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Abstract 
W e  introduce a class of graphs which are variants  

of t h e  hypercube graph. M a n y  of the  properties of this 
class of graphs are s imilar  t o  tha t  of the  hypercube 
hence, we  refer t o  t h e m  as t h e  class of Hypercube-Like 
( H L )  graphs/networks. W e  show that  the  hypercube, t h e  
twisted n-cube [l] and the  multiply-twisted cube [2] are 
members  of this class of graphs. W e  also propose s im-  
ple strategies f o r  distributed m u t i n g  and broadcast and 
discuss s o m e  issues regarding embedding other  graphs 
and reconfiguration in such  networks. 

1 Introduction 
The attractive properties of the hypercube graph [3] - 

a logarithmic diameter, a simple labeling scheme, good con- 
nectivity, recursive scalability and symmetry - have made 
it a popular topology for the design of multicomputer in- 
terconnection networks. Efforts to improve some of these 
properties have lead to the evolution of hypercube variants. 
Cube Connected Cycles ,  the Brigded and the Folded Hy-  
percubes and the Extended Hypercube are variants (see [4] 
for references) derived through the addition of extra nodes 
and/or links to the hypercube. Another category of vari- 
ants, which includes the Twisted n-cube 111 and the Mul-  
tiply twisted cube [a], is derived by manipulating only the 
node-link incidences of the hypercube without the addition 
of extra nodes and links. 

In this paper we present a general method of inductively 
constructing such a class of hypercube variants. We investi- 
gate the graph-theoretic properties of this class of networks. 
Since mwt of the properties of such graphs/networks' are 
similar to that of the hypercube, we shall refer to them as 
Hypercube Like (HL) graphs/networks. We show that the 
hypercube, the twisted n-cube and the multiply twisted cube 
are members of this class. We propose simple strategies for 
distributed routing and broadcast in such networks and also 
discuss some aspects about reconfiguration. 

For the sake of brevity, we omit all proofs and detailed 
discussions and provide only the key results and ideas. De- 
tailed discussions and proofs of theorems are given in [4]. 

*Now with Tata Consultancy Services, Bangalore, India 
'In the discussion to follow we shall use the terms "graphs" and 

"networks" interchangeably. 

2 Preliminaries 
2.1 Notation 

Standard graph-theoretic notations [51 are used. Other 
terminology is explained below. 

A permutat ion,  A" , is defined as a one-bone correspon- 
dence on the object set Z, = {0 ,1 ,  ..., 2" - 1). We use the 
one-line represenation for denoting a permutation. 

The binary representation of a vertex labelled v will be 
given by < w >2 . Also, a string of n bits, with p leading Os 
will be represented as OPl*'-P-' ( I * '  represents don't care). 

The label of an edge of a graph is the number of signifi- 
cant bits in the XORed value of the binary representations 
of labels of its endpoints, i.e., for a graph G, the label of 
an edge e(vi ,uj )  between two vertices vi and U, E V(G), is 
given by, ZabeZ(eVivJ) = n - p where p is derived from the 
n-bit binary representations of vi and U, from the relation 
<vi>2 @ <vj>2=Opl*"-P-'. Anedgeorlink'withthelabel 
k is called a k-link. Similarly, the dimens ion  between any 
two vertices U, and v b  (not necessarily adjacent) in G is given 
by, DlM(v,,vb) = n-p, where < u , > ~  @ < v ~ > ~ =  Opl*n-p-l. 

The n-dimensional boolean hypercube3 graph, Q,, is a 
n-regular labeled graph on 2" vertices, the vertices being 
labeled 0 through (2,- 1). Two vertices vi and U,, belonging 
to Qn, are connected by an edge if and only if the binary 
representations of their respective labels have a Hamming 
distance of 1. The 3-cube(Qz) is shown in Fig. l(a). 

