent method, this natural value is modified as follows:

ρ
(k,�+1)
i = min{10ρ

(k,�)
i , 1.1(ρ

(k,�)
i + δ

(k,�)
i )} if δ

(k,�)
i > 0,

ρ
(k,�+1)
i = ρ

(k,�)
i if δ

(k,�)
i ≤ 0.

(6.2)

This means that in the beginning of each new inner iteration, the parameters ρi are
increased or unaltered but never decreased. Therefore, it is important that they can
be decreased again in the beginning of each new outer iteration, as they are in (6.1b),
since otherwise the method could be too conservative.

Now to the values of the parameters σ
(k)
j . Updating rules for these parameters

depend on the specific functions vi and wi. In each of the four examples in the previous

section, the n× n Hessian matrix ∇2
xxwi(x, ξ, σ) is diagonal with ∂2wi

∂x2
j

(x, ξ, σ) ≥ 1
σ2
j

for all j and every (x, ξ, σ) ∈ D, with equality if xj = ξj . The curvature of the
function wi in the “xj-direction” thus increases with decreasing values of σj . This
makes the following heuristic rule for updating these parameters reasonable. If a
certain variable xj is oscillating, it should be stabilized by a decreased value of the
corresponding σj . If the variable xj is monotonically increasing, or monotonically
decreasing, it should be released by an increased value of the corresponding σj . One
possible way of implementing this rule is as follows.

In the first two outer iterations, when k = 1 and k = 2,

σ
(k)
j = 0.5(xmax

j − xmin
j ),

while in later outer iterations, when k ≥ 3,

σ
(k)
j = γ

(k)
j σ

(k−1)
j ,
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where

γ
(k)
j =


0.7 if (x

(k)
j − x

(k−1)
j )(x

(k−1)
j − x

(k−2)
j ) < 0,

1.2 if (x
(k)
j − x

(k−1)
j )(x

(k−1)
j − x

(k−2)
j ) > 0,

1 if (x
(k)
j − x

(k−1)
j )(x

(k−1)
j − x

(k−2)
j ) = 0,

provided that this leads to values that satisfy

0.01(xmax
j − xmin

j ) ≤ σ
(k)
j ≤ 10(xmax

j − xmin
j ).

If any of these bounds is violated, the corresponding σ
(k)
j is set to the violated bound.

Thus, σmin
j = 0.01(xmax

j − xmin
j ) and σmax

j = 10(xmax
j − xmin

j ) in the set S defined in
(4.1) above.

7. Theoretical analysis of global convergence. A given point (x, y, z) ∈
R

n×R
m×R is a KKT point of the problem (2.3) if and only if there are Lagrange

multipliers which together with (x, y, z) satisfy the KKT conditions of the problem.

Let Ω be the set of KKT points of the original problem (2.3). Ω is nonempty
by Propositions 2.3 and 2.4. Then let ‖Ω − (x(k), y(k), z(k))‖ denote the Euclidean
distance from the point (x(k), y(k), z(k)) to the set Ω, i.e.,

‖Ω − (x(k), y(k), z(k))‖ = inf
(x,y,z)∈Ω

{ ‖(x, y, z) − (x(k), y(k), z(k))‖ }.

Theorem 7.1. If any of the CCSA methods described above is applied to a
problem of the form (2.3), then ‖Ω − (x(k), y(k), z(k))‖ → 0 as k → ∞.

Before the proof of this main theorem, some preparations are needed.

Lemma 7.2. In each outer iteration k, only a finite number � of inner iterations

are needed until g
(k,�)
i (x̂(k,�)) ≥ fi(x̂

(k,�)) for all i.

Proof. A sufficient condition for the inequality g
(k,�)
i (x̂(k,�)) ≥ fi(x̂

(k,�)) to hold is

that ρ
(k,�)
i τi ≥ κi, where

κi = max
x,h

{hT∇2fi(x)h | x ∈ X, h ∈ R
n, hTh = 1}, and

τi = min
x,ξ,σ,h

{hT∇2
xxwi(x, ξ, σ)h | (x, ξ, σ) ∈ D, h ∈ R

n, hTh = 1}.

