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Abstract. This paper discusses the application of geometric optics to the study of
observational properties of cosmological models examined in a previous paper. A number
of results concerning these properties are derived, the most interesting of which is the in-
variance of observational relations under certain discrete isotropy groups. Closed form
expressions are obtained in certain cases.

1. Introduction

This paper discusses the observational properties of a class of homo-
geneous cosmological models studied in previous papers [1-3]. These
are spacetimes which satisfy Einstein’s field equations for a perfect fluid
and which admit a three-parameter group of motions simply-transitive
on spacelike sections (surfaces of homogeneity) orthogonal to the fluid
flow vector!, u'. They are therefore universes homogeneous in the rest-
space of any fundamental observer.

In this paper we will quote freely from the results of the earlier work.
The matter in these spaces has no rotation or acceleration. One can choose
coordinates {t, x,} such that {x,} are comoving coordinates, {t = constant}
are the surfaces of homogeneity, and ¢ is the proper time along the world-
lines of the matter (Latin indices run from 0 to 3, Greek from 1 to 3;
a,b,c...a, f ... will be used for components referred to an orthonormal
tetrad {e,} with e, =wu;i,j, k ... will be used for coordinate components).
{e.} span the tangent plane to the surface of homogeneity at each point.

The signature is + 2 and u* is normalised (u*u, = —1). The first deriva-
tives of u, are determined by the expansion tensor §,,,
ua;bz eab; Hab: O(ab); Gabubz 0 . (11)

! Spacetimes admitting a multiply-transitive group acting on such three-dimensional
spacelike surfaces belong to the class of L.R.S. (locally rotationally symmetric) spaces
[4,49]. The only such spacetimes not admitting a simply-transitive subgroup acting on
these surfaces are those of Case I of Kantowski and Sachs [5].
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We write 6,,=0,,+1/30 h,, where h,,=g,,+u,u,. o,, is the shear
tensor and 6 the expansion.
The commutator of two vectors X = X'0/0x' and Y=Y/9/0x’ is
defined by
[X,Y]f:=X(Yf)— Y(Xf) for all functions f. (1.2)

One finds, on writing [e,, ¢,] = : 7%, €., that in these models
'VOOzz = yoﬁa =0,
You=—0ps+ 85058, (L.3)
Py = Egyatt™ + 6%,0y— 0%ya,,

where
Q= 50" uge, - &y,
n*l: = 4y@ e, (1.4
L1
ag: =73 yalia s

7°7°4 is the skew pseudo-tensor with #°*?3 =1, and signifies covariant

differentiation in the u® direction. 8,4, n,4, az, 2, depend only on ¢ and
behave as symmetric three-tensors and three-vectors respectively under
proper orthogonal transformations of {e,} dependent only on r. In
general, we choose {e,} such that n,, = diag(n,, n,, n3) and o =(a, 0, 0);
then the Jacobi identities for {e,} are n,a=0. When n*, =0, one can
choose an alternative basis such that n,3;=g¢, and the remaining n,,
are zero.

Three linearly independent spacelike Killing vectors {£,}, which
generate the simply-transitive group of motions, can be chosen so that
at any one given point &, % —e,, C*, ., £ 7", ,, where C*_, are defined by

(8> 6] = C &y - (1.5)
For this choice of basis N, ,, A* can be defined from C*,, by equations
similar to (1.4). We may then set N,, 4 to 41 or 0 by rescaling the Killing
vectors, unless AN, N5 & 0 (see [1]). By the definition of the vectors {e,},

any Killing vectors commute with them;

[e,, €,1=0. (1.6)

The possible group types have previously been classified by Bianchi
[6] and Behr [7]. We follow the modification of Behr’s classification
described in [1]. If a=0 the space is Class A and if a0, Class B. If
n,; = 0 the space is in subclasses Aa or Ba, and otherwise Ab, Bb. Case Bb
is subdivided according as a® is a shear eigenvector (Bbi) or not (Bbii).
Case Bbii can only occur in a group of Bianchi type VI in which

nyny +9a%=0=N,N, +9 A% (1.7)

0123
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In this paper we investigate the behaviour of null geodesics in these
spacetimes. Section 2 introduces the required formulae from geometric
optics and Section 3 discusses their use and evaluation in cosmology.
These sections apply to any spacetime, while Sections 4—6 apply specifi-
cally to the class defined above. Section 4 studies the relation of homo-
geneity to discrete isotropy, Section 5 is concerned with closed form
expressions, and Section 6 deals with the observational relations down
the principal axes of shear.

Section 2, which is included for completeness, consists mostly of
known results necessary for an understanding of the later work. However,
it incorporates some previously unpublished derivations and some
novelty of presentation which we hope will prove valuable. An amplified
account will appear elsewhere [8]. In this and the remaining Sections
results for which no reference is given are, as far as the authors are
aware, new.

2. Geometric Optics

We suppose that spacetime is (pseudo-)Riemannian and that the
electromagnetic tensor F,, for the light emitted by a source obeys
Maxwell’s equations for a charge and current free region

F[ab;c] =0’ (213)
Fob, =0, (2.1b)

From (2.1a), using freedom of gauge, one can choose a vector potential
@“ such that
Fhu=20,,; ®.,=0. (2.2)

We assume that there are approximate solutions of (2.1) of the form
"= A° f(¢), where f is an arbitrary function of ¢. and varies on a
length scale much shorter than that on which A° varies (cf. Trautmann
[9]and Dehnen [10]). Definingk,: = ¢ ,so thatkj, ,; = 0,and 4%: = A°4,,
we find by substituting in (2.1), (2.2) and equating coefficients of f,
f'i=df/d$ and f":=d* f/dP* that:

mplying Kk, = 0 23a)
kP = ky, k" = 0; 2.3b)

A kb =0; 24

mplying 2 A%k, + KD, = (2.52)
L (A7), k% + 420, = 0; (2.5b)
Fop= 1" (ky Ay — ko Ap) + 2. Arysy 2.6)

3 Commun, math. Phys., Vol. 19
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~ We now assume it is reasonable to ignore the last term in (2.6) (this
is the geometric optics approximation?). The energy-momentum tensor
of the electromagnetic field is then

Sap=A(f'P kaky . 2.7)
Eq. (2.3) shows that light travels on null geodesics (“rays”) x*(A) on

which ¢ is constant. If two observers A and B measure the rate of change
of f at points on the same ray, their results are in the ratio

(kaua)A _
=1+ 2.8)

where z is the redshift® observed by B in light emitted by A, since
J (@)t = f"(kout?).

A displacement k“5 4 at a point p along a null geodesic will be inter-
preted by an observer at p with velocity u® as a time difference 61 and a
spatial distance éx where

St=0x=(—ku) 5. 2.9)

The results of Jordan, Ehlers, and Sachs [13, 14] on null geodesic
congruences show that the size and shape of a small cross-section of a
given bundle of rays is independent of the observer’s four-velocity and
that its area dS is propagated according to

dS, k*=dS(k",) . (2.10)
From this, (2.3} and (2.5) one finds that
A2 f'2dS is constant along a ray. (2.11)

If the observer A sees an object G with intrinsic area dS,; which
subtends a solid angle dQ, at A, one can define an area distance r,
between 4 and G by

dSG = VAdeA,

while if an angle dQg; at G subtends an area dS, at A one can define an
area distance r; between A and G by r3dQ,; := dS,. The observer A sees
a flux* L, =(S,,uu’),= A% f'*(k"u,)} from the source at G, while an
observer at unit distance from, and moving with, the source measures
aflux Ls = L/4n where L is the total output of the source. One can define

2 For a discussion of the validity of the approximations see [11] (cf. [12]).

3 There is no distinction here between “Doppler” and “gravitational” effects.

* The energy ftux vector is g, = h,°S ,,u’. We can check from this that L, is the rate
of receipt of energy per unit area by a screen orthogonal to u® and k* at A.
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a third distance between 4 and G, the luminosity distance D, by D?
:= Lg/L, [15]. From (2.11) and the definitions, D? = rZ(1 + z)*. These
distances are related to r, by

re=r; (1427, (2.12)

which is known as the reciprocity theorem. It was first proved by Ethering-
ton [16] and was recently rediscovered by Penrose [17] following a
conjecture of Kristian and Sachs [18]. A simple proof suggested by
Sachs is given in [8]; the essential step applies the known first integral
of the second order geodesic deviation equation (the “Lagrange identity™)
to a pair of geodesic deviation vectors which are orthogonal at both A
and G. (It is the different propagation of the magnitudes of these two
vectors which gives rise to the distortion effect [18, 19].)