2.2 The class of HL-graphs 
The set of HL-graphs, a class of simple, connected, undi- 

rected graphs of dimension n will be represented as CHL,. 
A graph Gn+l E CHL,+' is inductively defined as: 

Gn+l = Inter(G,, G i ,  .") 

where G,, and GL E CHL,, and the function Inter( . )  which 
operates in the following two steps: step (i) interconnects 
the vertex vi E V(G,) to the vertex ..(vi) E V(Gi) by a 
edge, and step (ii) relabels the subset of vertices of G,+l 
corresponding to the vertices of G: by adding 2" to their 
existing labels. 

The basis of the inductive construction is Go, the simple 
labelled graph on a single vertex labelled 0. 

2We shall use the terms "edge" and "link" interchangeably. 
3The boolean hypercube has been variously referred to as the 

n-cube, binary hypemube or as the hypemube in the literature. 
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Example 2.1 The construction of graph G1 in 
Fig. 2 from Go is given by GI = Inter(Go,Go,ff), where 
~ " ( 0 )  = 0. Similarly G3 of Fig. 9 is constructed wing 
Gz and G; and $ = {1,2,3,0}. 8 

Since the function Inter(.) operates on two component 
graphs to  give one resultant graph, the steps involved in the 
construction of an HL-graph can be represented as a binary 
tree. The binary tree like representation of the construction 
of the twisted %cube, T Q 3  E CHL3, is shown in Fig. 4. The 
branches of the tree represent the constituent subgraphs of 
TQ3 and the nodes represent the permutations used at the 
corresponding stages of the construction. 

Using the binary tree like representation of the construc- 
tion of an HL-graph, it is possible to enumerate the number 
of members belonging to the set of HGgraphs of a particular 
dimension i.e., determine its cardinality, ICHL,I. 

Theorem 2.1 lCHL,I = n~~~[{2n-i-1}!]2i  ; n  2 1 

Thus, the class of HGgraphs is extermely rich in terms of the 
number of members that belong to  a particular dimension 

" - (CHLII = 1, ICHL,! = 2, ICHL31 = 96, and so on . . . 

3 Topological properties 
We show that the members of this class have several p rop  

erties which are similar to that of the binary hypercube. 
Some of these properties follow from the inductive construc- 
tion of HGgraphs. 
3.1 Basic properties 

Theorem 3.1 The number of vertices in a n-  
dimensional HL-graph is 2". 8 

Theorem 3.2 The number of edges in a n- 
dimensional HL-graph is n2"-'. 8 

Theorem 3.3 An n-dimensional HL-graph is a n- 
regular simple graph. 8 

Theorem 3.4 The number of k-links, 0 < k 5 n, in 
a G, E CHL, is 2"-'. 8 

Theorem 3.5 No two edges incident on any vertex 
of a HL-graph have the same label. 

Theorem 3.6 Connectivity ofGn E CHL, is n. 

Theorem 3.7 Given two distinct vertices, v; and 
vj E V(G,), there exist n disjoint U; t o  vj. paths in 
G, E CHL,. 8 

Theorem 3.8 A graph G, E CHL, iff 
(a) IV(Gn)l = 2" 
(b)  G, is n-regular 
(c) At every vertez, v E V(Gn), label(ei) # ZabeZ(ej), for 
any two edges e, and e, incident a t  v and ei # ej. 

The above theorem permits one to  identify networks which 
belong to the class of HL networks. 

4 Some known HL-graphs 
In this section we show that the n-cube , the twisted n- 

cube [l], and the multiply-twisted n-cube [2] belong to the 
class of HGgraphs. 
4.1 The n-cube 

The binary n-cube graph, Q,, can be defined as follows: 

Qn = Inter(Qn-1, Qn-11 $-I) 

where, x;-'(z) = Z, for 0 5 z 5 (2,-l - 1) and Qo is the 
same as Go. 

For a detailed discussion on the topological properties of 
n-cube see [3]. 
4.2 The twisted n-cube 

The twisted n-cube can be defined as follows: 

TQn = InWTQn-l,  Qn-1 ~ 7 - l )  

where, TQ, is the basis for induction, and is defined as 

T Q z  =Inter(Qi,Qi,  {1,0}). 