The number κi is finite since the Hessian matrix ∇2fi(x) is continuous on X. The
number τi is finite and strictly positive since the Hessian matrix ∇2

xxwi(x, ξ, σ) is pos-

itive definite and continuous in all its arguments. But each time that g
(k,�)
i (x̂(k,�)) <

fi(x̂
(k,�)), the corresponding ρ

(k,�)
i is increased by at least a factor 1.1; see (6.2). This

can be done only a finite number of times, for each i, before ρ
(k,�)
i τi ≥ κi is satisfied.

(Note that, for a fixed k, ρ
(k,�)
i is nondecreasing in �.)

As a consequence of this lemma, only outer iterations need to be considered in
the analysis of global convergence. Therefore, the following shorter notations will be
used:

�̂(k) = the number of inner iterations needed within the kth outer iteration,

ρ
(k)
i = ρ

(k,�̂(k))
i , and g

(k)
i (x) = g

(k,�̂(k))
i (x).
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This means that the subproblem used at the kth (outer) iteration to calculate the
next iteration point is the following:

minimize g
(k)
0 (x) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i )

subject to g
(k)
i (x) − aiz − yi ≤ 0, i = 1, . . . ,m,

x ∈ X(k), y ≥ 0, z ≥ 0.

(7.1)

The optimal solution of (7.1) is the new iteration point (x(k+1), y(k+1), z(k+1)). Note

that g
(k)
i (x(k)) = fi(x

(k)) and g
(k)
i (x(k+1)) ≥ fi(x

(k+1)) for all i = 0, 1, . . . ,m.
Lemma 7.3. For each i = 0, 1, . . . ,m, there is a finite number ρmax

i such that

ρ
(k)
i ≤ ρmax

i for all outer iterations k.
Proof. From the updating rules (6.1b) and (6.2) and the proof of Lemma 7.2, it

follows that ρ
(k)
i ≤ 10(1 + κi/τi) will always hold.

Let the set Q be defined by

Q = {ρ ∈ R
m+1 | ρmin

i ≤ ρi ≤ ρmax
i , i = 0, 1, . . . ,m}.

Let the functions Fi be defined, for x ∈ X, y ∈ R
m, and z ∈ R, by

F0(x, y, z) = f0(x) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i ),

Fi(x, y, z) = fi(x) − aiz − yi, i = 1, . . . ,m.

Then the original problem (2.3) can be written

minimize F0(x, y, z)

subject to Fi(x, y, z) ≤ 0, i = 1, . . . ,m,

x ∈ X, y ≥ 0, z ≥ 0.

(7.2)

Let the functions Gi be defined, for (x, ξ, σ) ∈ D, ρ ∈ Q, y ∈ R
m, and z ∈ R, by

G0(x, y, z, ξ, σ, ρ) = v0(x, ξ, σ) + ρ0w0(x, ξ, σ) + a0z +

m∑
i=1

(ciyi + 1
2diy

2
i ),

Gi(x, y, z, ξ, σ, ρ) = vi(x, ξ, σ) + ρiwi(x, ξ, σ) − aiz − yi, i = 1, . . . ,m.

Note that each function Gi is continuous on the set on which it is defined.
Let the problem PSUB(ξ, σ, ρ) be defined, for given (ξ, σ, ρ) ∈ X×S×Q, as the

following problem in the variables (x, y, z):

minimize G0(x, y, z, ξ, σ, ρ)

subject to Gi(x, y, z, ξ, σ, ρ) ≤ 0, i = 1, . . . ,m,

x ∈ X(ξ, σ), y ≥ 0, z ≥ 0.

(7.3)

Then the CCSA subproblem (7.1) is equivalent to the problem PSUB(x(k), σ(k), ρ(k)),
i.e., the problem (7.3) with ξ = x(k), σ = σ(k), and ρ = ρ(k).