The area distance r, depends on u4 but not on u§. Since the fluxes
L, L, are related by

Lo=L,r (14 2)* = Lrg*(1+2), (2.13)

momentarily coincident observers of the same source see fluxes propor-
tional to (1+2)”? (rg being the same for both), while an observer of
two equal momentarily coincident sources sees fluxes proportional to
(14-z)~* (r, being the same)>. Although r, depends on the behaviour
of a small bundle of rays it can be regarded as a function assigned only
along the central ray of the bundle.

So far we have treated G as a point source. If the intensity of radiation
is defined (in the terminology of Chandrasekhar and Ehlers, cf. [8]) by
I,:=L,dQ,and I;: = Ly/dS; one finds®

Io=L(1+2)*. (2.14)
Moreover we have so far considered monochromatic or bolometric
fluxes, while in practice one observes over some frequency range Aw,
= Awg/(1+ 2). Defining specific flux F(w) and specific intensity I(w) as
the flux and intensity per unit frequency range at the frequency w,
_ Fglw,(1+2) dwg Fglw,(1+2)
ri(1+2)* ra(142)°

Fyw)dw, =F(w,)= , (2.15)

® Thisleads to two definitions of corrected luminosity distance [18]; in fact, 2 number
of “luminosity distances” appear in the literature. [18] and [20] use r,, [21-23] use rg
and [15] uses D. Note that a beam may refocus so that rg is the same at two points, although
for fundamental observers the redshift factors would usually lead to different values of r,
at the two points.

S An alternative derivation of this result and those that follow has been given by
Sachs [24] using a Boltzmann equation treatment for photons.

3%



36 M. A. H. MacCallum and G. F. R, Ellis:

and similarly

Io(w,4(1+2))

Li(wy) = “dt+2f (2.16)

In particular for black body radiation at emitted temperature T,; and
redshift z
Kwd Ko}
I = 1 =
0= explhagkTo—1 — 0= explhar, L+ DkTo)~1
(K, k, h are constants), so that the observed radiation is black-body
radiation’ at a temperature

T,=T;/(1+72). (2.17)

Finally if the spacetime contains matter with emissivity j(w) per unit
volume and absorption coefficient K (w) (including stimulated emission),
then®

dllw)  3l(w) dz

" Uxg an TV K@ @) Wk)

implying

Hou(1+7) et
S22 exp — (A o)
iy P~ =— 1 = o) uak)dé.m)

where 7(1), the optical depth, is defined by
A
(M) = | K(w 1+ 2)) (—k°u,) dA.
0

If the congruence ends at a source one can set A’ = A in (2.18); then
the observed specific intensity contains a term due to the source and a
term due to the integrated effect of other matter along the line of sight.
Eq. (2.18) can be used to investigate the effects of specified absorption
or emission processes, and to evaluate the intensity of light from a
discrete source or a background flux. The right-hand side tells us that
Olbers’ paradox is resolved if j(w) undergoes a suitable cutoff or if the
redshift factors sufficiently attenuate the emission.

No particular cosmological models or gravitational field equations
are involved in the above equations, nor any relation between r, and z.
A and G need not move as fundamental observers but (2.18) assumes a

7 In an anisotropic universe replacing the assumed instantaneous decoupling of the
black body radiation by more realistic scattering processes yields a distorted spectrum and
(2.17) then requires modification [25].

8 1 is any parameter along the geodesic curves. It could in particular be an affine
parameter v; if it is not, k* in (2.8-3.1) should, strictly, be replaced by &* (see (3.2) below).
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unique velocity for the matter at each point. Therefore Egs. (2.14—-18)
allow one to compare intrinsic properties of the sources without reference
to a particular cosmological model, provided one can evaluate or ignore
the effect of intervening matter (cf. [22, 26]).

3. Observations and Cosmological Models

We do not a priori know the intrinsic surface brightness I;, cross-
sectional area dS; or luminosity L for a source or the emissivity j()
or absorption K(w) of matter intervening between the source and ob-
server. Thus we must proceed by evaluating the formulae of Section 2
for particular assumed matter evolution in a particular cosmological
model and then comparing the results with observations. Some relations,
as just remarked, can be used without specialising the cosmological
model, but for others one needs the relationship of the three fundamental
quantities r, (the area distance), A (the geodesic parameter) and z (the
redshift). This relationship is usually calculated assuming that sources
and observers move as fundamental observers; peculiar random motions,
gravitational redshifts, and focussing by massive bodies being treated
only as second approximations. When the function z(4) is known Eq.
(2.18) can be used to determine the spectrum of background radiation,
and (2.17) the temperature of primeval black-body radiation.

Eq. (2.15) is the basis of the comparison with individual sources.
The specific flux at the galaxy F; is deduced from the properties of
nearby sources similar to those under consideration. The observed
specific flux F, is usually measured only out to a certain isophote (i.e.
contour of observed specific intensity 1,). It is then corrected a) for the
effect of the change with z of the relation of this contour to the contour
of a fixed I; (the so-called aperture correction) and b) to turn (2.15)
into (2.13) by reference to a standard spectrum for the class of sources
considered (the K-correction [27]). Correction a) requires knowledge
of the brightness distribution in the object; the relation between the re-
quired correction and the angular diameter of the specified contour of I,
is cosmology dependent [28].

In principle one can measure r, independently of F, simply by
measuring the solid angle dQ, subtended by the source, provided one
knows dS;. This is probably impractical due to the night-sky back-
ground which makes it difficult to decide where an extended source
ends [28]. Thus in practice the measurements are expressed in terms of
a corrected source magnitude m, which represents the total flux F,
received from the source. Once r4(4) is known, one can combine it with
z(1) to obtain the m — z relation.
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The most important other direct test is the number-flux density rela-
tion for radio sources (in our terminology the number-specific flux
relation). Consider a small parameter displacement 64 on a null geodesic,
and a small bundle of rays about this geodesic with cross-section dS.
The volume element thus specified contains

ndSéx=nr2dQ(—ku,)c5A

sources, where n is the number density of sources per unit proper volume,
and we have used (2.9). So if N is the number of sources per unit solid
angle at parameter distances less than A down a certain ray bundle

AN 214 o) (~ kewy), @3.1)
di
Thus if in a cosmological model one knows z(1) and (1) for a particular
ray one can find the relation of N and F, along that ray for any class
of sources, with F; as a parameter (or find dN/dF, which may be more
useful [29], cf. [307).

The remaining problem in evaluating the theoretical predictions is
to relate 4, A and z along any ray.

To relate 4 and z for a given observer 4 and galaxy G one has to
solve the geodesic equation (2.3b) for the null geodesic x/(v; u', u?)
joining a point y'=x'(0; u', u*) on the observer’s world line to the
galaxy’s world line®. Here v is an affine parameter along the geodesic
ox/(v; put, 1)

v
constants specifying the initial direction at the point )’. Substituting in
(2.8) gives the observed redshift of the source at affine parameter distance
v, i.e. determines the function z(v) for the ray in direction (u!, u?) at
the observer.

We shall wish to have the freedom to use non-affine parameters
along the geodesic, i.e. to choose some other parameter 1= A(v). Re-
expressing the equation in terms of the parameter A, the geodesic
x'(4; ut, u?) has a tangent vector with coordinate components

with tangent vector ki, so k/(v; u!, u?) = and p!, p? are

7 0x'(4; u', u?)
kl /1 1 2 —
(A 1, 1) —

dv ;
=k

(3.2)

and the redshift will be known as a function z(4).

® We assume this geodesic is unique.
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To determine r,, we note that (3.2) implies

ok 02x! o [ 0xt

= = —— | ——| (M =1,2). 33

o™ T 0gMan T o (auM) M=12) (3:32)

This equation can be integrated along the ray to obtain the quantities
; ox! ¢ ok

== —— da 3.3b

G
where the initial condition is taken to be pi,|, = 0. We have in fact solved
the first order geodesic deviation equation for null geodesics diverging
from A; if one makes a small variation §u™ of angular parameters at A,
the resulting geodesic deviation vector at G is pi,6u™, since the geodesic
deviation equation is linear.

For an observer with four-velocity u* at A4

dQ, = lim dS/'k)5(64)

where dS is the cross-section of the ray bundle at §4 from A. Using (2.9)
and the definitions one finds

p2o |P1[iP2j]|G
4 6P1[i apzj] ’
where ot ot |4 (34
» » i flg;
Y7 = fYo fugn= " "0 |-
Jud g 9" Gm

Clearly the arbitrariness in choice of (4, u™) does not affect (3.4).