Lemma 7.4. For each given ξ ∈ X, σ ∈ S, and ρ ∈ Q, there is a unique optimal
solution of PSUB(ξ, σ, ρ). This solution is also the only KKT point of PSUB(ξ, σ, ρ).
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Proof. The existence of an optimal solution follows by arguments similar to those
in the proof of Proposition 2.3. The uniqueness follows from the fact that the problem
obtained by eliminating y and z is strictly convex in x. Finally, PSUB(ξ, σ, ρ) is a
convex problem for which the Slater’s constraint qualifications are fulfilled. There-
fore, the KKT conditions are both necessary and sufficient conditions for a global
optimum.

Thus, (x(k+1), y(k+1), z(k+1)) is the only KKT point of PSUB(x(k), σ(k), ρ(k)).
Lemma 7.5. For each given σ ∈ S and ρ ∈ Q the following holds: A given point

(x̂, ŷ, ẑ) is a KKT point of the original problem (2.3) if and only if (x̂, ŷ, ẑ) is a KKT
point of the subproblem PSUB(x̂, σ, ρ).

Proof. For a given x̂ ∈ X, let B(x̂, ε) = {x ∈ R
n ; ‖x − x̂‖ < ε}, and note that

there is an ε > 0 such that X ∩B(x̂, ε) = X(x̂, σ)∩B(x̂, ε). This implies that (x̂, ŷ, ẑ)
is the optimal solution of (the strictly convex problem) PSUB(x̂, σ, ρ) if and only if
(x̂, ŷ, ẑ) is the optimal solution of PSUB(x̂, σ, ρ) with the simple bound constraints
x ∈ X(x̂, σ) replaced by the (looser) simple bound constraints x ∈ X. Further, the
following holds for i = 0, 1, . . . ,m:

Gi(x̂, ŷ, ẑ, x̂, σ, ρ) = Fi(x̂, ŷ, ẑ),

∂Gi

∂xj
(x̂, ŷ, ẑ, x̂, σ, ρ) =

∂Fi

∂xj
(x̂, ŷ, ẑ),

∂Gi

∂yj
(x̂, ŷ, ẑ, x̂, σ, ρ) =

∂Fi

∂yj
(x̂, ŷ, ẑ),

∂Gi

∂z
(x̂, ŷ, ẑ, x̂, σ, ρ) =

∂Fi

∂z
(x̂, ŷ, ẑ).

These observations imply that (x̂, ŷ, ẑ) is a KKT point of the subproblem PSUB(x̂, σ, ρ)
if and only if (x̂, ŷ, ẑ) is a KKT point of the problem (7.2).

In particular, if (x(k+1), y(k+1), z(k+1)) = (x(k), y(k), z(k)), then (x(k), y(k), z(k)) is
a KKT point of the original problem (2.3), and then the algorithm should be stopped.
From now on, it is therefore assumed that (x(k+1), y(k+1), z(k+1)) �= (x(k), y(k), z(k))
for all k.

Lemma 7.6. Each generated iteration point is a feasible solution of the prob-
lem (7.2), i.e., Fi(x

(k), y(k), z(k)) ≤ 0 for i ≥ 1 and k ≥ 1. Further, each gener-
ated iteration point has a strictly lower objective value than the previous one, i.e.,
F0(x(k+1), y(k+1), z(k+1)) < F0(x(k), y(k), z(k)) for k ≥ 1.

Proof. The starting point (x(1), y(1), z(1)) is feasible by construction. After
that, Fi(x

(k+1), y(k+1), z(k+1)) ≤ Gi(x
(k+1), y(k+1), z(k+1), x(k), σ(k), ρ(k)) ≤ 0 for i ≥

1. Further, F0(x(k+1), y(k+1), z(k+1)) ≤ G0(x(k+1), y(k+1), z(k+1), x(k), σ(k), ρ(k)) <
G0(x(k), y(k), z(k), x(k), σ(k), ρ(k)) = F0(x(k), y(k), z(k)).

Lemma 7.7. All the iteration points (x(k), y(k), z(k)) remain in a compact set.
Proof. First, x(k) ∈ X, which is a compact set. Next, let the functions g̃i be

defined, for (x, ξ, σ) ∈ D and ρ ∈ Q, by

g̃i(x, ξ, σ, ρ) = vi(x, ξ, σ) + ρiwi(x, ξ, σ).

Each function g̃i is continuous on the compact set on which it is defined.

By the same arguments as in Proposition 2.1, it follows that y
(k+1)
i ≤ g

(k)
i (x(k+1)).

But since g
(k)
i (x(k+1)) = g̃i(x

(k+1), x(k), σ(k), ρ(k)), it then follows that y
(k+1)
i ≤

g̃i(x
(k+1), x(k), σ(k), ρ(k)) ≤ max{g̃i(x, ξ, σ, ρ) | (x, ξ, σ) ∈ D, ρ ∈ Q}.
The existence of an upper bound on z(k) is proved in a similar way.
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As a consequence of Lemma 7.7, the sequence {(x(k), y(k), z(k))}∞k=1 has at least
one convergent subsequence. Thus, there is a point (x∗, y∗, z∗) and an infinite subset K
of the positive integers such that (x(k), y(k), z(k)) → (x∗, y∗, z∗) as k ∈ K and k → ∞.

Further, since the sequence {(σ(k), ρ(k))}k∈K (with K from above) stays in the

compact set S×Q, there is a point (σ∗, ρ∗) ∈ S×Q and an infinite subset K̃ ⊆ K such

that (σ(k), ρ(k)) → (σ∗, ρ∗) as k ∈ K̃ and k → ∞.

Next, the sequence {(x(k+1), y(k+1), z(k+1))}
k∈K̃ (with K̃ from above) also has

at least one convergent subsequence. Thus, there is a point (x̄, ȳ, z̄) and an infinite

subset K ⊆ K̃ ⊆ K such that (x(k+1), y(k+1), z(k+1)) → (x̄, ȳ, z̄) as k ∈ K and k → ∞.

In the following, (x∗, y∗, z∗), (σ∗, ρ∗), and (x̄, ȳ, z̄) are these just-described limit
points.

Lemma 7.8. F0(x(k), y(k), z(k)) → F0(x∗, y∗, z∗) as k → ∞ (not only for k ∈ K).
Proof. The sequence {F0(x(k), y(k), z(k))}∞k=1 is monotonically decreasing and

bounded below by the global optimal value of the problem (2.3) (which exists and
is finite according to Proposition 2.3). Thus, F0(x(k), y(k), z(k)) → F ∗

0 as k → ∞ for
some real number F ∗

0 . But since F0(x(k), y(k), z(k)) → F0(x∗, y∗, z∗) as k ∈ K and
k → ∞, it follows that F ∗

0 = F0(x∗, y∗, z∗).

Lemma 7.9. F0(x̄, ȳ, z̄) = F0(x∗, y∗, z∗).

Proof. From Lemma 7.8, it follows that F0(x(k+1), y(k+1), z(k+1)) → F0(x∗, y∗, z∗)
as k ∈ K and k → ∞. But since (x(k+1), y(k+1), z(k+1)) → (x̄, ȳ, z̄) as k ∈ K and
k → ∞, it also holds that F0(x(k+1), y(k+1), z(k+1)) → F0(x̄, ȳ, z̄) as k ∈ K and
k → ∞.

Lemma 7.10. (x̄, ȳ, z̄) is the unique optimal solution of PSUB(x∗, σ∗, ρ∗).

Proof. Since x(k+1) ∈ X(x(k), σ(k)) and Gi(x
(k+1), y(k+1), z(k+1), x(k), σ(k), ρ(k)) ≤

0, it follows, by letting k ∈ K and k → ∞, that x̄ ∈ X(x∗, σ∗) and Gi(x̄, ȳ, z̄, x
∗, σ∗, ρ∗)

≤ 0 for i ≥ 1. Thus, (x̄, ȳ, z̄) is a feasible solution of PSUB(x∗, σ∗, ρ∗). Let (x̃, ỹ, z̃)
be an arbitrary feasible solution of PSUB(x∗, σ∗, ρ∗), so that x̃ ∈ X(x∗, σ∗) and
Gi(x̃, ỹ, z̃, x

∗, σ∗, ρ∗) ≤ 0 for i ≥ 1. We must show that G0(x̄, ȳ, z̄, x∗, σ∗, ρ∗) ≤
G0(x̃, ỹ, z̃, x∗, σ∗, ρ∗).