The method of finding r, outlined here appears to be of wide appli-
cability as well as being conceptually simple. One might be able to
proceed in various other ways, e.g. one might be able to find {x*(4, ul, u)}
explicitly and then differentiate to get (3.3b)'°, or one might integrate
the second order geodesic deviation equation directly (cf. [18]) or
indirectly [21, 317]. The method we use in this paper has the advantage
that it could be easily adapted to numerical calculation (cf. [32]).

From the solution (3.3b), one can also find the distortion of optical
images due to the curvature of space-time. To do so, choose two varia-

10 various authors [32-36] have introduced (v, u', u?) and a parameter 7 defined
along the world line of the observer as coordinates. As only v varies along the geodesics,
these coordinates, with x® = v, satisfy

k* ,=kP ,k*/k®  (no sum over B)

so that (2.10) can be integrated to obtain dS=C ng;k” where the constant C can be
found in terms of dQ,. T may then be eliminated and the result re-expressed in terms of
any other coordinate system. The practical difficulty lies in evaluating the coordinate
transformations, which is in fact just equivalent to calculating (3.3b). (See e.g. [37].)
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tions Sul, Subf such that they represent orthogonal displacements of
equal magnitude on the unit sphere representing the sky at 4 (e.g. if
pl, u? are polar coords @, % one can choose variations dulf = ASY,
SpM = sin @ 46¥) and denote the corresponding deviation vectors at G
by p, q (so p'=pyou¥, ¢' = pi,6pd). The magnitude of the distortion
may be represented by the quantity d where

2 PHE= (0’ =) +40- 9
P’ +¢* +((0* —g*)’ +4(p- 9°)
and p*=p°p,, 4° =4°q,, P 4= P4,

This quantity has the following significance: a galaxy which appears
to A to be spherical (i.e. of Hubble type E;) would appear to an observer
near the galaxy in the same direction as 4 to be an elliptical galaxy of
type E,, where n=10(1—d). This effect offers in principle a further test
of cosmological models [18, 19].

An alternative to exact evaluation of the observational formulae is
to obtain a power series solution. This method was used by Kristian and
Sachs [18], who found power series in v and eliminated to get power
series in 7 4. d Sz was found by use of Taylor’s theorem on the second order
geodesic deviation equation. The main results of their paper, using our
conventions, are

T4+ z=14 (g, K°K®) 47 4 + 3 (1, KKPKO) 47 2

.3 (3.5)
+ %_ {(ua;bchaKchKd)A + %(Rchch)A (ua;bKaKb)A} AR

AN =(1+2)r 2dr (ng+(n K74+ 5720+ 3R, KKP) 4...) (3.6)

where K* is defined by K*: =k*/(u,k”),, and is a past-pointing null
vector. To obtain power series in directly measurable quantities from
these results, we invert Eq. (3.5), thus finding the series

(U K°KPK )4 2
u, , K°K®) 2
( s b )A (37)
(thz;bcI(aI(bI{C)2 (ua;bchaKchKd) (RabKaKb) 2
- - Z7 ...
4(u,, , K°K"Y* 3(u,, K°K?)? 6(u,,, K°K®)?* |,
(which in the Robertson-Walker case reduces to that given by Bertotti

[217), and substitute in (2.13), with m, ;= —2.5 log,o L, and M = —2.5
log,o Lg. Thus

ry t=2"%(u,,K°K") 2 {H—

] 5 (U, K*K*K*
mbol:M - 5 loglo(ua;bK Kb)A + 5 10g102+ E(IOgIO e){Z (4— —(L‘;—:TI;‘I?KI)Z—))
+22( 3tap KKK (iped K°KPKKY)  RGKK®
4(ua;bKaKb)4 3(ua;bKaKb)3 6(ua;bKaKb)3 A.

(3.8)
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In any particular model, one may substitute for some of these terms from
the field equations. In the Robertson-Walker case with vanishing pressure
one obtains

My =M —5log,oHy+51ogy2

22 2/122
+(251ogoe){(1—qo) 2+ —~(Bgo+ D (go—1)— -7
4 3H,

(in which Hy, g, and A have their usual meanings) as given by Solheim
[38], who corrected Mattig’s result [39]. In the L.R.S. spaces of Bianchi
type I and of Kantowski and Sachs [5], which include Bianchi type III
(n*,=0), (3.8) reduces to the form given by Tomita [40].

Similarly one can find the number-flux relation. Assuming the emitted
spectrum is Fgocwg™* (x constant) the relation of N to F, is

d(log N)

(3.9)

d(IOgFA(CUA))
3 3 [n,K* b 7+2x 3
— T Tl i a -3 2 ] a2 =
3 88 " (5+2x)(u,, , K°K )L £ [(ua,bK K®) ( g 32>
(13+5x) b (29 +10x) (n K (u,., K*K?)
=2 “KPK¢)— - ’ 3.10
20 (U KKK 807 (3.10)
3 (1KY | KK RaKK']
32 n? 10n 20 |,

where ¢ = |/ Fg(w 4)/F 4(w ). For x = 1,(3.10) becomes the N — L , relation
if one replaces F, by L, and Fg; by L. If one assumes there is no evolu-
tion of the comoving coordinate volume density of sources, one can
recover from (3.10), on using the field equations, the results a) for Robert-
son-Walker spaces of Mattig [41], Bondi [42], and McVittie ([15],
Eq. 9.306) and b) for L.R.S. Bianchi I and Kantowski-Sachs spaces of
Tomita [40]. In the Robertson-Walker case one gets

ny(D Ho)3

N=
3

5[ 5—4q0 K
(1 3DH,+3(DH,) 5 + 10H§R3}m) (3.11)
where the symbols have their usual meanings.

We note that if there is no evolution either in luminosity or comoving
coordinate density the slope of the source counts for bright (nearby)
sources will be — 3/2 as is well-known. It is clear from (3.10) that the
deviation from this rule would initially be towards a flatter slope, unless
X < —2.5 or we observe in particular directions in a highly anisotropic
universe. Thus one is justified in regarding the observed numbers of
sources [43] as evidence for intrinsic evolution of luminosity or density
even if the universe is not exactly homogeneous and isotropic.
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The power series method has two drawbacks. First the region of
validity of the power series may not be sufficiently large for practical
use — it certainly does not extend to the last scattering of the microwave
background radiation. Secondly, in practical applications one usually
compares only the first few terms, i.e. a truncated series, with observa-
tions. However, Solheim has shown, by comparing (3.9) truncated at the
second order with the exact relations for Robertson-Walker models,
that such a method will give rather inaccurate results [38]. (For z < 0.5,
the two formulae differ by more than 01 unless g, is small.)

We need further calculation to obtain the apparent proper motion
of sources. The first-order effect ([8, 18]) is determined simply by 6,,
and w,,; Kristian and Sachs [18] give power series expressions for this
effect and the distortion effect.

Further possible observational tests include, for instance, the use
of morphological effects [44] and any type of change of observations
with time (cf. [45]).

4. Homogeneity and Isotropy

G

Using tetrad components k%, k is given by k = k“e,. One can find k°
and so (1+ z), from the components k”lG, since (2.3) and (2.8) show

l4+z=Kk0 = ((k1)2 (k2 + (ks)Z)% 4.1)

where (to simplify the formulae) we sct k%=1 at 4. The geodesic Eq.
(23b)is

dk, . .

_d;]_ = Ezbckbk = ’Vbcakbk . (42)
Because of (4.1), one need only solve for the components k? of k; sub-
stituting from (1.3) the equations for these components are

dk,
dv

We wish now to consider discrete symmetries defined with respect
to the canonically-defined tetrad. Let the subspace of the tangent space
T, at a point p which is tangent to the surface {t=constant} through
p be denoted by H,. We use the following notation for operators in
H,:.# denotes the identity, &, denotes reflection in the a-axis, %, denotes
reflection in the plane perpendicular to the a-axis, and  denotes total
reflection. We can, with the obvious multiplication, generate finite groups
from these operators. The groups G, H, K, L under which Eq. (4.3) is
invariant in Classes Aa, Ab, Ba, Bbi respectively are shown in Table 1.