For ν = 1, 2, 3, . . . , let x̃(ν) = x̃ + α(ν)(x∗ − x̃), ỹ(ν) = ỹ + 1
ν (1, . . . , 1)T , and

z̃(ν) = z̃ + 1
ν . If α(ν) = 0, then Gi(x̃

(ν), ỹ(ν), z̃(ν), x∗, σ∗, ρ∗) ≤ − 1
ν for i ≥ 1.

It is therefore possible to choose the scalar α(ν) such that 0 < α(ν) < 1/ν and
Gi(x̃

(ν), ỹ(ν), z̃(ν), x∗, σ∗, ρ∗) ≤ − 1
2ν for i ≥ 1. Then (x̃(ν), ỹ(ν), z̃(ν)) is in the interior

of the feasible set of PSUB(x∗, σ∗, ρ∗). In particular, x̃(ν) is in the interior of X(x∗, σ∗).
This implies that for each ν, there is an integer K(ν) such that, for all k ∈ K with k >
K(ν), x̃(ν) ∈ X(x(k), σ(k)) and Gi(x̃

(ν), ỹ(ν), z̃(ν), x(k), σ(k), ρ(k)) ≤ 0 for i ≥ 1. For
all these k ∈ K with k > K(ν) it then holds that G0(x̃(ν), ỹ(ν), z̃(ν), x(k), σ(k), ρ(k)) ≥
G0(x(k+1), y(k+1), z(k+1), x(k), σ(k), ρ(k)) (because (x(k+1), y(k+1), z(k+1)) is the opti-
mal solution of PSUB(x(k), σ(k), ρ(k))).

Now, for each ν, let the integer k(ν) ∈ K satisfy k(ν) > max{ν,K(ν)}, and let
ν −→ ∞. Then (x̃(ν), ỹ(ν), z̃(ν)) −→ (x̃, ỹ, z̃), (x(k(ν)+1), y(k(ν)+1), z(k(ν)+1)) −→
(x̄, ȳ, z̄), and (x(k(ν)), σ(k(ν)), ρ(k(ν))) −→ (x∗, σ∗, ρ∗). Thus, G0(x̃, ỹ, z̃, x∗, σ∗, ρ∗) ≥
G0(x̄, ȳ, z̄, x∗, σ∗, ρ∗).

Lemma 7.11. (x̄, ȳ, z̄) = (x∗, y∗, z∗).

Proof. From Gi(x
(k), y(k), z(k), x(k), σ(k), ρ(k)) = Fi(x

(k), y(k), z(k)) ≤ 0 for i ≥ 1,
it follows, by letting k ∈ K and k → ∞, that Gi(x

∗, y∗, z∗, x∗, σ∗, ρ∗) ≤ 0 for i ≥ 1.
Further, by definition, x∗ ∈ X(x∗, σ∗). Thus, (x∗, y∗, z∗) is a feasible solution of
PSUB(x∗, σ∗, ρ∗).
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From F0(x(k+1), y(k+1), z(k+1)) ≤ G0(x(k+1), y(k+1), z(k+1), x(k), σ(k), ρ(k)), it fol-
lows, again by letting k ∈ K and k → ∞, that F0(x̄, ȳ, z̄) ≤ G0(x̄, ȳ, z̄, x∗, σ∗, ρ∗).

By definition, F0(x∗, y∗, z∗) = G0(x∗, y∗, z∗, x∗, σ∗, ρ∗). From Lemma 7.9 it then
follows that G0(x∗, y∗, z∗, x∗, σ∗, ρ∗) ≤ G0(x̄, ȳ, z̄, x∗, σ∗, ρ∗). But since (x̄, ȳ, z̄) is the
unique global optimal solution of PSUB(x∗, σ∗, ρ∗), it then follows that (x∗, y∗, z∗) =
(x̄, ȳ, z̄).

Lemma 7.12. (x∗, y∗, z∗) is a KKT point of the problem (7.2).

Proof. Follows from Lemmas 7.4, 7.5, 7.10, and 7.11.

Proof of Theorem 7.1. Assume that the statement in Theorem 7.1 is false. Then
there is an ε > 0 and an infinite subset K0 of the integers such that

‖(x, y, z) − (x(k), y(k), z(k))‖ ≥ ε for all (x, y, z) ∈ Ω and every k ∈ K0.(7.4)

Then, as a consequence of Lemma 7.7, the sequence {(x(k), y(k), z(k))}k∈K0 has at
least one convergent subsequence. Thus, there is a point (x̂, ŷ, ẑ) and an infinite
subset K0 ⊆ K0 such that (x(k), y(k), z(k)) → (x̂, ŷ, ẑ) as k ∈ K0 and k → ∞.

But then, by letting (x̂, ŷ, ẑ) play the role of (x∗, y∗, z∗) in the above lemmas,
in particular Lemma 7.12, it follows that (x̂, ŷ, ẑ) is a KKT point of the problem
(7.2), and thus also a KKT point of the original problem (2.3). Thus, (x̂, ŷ, ẑ) ∈ Ω.
By letting (x, y, z) = (x̂, ŷ, ẑ) in (7.4), a contradiction has then been established.
Therefore, the statement in Theorem 7.1 can not be false, but must be true.

8. Test problems and numerical results. As mentioned in the introduction,
a major benefit of CCSA methods is that they can be successfully applied to problems
with a very large number of variables, even if the Hessian matrices of the objective
and constraint functions are dense. Such problems often appear in, e.g., structural
optimization, in particular in the subfield dealing with topology optimization. To
illustrate this, we present two problems which are parameterized by the integer n
= the number of variables xj . The general structure of these problems resembles
the corresponding structure of topology optimization problems (nonconvex problems
with a large number of variables, upper and lower bounds on all variables, and a
relatively small number of general inequality constraints); but in order to facilitate
the reader’s making her own numerical tests, the problems are not genuine structural
optimization problems (which would require a finite element package) but are instead
explicitly stated “academic” problems.

8.1. Three matrices which are used in the test problems. Let n be a
given positive integer > 1 and let S, P, and Q be symmetric n × n matrices with
elements given by

sij =
2 + sin(4παij)

(1 + |i− j|) lnn
, pij =

1 + 2αij

(1 + |i− j|) lnn
, qij =

3 − 2αij

(1 + |i− j|) lnn
,

where αij = i+j−2
2n−2 ∈ [0, 1] for all i and j.

The matrices S, P, and Q are positive definite, and for n = 9 they look as follows:
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S =
1