— — 0,k k0 + 5 (QF +1Poky) k' + K (kP ag)— a,(KOky).  (43)
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Table 1. The discrete isotropies occuring in the spaces of types Aa, Ab, Ba, Bbi, Bbii

Af{a=0) B(a=+0)
a(n,;=0) G={S %, T} K={S Ry, B3, A1}
b(nzp +0) H={4 %} ) L={s59}
ii) none

In case Bbii, there is no non-trivial subgroup of G under which (4.3)
is invariant.

These groups are not necessarily the maximal isotropy groups of
(4.3), since if the space-time is L.R.S. the continuous isotropy group
will leave (4.3) invariant. An examination of the cases which can occur
shows that the group G will then be a discrete isotropy group of (4.3).
When no continuous isotropy group exists (i.e. when the space is not
L.R.S.), the finite groups mentioned above are the maximal isotropy
groups.

In fact, these groups are not merely invariance groups of (4.3) but
are generated by isometries of the spacetime and are automorphisms
of the Lie algebra of the reciprocal group, leaving invariant the structure
constants with respect to the basis {e,}. They correspond in a natural
way to isomorphisms of the underlying group of motions; their existence
has been discussed from this point of view by Schmidt [2].

The full group of isometries of a particular three-surface of homo-
geneity is in general larger than that generated by the three-parameter
simply-transitive isometry group and the appropriate discrete isotropy
group. (For example, in Bianchi type I the three-spaces are three-spaces
of constant curvature and so are invariant under a six-parameter group
of motions.) To correspond to isometries of the whole spacetime, the
isometries of the three-surface must leave the second fundamental form
of the surface, i.e. the expansion tensor 0,,, invariant, so that the initial
data on a Cauchy surface is invariant [2]. Thus although the group in
case Bbii has the same invariance properties as the same group (VI,
with 2= —1/9) has in case Bbi, the isotropy groups for the spacetimes
are not the same, for in Bbii the shear tensor isotropies no longer coincide
with the isotropies of the three-space sections.

Schmidt [2] has proved a partial converse of the above results: he
has shown that the invariance under H of u% R, ., and its first three
derivatives implies that the spacetime belongs to Class A.

We now return to the context in which the isotropies were initially
noted, the invariance of (4.3). Since the invariance applies to every geodesic
itapplies to bundles of geodesics and therefore to all types of cosmological
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Fig. 1. The celestial sphere of observer 0. Points marked * are on the outside of the sphere

facing the reader. Points marked " are seen through the sphere. The points 1, 2, 3 are the

directions of the canonically defined tetrad axes. OP is a typical direction of observation
(see Section 4)

observation. Thus any fundamental observer will necessarily see these
isotropies in all his observations on his celestial sphere. In Fig. 1, if OP
is a typical direction of observation, equivalent directions for the observer
at O will be given by the following points: Class Aa, QRSTUVW;
Class Ab, RUW; Class Ba, QRS; Class Bbi, R; Class Bbii, none.

We emphasize that these isotropies are in principle directly observable,
requiring no interpretation regarding the physical nature of the sources
other than that they are not local (i.e. that they have cosmological
significance). Further, invariance under K, H or G, when it is the maximal
isotropy group of observations by a fundamental observer, determines
uniquely the directions of the covariantly-defined triad {e,}. When the
invariance group is L, only the e;-axis is thus determined.

If one examines the power series expressions of Section 3 one finds
that n, ,K*=0 and

U, , K°K" =0,,K*K? 4.4
are always invariant under G, while
Uy, K KPK* .5)
o 26° 40 .
= (——3— + —9~) +(0,5K°K?) (2a5K"+ —3—) —20,3K%a’+26”,0,,K'K"

— 265, 176° 3 K*KP K, — (80 0,5 — 2611, X 01" ) K* K
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is invariant under exactly the groups specified in this section. Thus one
sees from (3.5-10) that the invariance may be regarded as a second-
order effect. Since it is difficult to assign an average value to the second-
order coefficient from the redshift-magnitude relation using the (good)
approximation that spacetime is locally like a Robertson-Walker universe
(see e.g. [23, 27]), it is doubtful whether we could test for these isotropies
by such measurements. However the microwave background radiation,
on which isotropy measurements can be made with high precision [46]
offers more hope.

While the isotropies so far discussed apply to all observational rela-
tions, certain relations may have more special invariance properties.
In particular, observations dependent only on the behaviour of one
geodesic, like the z — ¢ relation or black-body temperature, could be the
same in two directions when observations depending on a small bundle
of geodesics, like the r, — z relation, are not. We have found one case
of some interest. (4.3) shows that the z — ¢ relation is the same in the +e,
and —e, directions in all Class B models, including case Bbii, i.c. it is
the same in the af direction as in the opposite direction.

One might hope that the isotropy group invariance would in itself
give complete information about the contours on the celestial sphere
of the value of the redshift of light from a particular surface ¢t = ¢, (which
would be isotherms of black-body radiation). We have found this is
not so.

5. Analytic Integration of the Geodesic Equations

In a homogeneous universe, the observations must be the same for
all observers in any hypersurface {t=constant}. Moreover use of the
method of Section 3 is simplified by the existence of explicit first integrals
of the geodesic equations. To see this, form the quantities

=&, .k%; (5.1)

then (m,), k= ¢, Kk + £,k k°=0, as the Killing vector &, satisfies
Killing’s equations ¢, ,.,, =0 and k* is a geodesic vector. Therefore the
quantities =, are constant along any geodesic'!; the magnitude k°k,
of the geodesic vector is another first integral, since (k“k,), k* = 2k*(k,,, k)
= 012, We consider only null geodesics, so that k®k, = 0.

11 In fact the number of distinct scalar constants of geodesic motion which are linear
(quadratic, cubic, etc.) in the momentum is equal to the number of independent Killing
vectors (respectively second-rank tensors, third-rank tensors, etc.); cf. [47]. In the case of
null geodesics, one can replace “Killing” by “conformally Killing” in this statement.

12 This is a consequence of the fact that g,, is a Killing tensor.
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In the spaces we consider in this paper, one can find three such con-
stants 7, since one can find three independent Killing vectors {&,} by
solving Eq. (1.6). A coordinate system adapted to the orthonormal tetrad
in the Class A and nﬂﬁ=0 cases has been given in [1]. In Class A we
introduce the function ¢(x*) which satisfies d¢/0x* = — /1 — N, Nyc*(x?)
and xlziino ¢(x?) = 0,and choose regular coordinates (i.e. choosexlliglO S(x")=0

and lsimog(x3) =0). Then

0

ox*’
2 a ]/ 2(2
€3= '—NIC(X )—a?‘ - 1_N1N3C (x ) I’V; (52)

W:=(1—N,N,8*(x")"? (N S(x) a * ai )

J
1—N1N302(X2)W+N3c(x2) W, &=-—
where

are three independent Killing vectors. In the cases where n*, =0,

0 0
$1=-— xl “(ao‘f“Io)ng{[ —(ao
] 5 (5.3)
A )

are three independent Killing vectors.
Using the Killing vectors (5.2), Egs. (5.1) show that the tetrad com-
ponents k, of a general geodesic in Class A spaces are

k1=—;(—1(n1(N1N2N3ch+[ﬁ—N1N2g2 1/1—N,Nyc?)
— 15}/ 1— Ny N3 82 Ny g — 3 N3(N,Sg)/1— Ny Ny —c]/1— N N,g?)
—1

kz=T(N17I1(Q|/ 1-N;N; 2—N3Sc|/ 1'"N1N292)

+7,]/1—N,N,g* |/1—N,N, 52
+ 73Ny (N, cg+S /1~ Ny Nye? /1= N; N, %)
—(1—N,N, 8%

N,w
" (_Mﬂl Vfgiﬁ:f1ﬁtﬂﬁaﬁm)

ky=

(k° may be found from (4.1)). (Note that in [1], Eq. (4.9), g,, should read
X*(1— NN, g (x%) + Y2N22g2(x3).)

(5.4)
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Similarly the Killing vectors (5.3) lead to the tetrad components

1
k! :f(_nl +(ao +‘Jo)x2"2+(ao’“%)x3n3 —f(xo)nzexp(ao—i—qo)xl)
(5.5)

b T
K=~ explao +40) X' K*=——>exp(ao—go) X'

for a general geodesic in spaces with n*,=0.

For null geodesics only the ratios of the n, (i.e. two parameters)
need be given. Any two parameters giving these ratios can then be used
as {u!, 4?) in the method of Section 3. One reasonable choice is to take
direction cosines of the observation direction at 4 and parametrise by
the angular coordinates (@, ¥) as in spherical polars, cf. [37].