ln 9



2.0000 1.3536 1.0000 0.6768 0.4000 0.2155 0.1429 0.1616 0.2222

1.3536 3.0000 1.3536 0.6667 0.3232 0.2000 0.2155 0.2857 0.3384

1.0000 1.3536 2.0000 0.6464 0.3333 0.3232 0.4000 0.4512 0.4286

0.6768 0.6667 0.6464 1.0000 0.6464 0.6667 0.6768 0.6000 0.4512

0.4000 0.3232 0.3333 0.6464 2.0000 1.3536 1.0000 0.6768 0.4000

0.2155 0.2000 0.3232 0.6667 1.3536 3.0000 1.3536 0.6667 0.3232

0.1429 0.2155 0.4000 0.6768 1.0000 1.3536 2.0000 0.6464 0.3333

0.1616 0.2857 0.4512 0.6000 0.6768 0.6667 0.6464 1.0000 0.6464

0.2222 0.3384 0.4286 0.4512 0.4000 0.3232 0.3333 0.6464 2.0000


,

P =
1

ln 9



1.0000 0.5625 0.4167 0.3438 0.3000 0.2708 0.2500 0.2344 0.2222

0.5625 1.2500 0.6875 0.5000 0.4062 0.3500 0.3125 0.2857 0.2656

0.4167 0.6875 1.5000 0.8125 0.5833 0.4688 0.4000 0.3542 0.3214

0.3438 0.5000 0.8125 1.7500 0.9375 0.6667 0.5312 0.4500 0.3958

0.3000 0.4062 0.5833 0.9375 2.0000 1.0625 0.7500 0.5938 0.5000

0.2708 0.3500 0.4688 0.6667 1.0625 2.2500 1.1875 0.8333 0.6562

0.2500 0.3125 0.4000 0.5312 0.7500 1.1875 2.5000 1.3125 0.9167

0.2344 0.2857 0.3542 0.4500 0.5938 0.8333 1.3125 2.7500 1.4375

0.2222 0.2656 0.3214 0.3958 0.5000 0.6562 0.9167 1.4375 3.0000


,

Q =
1

ln 9



3.0000 1.4375 0.9167 0.6562 0.5000 0.3958 0.3214 0.2656 0.2222

1.4375 2.7500 1.3125 0.8333 0.5938 0.4500 0.3542 0.2857 0.2344

0.9167 1.3125 2.5000 1.1875 0.7500 0.5312 0.4000 0.3125 0.2500

0.6562 0.8333 1.1875 2.2500 1.0625 0.6667 0.4688 0.3500 0.2708

0.5000 0.5938 0.7500 1.0625 2.0000 0.9375 0.5833 0.4062 0.3000

0.3958 0.4500 0.5312 0.6667 0.9375 1.7500 0.8125 0.5000 0.3438

0.3214 0.3542 0.4000 0.4688 0.5833 0.8125 1.5000 0.6875 0.4167

0.2656 0.2857 0.3125 0.3500 0.4062 0.5000 0.6875 1.2500 0.5625

0.2222 0.2344 0.2500 0.2708 0.3000 0.3438 0.4167 0.5625 1.0000


.

8.2. Problem 1. In the first considered problem, called Problem 1, the objective
function is strictly convex, but the nonlinear constraint functions are strictly concave
so the set of feasible solutions is nonconvex. The formulation of the problem is as
follows:

minimize f0(x) = xTSx

subject to f1(x) =
n

2
− xTPx ≤ 0,

f2(x) =
n

2
− xTQx ≤ 0,

−1 ≤ xj ≤ 1, j = 1, . . . , n,

(8.1)

with starting point x(0) = (0.5, 0.5, . . . , 0.5)T .
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8.3. Problem 2. In the second considered problem, called Problem 2, the non-
linear constraint functions are strictly convex, but the objective function is strictly
concave and thus nonconvex. The formulation of the problem is as follows.

minimize f0(x) = −xTSx

subject to f1(x) = xTPx− n

2
≤ 0,

f2(x) = xTQx− n

2
≤ 0,

−1 ≤ xj ≤ 1, j = 1, . . . , n,

(8.2)

with starting point x(0) = (0.25, 0.25, . . . , 0.25)T .

8.4. Numerical results. We have used the CCSA method based on MMA ap-
proximations (see Example 5.4 in section 5) to solve the above two problems with
n = 1000, 2000, 5000, 10000, and 20000. Both problems are of the form (2.1), and
they were first transformed to the form (2.3) with a0 = 1, a1 = a2 = 0, d1 = d2 = 1,
and c1 = c2 = 1000. It then turned out that y = 0 and z = 0 in the optimal solution
of each generated CCSA subproblem.