Eqs. (5.4, 5.5) represent the tetrad components of the geodesic tangent
vector k® in the form k*(x'; u', u*). To apply the method of Section 3,
one has to find the coordinate components &/(v; u!, u?). One way to do
this is to find explicitly the integral curve x'(v) of the vector field k*
which passes through G and 4, and then eliminate the coordinates x”
from (5 4, 5.5). Alternatively one might try to obtain the components
k*(v; u?, uz) dlrectly from the geodesic Eq. (4.2) or (4.3) (or to obtain the
components k°(t;u', u?) in which the time coordinate ¢ is used as the
curve parameter. It is in fact this choice we shall make later on.)

We wish to perform the integrations analytically as far as possible.
(No problem arises in simultaneously integrating the geodesic equation
and the first-order deviation equation by numerical methods.) The
integration is greatly simplified when there exist non-trivial functions
g(k,, t) which are constant along any geodesic, since each such independent
function g can be used to eliminate one of the k, from the system of
differential equations we have to solve, by setting g constant (equal to
its initial value) on any particular geodesic. We investigate when this
occurs as follows: we choose the triad.{e,} as a triad of shear eigenvectors,
and define the lengths I, by [1] (1) /I, = 6,*3 (so in the coords. above,
l,=X,1,=Y, l;=Z7). Quantities r, are defined by!'® r_: =1 k,; these
are simply rescaled tetrad components of k. Now we seek functions
g(r,) which are solutions of the equation g ,k* =0, i.e. which are constant
along the geodesics. By (4.2) and (1.3) this condition is

g r rrY
Lo T o, 5.6
ara l ( avr lv +yvozu lulv ) ( )

'3 Throughout this section we use a modified summation convention for brevity.
Summation, in the obvious way, is implied by a triply-repeated index, while there will be
no sum over the index ¢ wherever it appears.
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ag 17/34 T v v
—a_}—Ia{Savr‘Q k'k° + ey u kk +(k kv) aa_ka(auku)} =0 (57)
(the variables r, are used so as to eliminate the terms 6,,k*k° from these
equations).
In Class A we can put Q* =0 and Eq. (5.7) is

1 <N2 dg N 6g> 1 (N1 dg N _ai)

L2\ ry Ors r, or,

L2\r, 0r, 1, 0r,

(5.8)
L(&a_g_ﬁz_fg_o

(remember the I; are functions of time and the N, are constants). In Class
Aa (Bianchi I) all three r, are independent solutions of (5.8). In Class Ab,
g=N,(r;)* -+ N,(r,)* + N5(r;)? is a solution. These are the only solutions
for general geodesics (there exist further solutions for special geodesics)
and arbitrary functions [ (f); one can however obtain further solutions
if Ii(t)=1L,(¢t)=15(t), (a Robertson-Walker universe), or if l,(f)=[;(t) in
an L.R.S. space with n, =n,. In the latter case, r; and (r,)> + (r;)? are
independent solutions.

In Class B, we have been unable to obtain solutions of (5.7) in general.
However we can deal fully with those cases in Class B, excepting Bbii,
in which n*, = 0. The equations (5.7) take the form (as we can put Q° =0)

, 1 dg ayg+qo 2 [ 8 — 4o
(l‘ “57) (“2)2 Gy T < 0y ))

0g dg
—rz’é“rz_(ao'FCIo)_rsW;(ao_%):O

(5.9)

)
I3

. ¥ . .
all cases is g = (—3—) (r,7r3)%%%, One only obtains further solutions for
ra

qo/2a0
where (by Eq. (6.3b) of [1]) I, = (I, 13)%( ) . A general solution in

general geodesics if [;(f)=1,(t)=15(t), (a Robertson-Walker universe),
or if gy =a, (an L.R.S. solution of Bianchi type III). In the latter case,
r5 and (r;)? + (r,)* are independent solutions.

Whenever there are two or more independent functions g which are
solutions of (5.7), one can eliminate two of the k* in terms of these constants
and then hope to obtain the observational relations as simple integrals.
Thus the cases one may expect to solve simply are the Robertson-Walker
spaces, the Bianchi I spaces, and the L.R.S. cases. We shall not discuss
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the Robertson-Walker spaces since the observational relations in these
cases are well-known (see [8] for a review). The other cases may be solved
either directly from the geodesic equations and functions g obtained
above, or by using the first integrals =, and resulting forms (5.4, 5.5)
for the geodesic vectors. We consider these cases in turn.

The L.R.S. spaces of Bianchi type III (n*,=0) are the Kantowski-
Sachs Case II spaces [5]. The observational relations in these spaces
have already been obtained by Tomita [40]. In our notation these are
the cases a, =gy, X = Y. Using (5.5) the explicit form of (3.2) is

dx* _ (1, — 2aom,x%)

dt K X? ’ (510)
dx* et dx* Ty .
dt ~  KX* ' dt  KZzZ*’

where
2

X zZ3
K2(t): = (k°)* = (XA (g —2agm, x?)* + 7y 2e*90x") + 7@)[(34. (5.11)
We parametrise as suggested above, setting K, =1, —ny=2,cos @,
—n,=X,sin@sin¥, —n, =X, sin O cos ¥. One obtains

X2 ZZ 5
(1+2)= <-X% sin2 @ + Z—;‘ cos? @) (5.12)

on the geodesics with 7, = x> = ¥ =0; as the space is L.R.S. one need
only consider these geodesics. (The observer is taken to be at the origin.)
Differentiating, one can explicitly evaluate (3.3b) for these geodesics:
using t as the parameter A

0*x'  X,Z%cos® = *x*  —Z,Xisin® .
000t X?Z*(1+z2°° 008t X?Z*(1+2)? 513
?*x* Pxt 9%x? _0: 0*x?  X,sin@ et~ G-13)
000t  oWor oWor 0 ovwar  X*(l4+z)
Integrating (5.10) and (5.13) one finds
4 X, sin@dt 4 7 ,cos0dt
:0’ 3 = —_—
S T I i T e
1 A X 3 A 2 a4
_Ox -7 AZZAZdtcos? . 0x __] ZAZXAsm@dt (5.14)
"0 L X*Z%(1+2) 00 L X?Z%(1+z)

ox? ox? ax® 0x?  (e*%e—1)

4a,

4 Commun. math. Phys., Vol. 19
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Now use of (3.4) with g;;=diag(—1, X2, X% e~ ***', Z?) gives

B 3(1+ z) sinh 2a,u f dt
2a,X,sin® ¢ X°Z*(1+2)?

rl = (5.15)

where (1+ z) is given by (5.12) and

u'—f X, sin@dt
e X+

To evaluate (5.15) when @ =0 we take the obvious limit as sin® —0.
(We are bound to have some coordinate singularity in parametrising
directions about 4 unless we use more than one coordinate patch.) One
can find the distortion from (5.14) by the method of Section 3.

Similarly we can use (5.4) or (5.5) in Bianchi type I, where N, =N,
=N, =0=S(x)= c(x?)=g(x>), yielding coordinate components

B:=Xx%Z.

ox* m,
= = . 5.16
ov (1,)? (5.16)
(This simply expresses the constancy of the three solutions of (5.7).)
One may again take kS =1 and parametrise by (@, ¥) although in this
case we will express the result in a form independent of the parametri-
sation. By a calculation similar to that above one finds

14+z= (Z (%)2)" (5.17)

» 3 G

u

ri=(+z)I534, (5.18)
where
A= LL +r3L I+ 3L L),
and I, are defined by cyclic interchange from

4 dt
BN T

2
P:=lllyand Y, (ﬁ) = 1. These relations have been obtained previ-
u n/A
ously by Saunders [48].
In the case of L.R.S. Class A solutions, the functions r,, (r,)* + (r5)*
are constant along the geodesics and so (normalising k°| 4=1) the
tetrad components k, satisfy

X, cos0

Y2sin?@
ky = , o
X(t)

(kz)z + (ka)z = Yz(t)
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where [, (t) = X (), [,(1) =15(t)= Y(¢) and @ is a constant. Thus one finds
X% cos’ @ N YZsin? @ \*
X2(1) Y2(1)

(1+2)= ( (5.19)

One can solve the geodesic equation by setting k, = Y, sin @ cos @(t)/ Y (¢),
ky=1Y,sin® sin d(t)/Y(t) with

A
_ Xy (N N
tp(t)—i t2) (YZ Xz)dtcos@—HP,

where ¥ is a constant, and so obtain the tetrad components k%(; O, ¥)
1

(1+2) ~
coordinate components of k', which are easily evaluated using (4.4) of
[1], to have the form ki(t, @, V), i.e. we do have to explicitly eliminate
the functions x”(¢) occurring in these coordinate components. We have
been unable to do this in the L.R.S. cases of Bianchi types VIII and IX.

In the L.R.S. case of Bianchi type 11, the coordinate components take
the form

k*(t; ©, V). However, to integrate Eq. (3.3b) we need the

e I (X ,cos@ N Y, x3 sin @ cos @(t)
14z X2 Y? ’
- 1 Y, sin ® cos &(t)
2 _ 4 5.2
k 14z ( Y? )’ (3-20)
o 1 Y, sin © sin &(¢)
14z Y? ’
A
X
where @ = £ —A)]Y—;(%(—;)% + ¥, ¥ is constant and
4 sin®(t) dt .
cj; Yiits) Y,sin@.
Now we can again obtain
ok’ ok
5 w= | — 21
Pe= §6@d Py j‘alpdt (5.21)

and hence find r, and d.

The forms (5.12, 15, 17—19) can be substituted in (2.13—18) to calculate
the observational relations at any time t,. We may note that (5.15)
and (5.18) are clearly independent of the various rescalings (e.g. rescaling
of [ and ™).

4%
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It seems unlikely that one can obtain such simple expressions in
the remaining cases in Class A and with n*, =0, when there is only one
solution g of (5.7), unless there exists a better choice of tetrad in these
spaces than that used above. The only cases in which we are aware that
such a tetrad exists are the L.R.S. cases in which a tetrad may be chosen
(cf. [4.49]) to fit the multiply-transitive group rather than a simply-
transitive subgroup. It is probable that by use of such a tetrad, one can
obtain simple expressions for the observational relations in the L.R.S.
cases of types VIII and IX. It is relevant to note that Tomita [40] has
obtained the observational relations in the case in which there is no
simply-transitive subgroup G; (this space, the Kantowski-Sachs Case 1,
is very similar to the L.R.S. space of type III discussed above).

The existence of solutions of Eq. (5.7) is closely related to the existence
of homogeneous constants of motion. Suppose that a vector field k is
a homogeneous vector field !4, i.e. has tetrad components k* = k*(t). The
quantities 7, defined by (5.1) will in general not be constant in a surface
{t = constant}. However there may be some functions of the =, which
are constant in these surfaces, such functions being called homogeneous
constants of motion. They are therefore functions f(r,) which are invariant
when the geodesic is dragged along by the simply-transitive group of
motions 3. It follows [50] that they are solutions of the equation

", =0, (5.22)

On choosing a Killing vector basis §,% —e, one finds C”,, %", (cf.
Section 1), so each solution of (5.22) will, when Q*=0, imply a closely
corresponding solution of (5.6). In fact, in Class A the solutions of (5.22)
are m,,m,,ny for a group of type I and Nj(n,)? + N,(7,)* + N;(m;)?
otherwise; in Class B cases with n*, = 0, these equations have the solution

T . . . ..
<~—3—> (1, 75)%/%2%, We have been unable to find solutions in the remaining
Ty

Class B cases. Thus these solutions correspond precisely to the solutions
of Eq. (5.6) found above, except in the case of L.R.S. spaces. To deal
with the L.R.S. spaces we would have to distinguish the constants invariant
under the various simply-transitive subgroups and those invariant under
the isotropy group of a point; for our purposes direct use of (5.6) is simpler.

14 With respect to a given simply-transitive subgroup: this definition has invariant
meaning except when the space is L.R.S. (when one could choose different simply-transitive
subgroups; k would not be homogeneous with respect to all of them).

15 And so are constants of the motion which are invariant under the automorphisms
of the Killing Lie algebra induced by the action of the group on itself.
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However a systematic use of homogeneous constants of motion is proba-
bly the best way of solving the Liouville equation of relativistic kinetic
theory in these spaces (cf. [24, 507)*°.

6. Observations Down the Axes and Further Properties

At any point in spacetime, one can in principle determine the shear
eigenvectors by observing the anisotropies in the first order Hubble
law (i.e. in the term u,,, K*K” in (3.8)). If there is a continuous isotropy
group (i.e. if the space is L.R.S.) one can find many orthonormal triads
{e,} of shear eigenvectors; in particular, one can choose triads of shear
eigenvectors which commute with Killing vectors {&,} generating a
simply-transitive subgroup G; of isometries'”. If one does so, these
spaces may be assumed to be special cases of those discussed in the rest
of this section: we shall now assume, unless otherwise stated, that the
spacetime is not L.R.S. Then there is only a discrete isotropy group
and the shear eigenvectors will, except in one special case, determine
a unique *® triad of vectors {e,} which are invariant under the discrete
isotropy group. The special case is a space of type VI, with n*, =0 and
#, = 05; in this rather exceptional case, however, a unique triad of shear
eigenvectors is determined by the discrete isotropy group.

In practice, it would probably be easier to determine the discrete
isotropy group than the shear eigenvectors, since an accurate measure-
ment of microwave radiation isotherms in the sky would immediately
limit severely the possible isotropy groups, while the shear might be
very small at the present time. In a Class A model, the discrete isotropy
group will determine a unique triad of shear eigenvectors. It follows
from the discrete isotropies that a geodesic which is initially directed
down one of these canonically defined axes will have this property at
every point; this also follows directly from (4.3), which has the solutions

C

K=0@+p), K= (6.1)
B

for any constant C and for f =1, 2, 3. Thus one can look down the principal
axes of shear right back to the singularity (or rather, until absorption

16 At a point of emission p, at time ¢, say, an isotropic distribution can be expressed
as f(p, m,). At a later time t, an observer at a point p’ is sampling the emission from a two-
dimensional set of points in t=t, and f(p, 7,) will not have the same form as a function
of m, at all these points unless it can be expressed as a function of homogeneous constants
of motion alone. In general this would require the existence of three independent such
constants (cf. [51]).

17 Except in the Kantowski-Sachs spaces of Case I, cf. footnote 1.

18 “Unique” is understood to mean “unique up to a sign and renumbering”.
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becomes appreciable) in these models. Since the directions of the principal
axes of shear are directions which are locally fixed in a local inertial rest
frame, the galaxies in these directions appear to be in fixed positions in
the sky (this again follows from the discrete isotropies). The redshift
relation z(t) for these geodesics is (by (4.1), (6.1))

_ (pa
(p)s

If one knows that particular radiation sources in these directions were
emitting at the same time, one can use this relation to find directly the
(integrated) distortion of the universe since that time from the redshifts
of the sources; in particular, it can be applied to determine the distortion
of the universe since the time of decoupling, by measuring the temperature
of primeval black-body radiation in these directions. Detailed knowledge
of the functions r ,(t) for these axes would enable one to find the functions
I(t) from observations in these directions alone.

In case Ba a unique triad of shear eigenvectors is again determined
by the discrete isotropies. However in the Bbi cases only the 4 e, axis
(i.e. the a axis) is determined by these isotropies, and even that is not
true in the Bbii cases (when there are no discrete isotropies). In the Ba
and Bbi cases, a null geodesic initially directed down the e, axis will
always have this property; this follows from the discrete isotropies, or
directly from the geodesic equation which has the solution (6.1) with
p=1. Thus one can look back down the e, axis to the singularity in Ba
or Bbi cases. This is not true for the other two principal shear directions
(a null geodesic initially down these directions deviates towards the —e,
direction) in cases Ba or Bbi. It is true in case Bbii if we define e, not
as a shear eigenvector but as the a axis (only in case Bbii are the two
definitions not equivalent); one cannot look back down any principal axis
of shear in case Bbii. Thus although the motion of matter in this space
is strictly ordered, it appears (since the geodesics deviate from the
principal shear directions) to be rather disordered.

In the Ba and Bbi cases, the redshift relation for the e, axis is again
(6.2). Since (6.1) holds for both positive and negative values of C, ie.
(6.2) holds for geodesics in both the e; and —e, directions, the black-
body temperature is the same in the e, direction and the opposite (i.e. —e,)
direction. This last is also true in case Bbii. In fact, unless there is some
accidental cancellation, one would expect that the e, direction, and
{(except in case Bbii) the directions in the plane perpendicular to the e,
direction are the only directions for which this is true. This equality of
the black-body temperature in the e, and —e, directions offers a way of
observationally determining the e; axis in case Bbii. If one can find

1+z (no sum). 6.2)
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r 4(t) for the e, direction, the observations in this direction will determine
1,(¢), except in case Bbii. (In case Ba, /; (f)is just the average length scale [(z).)