Concerning the termination criterion that we used, first note that the KKT con-
ditions of the considered problems (8.1) and (8.2) can be written as follows, using the
notations a+ = max{0, a} and a− = max{0,−a}:

(1 + xj)

(
∂f0

∂xj
+ λ1

∂f1

∂xj
+ λ2

∂f2

∂xj

)+

= 0, j = 1, . . . , n,(8.3a)

(1 − xj)

(
∂f0

∂xj
+ λ1

∂f1

∂xj
+ λ2

∂f2

∂xj

)−
= 0, j = 1, . . . , n,(8.3b)

fi(x)+ = 0, i = 1, 2,(8.3c)

λifi(x)− = 0, i = 1, 2,(8.3d)

λi ≥ 0, i = 1, 2,(8.3e)

−1 ≤ xj ≤ 1, j = 1, . . . , n.(8.3f)

Equations (8.3a)–(8.3d) can be written more concisely as rk(x, λ) = 0, k = 1, . . . ,
2n + 4. The inequalities (8.3e) and (8.3f) are always satisfied by the primal variables
xj and the dual variables λi obtained from the solution of the CCSA subproblem.
The outer iterations were terminated when these x and λ also satisfied

1

n

2n+4∑
k=1

(rk(x, λ))2 ≤ 10−10.(8.4)

A similar, but harder, termination criterion was used when solving the CCSA sub-
problems; a subproblem was considered as solved when a condition corresponding to
(8.4) was satisfied with the right-hand side equal to 10−16.

The optimal solutions obtained for the case n = 1000 are plotted in Figures 8.1
and 8.2, with the index j on the horizontal axis and xj on the vertical axis.
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Fig. 8.1. Obtained xj for Problem 1 with n = 1000.
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Fig. 8.2. Obtained xj for Problem 2 with n = 1000.

Additional results are presented in Tables 8.1 and 8.2, where for each problem
we present the number of variables (n), the objective value of the obtained optimal
solution, the number of variables which are at the upper or lower bound in the obtained
optimal solution, the obtained values of the two Lagrange multipliers λ1 and λ2,
the total number of required outer iterations, and the total number of additionally
required inner iterations.

The method was implemented in Fortran 77 on a Sun Enterprise 4000 (using only
one of the four processors). The total required CPU-time was approximately 2n2/106

CPU-minutes for Problem 1 and approximately 5n2/106 CPU-minutes for Problem 2.
Most of this CPU-time was spent calculating function values and gradients of f0(x),
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Table 8.1
Results for Problem 1.

Number of Objective Variables λ1 λ2 Total number Total number
variables value at bounds of outer iter. of inner iter.
1000 260.85 184 0.138 0.451 177 209
2000 523.51 353 0.147 0.442 190 224
5000 1312.05 840 0.156 0.431 221 263
10000 2626.76 1629 0.161 0.425 251 296
20000 5256.56 3184 0.165 0.420 286 316

Table 8.2
Results for Problem 2.

Number of Objective Variables λ1 λ2 Total number Total number
variables value at bounds of outer iter. of inner iter.
1000 -739.15 184 0.549 0.862 436 415
2000 -1476.49 353 0.558 0.853 465 471
5000 -3687.95 840 0.569 0.844 584 606
10000 -7373.24 1629 0.575 0.839 682 704
20000 -14743.44 3182 0.580 0.835 793 816

f1(x), and f2(x), while only a minor part was spent solving the CCSA subproblems.
It should be noted that the matrices S, P , and Q are never stored. Instead, the
elements sij , pij , and qij are generated as needed when calculating function values
and gradients of f0(x), f1(x), and f2(x) at a given iteration point.

It could finally be mentioned that it is virtually impossible to solve the considered
problems by, e.g., an SQP method. The approximate Hessian matrix (of the Lagrange
function) simply becomes too big.

9. Conclusions. A class of optimization methods based on the concept of con-
servative convex separable approximations has been presented. Global convergence
has been theoretically proved, and it has been demonstrated that the methods work
numerically.

We do not claim that a CCSA method is always the natural choice, but for
certain problems it is certainly a competitive alternative. This is typically the case
for problems with a very large number of variables and a relatively small number of
general inequality constraints, in particular if it is desirable that the iteration points
remain feasible.

Finally, it could be noted that if the considered problem also contains some linear
constraints, these can simply be included as (exactly the same) linear constraints in
the CCSA subproblems. Since exact approximations are conservative approximations,
the global convergence properties of the methods will not be altered.
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