We have seen that one can obtain partial information on the expansion
and shear in Class B, and complete information in Class A, merely by
observing the r, — z relations for certain canonically defined directions
(namely those for which (6.1) holds). One can in fact use the methods
of Section 3 to calculate the r,(t) relations explicitly for these axes in
Class A and in those Class B cases where n*, = 0; combining these relations
with (6.2) one obtains the corresponding r, — z relations.

To obtain r, — z relations in Class A, we use regular coordinates
(S(0) = g(0) = c(0) = 0) with the observer at the origin at the time ¢, and
parametrise the geodesics by (O, ¥) so that the constants (5.1) are
—my =X, sin® cos¥Y, —n,=Y, sin® sin¥, ~n;=2Z, cos® for a
geodesic with k4 = 1. We will only perform the derivation for one of the
three cases, that of the e, axis, the results for the other axes following
by suitable cyclic permutation. On this axis 0=¥ =x?>=x>=g=35,
O =7/2. We find from (5.4)

j-i: K=142=X,/X;
d_xl_ = __1* ﬁ - iﬁ — 0.
dt X’ dt dt ’
02x? _ o*x! ~0: 0*x? _ N;Z ,S(x") 63)
0te® ~ 0¥ ot © 000t Y2(1+2)}/1- N,N,§?
x> JY1-N,Ns$*Z, Z ,N;28? .
000t (1+2) Z? (1+2) Y?|/1—N,N,5%’
> Y, P NYS N,Y,S
ovar  Y*(l42z)° ovar  Z:(+2)  Y*(1+2)

whence
dt f dt]/1—N,N,8%(t)
Y2(1+2) & (1+2) Z>
4 SMdt 4 S(t)dt
TN iy ] Y2(1+2) )/ T— N, N, 5

A
1i=27,Y,Z Y(1—NZN3SZ)[§
G

4 gy 4 S%(t) dt (64)

+ N3 (({ Y217 Y21+ 2) /1= N,N,5°
4 Sdr 4 Sdt )J
_i Y2(1+z) (5; Y (1+2))/T- N, N; 52




56 M. A. H. MacCallum and G. F. R. Ellis:

08 1 . .
where ¥ i+2 [/1—N,N,S* and S(t,)=0. It is clear from this

calculation that the geodesic deviation vector twists relative to the
covariantly-defined tetrad as one moves along the geodesic, if N, or
N; is non-zero.

In case Ba and Bbi models with n*,=0 Eq. (5.5) shows that

ox! X, ox?  ox® X
= N f— =y 1 :k():—!i
G T Xi+2) o ar D) X’
0% x1 0% x? 0% xt 9% x>
= = = :——0 .5
200t 0081 ower owar (65)
x> 3 Z 4exp2(ag—qo)x' | 0*x>  Yexp2(ag+qo)x’
000t Z2(1+2) iz Y2(1+2)

hold for the geodesic along the e, axis, using the same parametrisa-
tion as in Class A for the geodesics. Thus we find (the metric being
diag(—1,1,% ;% exp —2(ag + qo) x*, ;% exp —2(ao — qo) x1)

2 — (lz l3)A(l2 l3)G —2agu
4 (1%

(A llel(uu—lm)“dt 4 llez(ao+qo)udt> (66)

i (15 G ()

where u= | # and, by (6.3b) of [1], 1,2 = (I,13)*(I,/1;)%/*?. This applies
1

to a geodesic in the positive x! direction. The opposite direction yields
the same formulae with u replaced by —u.

(We note that in the type V case we may use (7.10, 16) of [1] so that
l,=X=1and |, =Y, l;=Z may be written as

L(t)= [(t) exp {(— x| %} (B=2,3) (6.72)

where X is a constant and
3=+ (ui)+ AP +3a,%) (6.7b)

The methods used here may be used to find r,(t) along any geodesic
which can be solved completely. One can also approximately solve
the geodesic equations for nearby geodesics; for example, in the solutions
with n%, =0 (except Bbii) a general geodesic very nearly down the a
axis has tetrad components

cos@ sin@cos P sin@sin@
= , = teote k=" (g(t))*0 40 6.8
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A
where g(t): = exp | Td-(tf)— and O, @ are constants. This solution is valid
t 1

when |k,1,] <1, |k;3l3] <1, ie. there are small cones about ® =0 and
@ = & for which it is valid. Substituting into (4.1) one obtains an approxi-
mate expression for the redshift z as a function of ¢, ©®, @ along these
geodesics. One finds in this way that, in that part of the cone about
© =0 for which |k,| <€k, k3] < }k,| hold at the time of decoupling, the
temperature of the primeval black-body radiation would have the
angular dependence 4 @%(1 + C cos2 @) where 4, C are constants; and
that the temperature in the opposite directions would have the same
value to this order of approximation.

It follows from the form taken by the terms u,,, K*K" and u,,, K°K”K*
(see (4.4, 5)) that if one could determine the second-order term in the
m— z relation (ie. the term (4 — (u,,, K*K*K)/(u,,. K*K)?) in (3.8)) one
would completely determine the cosmological model. In fact in most
of the models one could determine all the parameters of the spacetime
directly from observations of the first and second order terms in the
principal shear directions (the preferred axes mentioned at the beginning
of this Section) only. However there is an exception to this: in the

(ty K K°K)

(lei;eI(dI(e)2 )

case Ba (type V) models the terms u,, K*K” and (4
take the form
Hy+ 0 sin® @ cos2 @ (6.9a)
and
2 2 2
(1—gq)+ 90 6in2@ cos2@ [ T— 2% cos @ | + (220 sin? @ cos 2
H, H, H,
(6.9D)

2 2 . -2
— I_Z; smz@} (H—%sinz@ cosZ@)

where K¥ = (cos @, sin @ cos P, sin @ sinP), g, and a, are the values at
. . r =l —(0‘+92/3)|
time t, of the quantities ¢ and a,and Hy = Tlo’ qo= [He ‘0— T ’0.
(Note an error in this expression in [1].)

This shows that down the a axis, the first terms of the m — z relation
are precisely the same as in a Robertson-Walker universe, i.c. (3.9) holds
for this axis. (However g, is related to pg, Hy, R*=6a* and A by the
relations in Section 3 of [1] instead of the corresponding Robertson-
Walker relations in which ¢ =0.) Further it is clear that one gets no
direct information as to the magnitude a, from the second order m—z
relations down any of the principal axes. It would be easiest to determine
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a, from second-order m — z terms by looking in the directions with @ =0,

7/2 and cos® = + 713— In practice, use of the power series expressions
to determine the model parameters may not be possible in any direction,
or if possible may be inaccurate (cf. Sections 3 and 4).

One can also obtain the observational relations approximately in
any spacetime which is nearly the same as a spacetime in which one
can solve these equations exactly. For example, one can find the black-
body radiation temperature observed in a type V universe model which
is almost isotropic (cf. [52]), i.e. in a low-density anisotropic universe
that is almost a Robertson-Walker universe. To do so, note that Eqgs.

]
(4.2, 3) show that ddkv = —0,,k"k"; this can be solved in the form
1 o, (t) k*(t) k" (t) dt
Of .~ _ Kv
Co= |- =g

which (by Eq. (4.1)) determines the redshift in any of our universe models.
Using the canonical tetrad defined in [1], this equation takes the form

B (k) — (ks di
ko= TP { -2 ((er)? + (kp)* + (k3))) P }

in a type V universe. Now in a Robertson-Walker universe of type V
(i.e. 2 =0) a general null geodesic is given by

(6.10)

1 cos@(t) sin @ (t)sin® sin® (t)cos P
o=+ — kl= , k2= k3=
* G I(t) I(t) I(t) (6.112)
where o) J
[ ! t
cot 5= (cot ¥/2)exp <— ao | m) , (6.11b)

Y, ® are constants and [ is normalised so that /=1 when [k° = 1. Eq.
(6.7b) shows I'=)/a3+ul?/3+ A?/3 so the integral (6.11b) can be
written as a simple integral in I. One can now obtain the approximate
form of the metric in an almost isotropic type V space from (6.7a) on
using the value of I(¢) for the Robertson-Walker model on the right
hand side, thus determining [,(¢), and find k°(¢) in this space (cf. [52])
by using (6.11) as the form of k,(t) in the integral (6.10), which can again
be expressed as a simple integral in [/ alone. This then determines the
black-body radiation temperature in these models from the expression
(cf. (2.17))

0
S Ay 0

1+z k()
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where T, is the temperature of the black-body radiation on emission
(~3000° K) and [, is the length scale I at the time of emission of this
radiation (so 1,/l, ~1/1000 if there is negligible intergalactic matter).
This calculation is fairly tractable if A =0 and the universe is
filled with a non-interacting mixture of dust and radiation, ie. if
U= l£3 + ﬁ where M and R are constants. An exceptionally simple

case arises when R = M?/12 a3, i.e. when the relation
(tm)® =2 p,|R¥| (6.12)

is valid*® (u,, being the energy density of the matter, u, that of the
radiation, and R* the scalar curvature of the three-spaces {t = constant},
cf. [1]). We may note that this relation, which implies go% = u,/3 Hy>,
seems to give a good description of a realistic low-density Robertson-
Walker universe with A = 0, for the total energy density p, in the universe
at the present time £, is almost the same as u,), and so at the present
time (6.12) would be*°

U2 =12 Hy% p, . (6.13)

Substituting in (6.13) the values u,~ 107*3*gm/cc, 3 HZ ~10~2°gm/cc
one finds uy,~2.1073! gm/cc, in very close agreement with the observed
density of luminous matter in the universe. When (6.12) is valid, the
approximate solution of (6.10) is

ko(l)—l xp { —22 c*cos2® ¢ =3 lo r

—7eP B2+ B(I+byP+ oY)
2b(+5b%) _1<l+b>_ (4b12+(7b2—c2)l+4b3—2bc2)H '
c(c?+ b2y (I+b*+2) B2+

where for brevity we have written c¢:=cot¥/2, b: = M/6a3. This is
therefore the formula determmmg the black-body temperature in a low-
density type V universe which is almost isotropic. It follows that to first
order in X the black-body temperature has the angular dependence f(©)
cos2® where f(O) is sharply peaked at small values of @. These “hot
spots” near the a direction result from the way the geodesics in these

19 This is the simplest family of Robertson-Walker models with R* <0, because
it is precisely the family in which the expression for I' does not involve a square root

M
in fact, ' = —.
(m ac ap+ 61%)

20 Where we have used the relations at the end of Section 3 of [1], and made the
approximation yu, <3 HZ. More generally, (6.13) would take the form

Py = 2(1/ 3H02ﬂr -“r) .
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spaces tend to the —a direction; this geometrical effect might lead us
to expect such observational effects in all Class B models. (Note however
that no such measurable effects occur in the L.R.S. Class B models, in
which the a direction has no invariant significance.) Calculations similar
to that above have been given by Novikov [53] and Matzner [51] (and,
by various authors, for the more general models of Bianchi type V in
which the fluid flow is not orthogonal to the surfaces of homogeneity
[52, 547).

Finally, we note that (6.2) shows that as one looks back towards
the singularity (where /— 0) one would see a large blueshift for objects
near the singularity in the direction of any axis for which [;— 0 as [—0.
If [, tends to a finite number as [—0, objects in that direction would
be seen to have a finite maximum redshift. If [, —0 as [0, the redshift
for objects in that direction would go to infinity as [—0. In fact all these
behaviours can occur, for in a type I model with — % <o < % one
would see infinite redshifts in two axis directions and infinite blueshifts
in the third (a “cigar” singularity would occur, cf. [55]) while if « = %
one would see infinite redshifts in one axis direction and finite maximum
redshifts in the other two directions?! (a “pancake” singularity would
occur), where the angle o« is as in (7.14) of [ 1]. The behaviour of the other
models near the singularity is discussed in a subsequent paper; one finds
behaviour like the type I “cigar” case in many cases, but more complex
behaviour can occur (cf. [56, 577). In practice, of course, one would not
expect to see the behaviour near the singularity as the universe is opaque
to light and radio waves at early times; however one might expect to
see related deviations from an isotropic z — ¢ relation, in which the obser-
vational curves turn over (cf. [48]).

7. Discussion

In this paper we have reviewed ways of calculating observational
relations in general cosmological models and applied the simplest of
these to the class of spacetimes studied in a previous paper [1]. The
form taken by the observational relations in the Robertson-Walker
models is well known; closed form expressions have also been given in
Bianchi I spaces [48] and in Kantowski-Sachs spaces [40]. We show
in Section 5 that such expressions can also be found in L.R.S. type II
spaces, and that apart from the remaining L.R.S. spaces (of types VIII

" 21 providing that the behaviour of the matter and radiation is reasonable, e.g.
#/3zp=0and u=%0.



Homogeneous Cosmological Models. 11 61

and IX) it is unlikely that one will be able to find closed form expressions
for observational relations in the other models discussed in [1]. However
no difficulty arises in integrating the observational relations numerically
in these spaces (cf. [37]). Further we show in Section 6 that one can obtain
closed-form expressions for the observational relations down the principal
axes of shear in many cases (in particular, in all Class A models); in prin-
ciple one could obtain complete information about the history of these
universes from observations in these directions alone. In fact, one could
determine the world model from the coefficients of the first two powers
of z in the m — z relations down these axes alone.

The variation of the observed temperature of primeval black-body
radiation over the sky would give a measure (at least in Class A models)
of the overall distortion of the universe since the time of last scattering
of this radiation. In most of the models, large black-body temperatures
could occur in certain directions with accompanying anomalous be-
haviour of the other observational relations for these directions. In
Section 6 we calculate explicitly the observed black-body radiation
temperature in a (type V) universe which is, since the time of decoupling,
nearly the same as a low-density Robertson-Walker universe with A= 0.
Incidentally, we show that there is a unique simplest such Robertson-
Walker universe defined by the Hubble constant H, and the present
value p, of the density of radiation in the universe: it is that one in which
the density p, of matter is given by u, =2(/3Hy*p, — p,). (This value
of u, is very close to the observed density of luminous matter in the
universe.)

The universe models we consider are homogeneous in a strict mathe-
matical sense: they admit a three-dimensional continuous group of iso-
metries. One might ask whether alternative definitions of homogeneity
might in fact correspond better to those universes an observer would
regard as homogeneous. For example, Grishchuk [58] has suggested
that one should regard as homogeneous only those universe models in
which the spatial parts 2? of the covariant derivatives of the spatial parts
of all geometrically or physically defined quantities vanish; the spaces
satisfying this criterion are the Robertson-Walker spaces, the Bianchi I
spaces discussed in [1] and the Kantowski-Sachs spaces (and so are
among the spaces in which explicit forms of the observational relations
can be obtained).

We show in Section 4 that the spaces considered here are such that

(except in case Bbii) all observational relations at any point are invariant
under a discrete group of isotropies. Thus one may regard the existence

22 By “spatial parts” we mean the projection of these tensors perpendicular to the
average velocity vector u°.
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of isotropies in astronomical observations as an observational test for
homogeneity: the existence of a continuous group of isotropies implying
the invariance of the space under a multiply-transitive group of isometries
(cf. [4, 49]) and discrete isotropies implying the existence of a simply-
transitive group of isometries. To determine a minimal dimension for
the orbits of the group of isometries, one can consider the directions e
in the sky such that observational relations in the e direction are identical
with those in the — e direction, and apply the following criterion?3:
if there are at least two independent such directions, the orbits of the
group are at least two-dimensional; if there are at least three independent
such directions (i.e. there is a third such direction which does not lie
in the plane defined by the first two) then the orbits of the group are
at least three-dimensional, and so the spacetime is spatially homogeneous.
This then provides observational criteria which are sufficient to enable
one to state that a cosmological model is spatially homogeneous (the
spaces so defined include all L.R.S. subcases and all Class A spaces;
they therefore include all the spaces satisfying Grishchuk’s criterion).
This criterion does not include all the spaces satisfying the conditions
imposed in [1]; however in most of these exceptional cases (ie. all
except Bbii) one might be able to determine the spatial homogeneity
by noting that there must exist a third direction e, orthogonal to the
first two, such that the black-body temperature is necessarily the same
in the e and — e directions. Thus, with the exception of case Bbii it is
possible one could use the observational isotropies to characterise spatial
homogeneity in all of these spaces. One suspects that any other way of
trying to prove observationally that these models were spatially homo-
geneous would be rather more difficult to carry out both in principle
and in practice.

The nature of the singularities in these spacetimes, and the behaviour
far from them, will be discussed in a subsequent paper.
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