The twisted n-cube is defined only for n 2 2. 
T Q 3  is shown in Fig. l(b). It can be verified from the 

figure that TQ3 has a diameter of only 2 as opposed to  Q3, 
which has a diameter of 3. In general, a twisted n-cube, 
T&,, such that n 2 3 has a diameter of (n - 1). A detailed 
discussion on the properties and optimal routing in twisted 
n-cube is given in [I]. 
4.3 The multiply-twisted n-cube 

lows: 
The multiply-twisted cube(MQ,) can be defined as fol- 

MQ, = Inter( MQn-', MQnP1, x&') for n 2 3. 

where, 7~&l can be determined from definition 1 in (21. The 
basis for the above definition is MQZ = Q2. 

A MQ4, where ..", = {0,3,2,1,4,7,6,5}, is shown in 
Fig. 5. It can be observed that from Fig. 5 that the diameter 
of MQ4 is 3 as compared to Q4 which has a diameter of 4. It 
has been shown [2] that, in general the diameter of MQ, is 
[(n + l)/21. The properties of MQn and an optimal routing 
strategy for exploiting the reduced diameter are discussed 
in [a]. 
4.4 Comments 

We have shown that the n-cube, the twisted n-cube and 
the multiply-twisted n-cube can all be constructed using the 
construction procedure described in section 2 hence by the- 
orem 3.8 all three of them belong to  the class of HLgraphs. 
We have recently identified a new hypercubelike topology 
which is based on the recursive definition of the twisted 3- 
cube and has a diameter of [2n/31 and other interesting 
properties. 

5 Routing and Broadcast Strategies 
5.1 Routing strategy 

is applicable to all members of the class of HGnetworks. 
In this section we present a simple routing strategy that 
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The Dimension Reducing Algorithm 
The routing strategy is presented in the form of an a l p  

rithm. Let S be the source vertex and D be the destination 
vertex. 

Algorithm: 
While( S # D  I{ 

Set k = DIM($ D) 
Route message from s along the  
edge labeled k t o  node S 
Set S = S  } 

Example 5.1 Consider TQ as shown in Fig. 1 (a). 
To route a message from vertez 3 to vertez 4 using the 
above algorithm, the steps are shown in Fig. 6. The 
routing is completed in 3 hops. 

From example 5.1 illustrated above, we can see that the 
routing-algorithm does not necessarily route the message 
along the shortest path. However, note that after every step 
of routing the DIM between the new source and destination 
node goes on decreasing. Hence, this algorithm has been 
called the Dimension Reducing Algorithm. 

Theorem 5.1 If S is a source vertex and D a des- 
tination vertez which belong to an HL-graph G, and if 
DIM(S, D) = k, then the Dimension Reducing Algorithm 
routes from S to D in a t  most k steps. 

Corollary 5.1.1 For every HL-graph, G, E CHL,, 
the diameter, d(G,),  is less than o r  equal to n. 

5.2 Broadcast Strategy 
We present a broadcast strategy which is applicable to 

all HGgraphs. We show that this strategy is optimal and 
the broadcast completes in n steps for any H L g a p h  G, E 
CHL,. The underlying assumption is that a node can send 
a message to only one node at any given time. 
The Broadcast Algorithm 

algorithm shown below. 

Algorithm: 

The broadcast strategy is presented in the form of an 

For t h e  source node: 
Set k = 1 
While (k 5 n> { 

Send broadcast-message 
along k-link 
Set k = k + l  } 

For t h e  other nodes: 
When broadcast-message 
received along p-link 
Set k = p +  1 
While(k 5 n) { 

Send broadcast 
message along k-link 
Set k = k + l }  

Example 5.2 The steps in a broadcast from node 5 
in a TQ3 are shown in Fig. 7. The broadcast completes 
in 3 steps. 

Theorem 5.2 F o r  any G, E CHL,, the broadcast 
algorithm is optimally terminated in n-steps. 

The proof of the above theorem is based on the following 
observation 

Observation 1 For  any vertez v belonging to the 
graph G, E C H L ,  there are exactly 2k-1 vertices hav- 
ing a dimension k with respect to U. 

5.3 Comments 
In this section, we have presented a simple routing strat- 

egy for HL-networks. The routing strategy has a worst case 
n-step performance for n-dimensional networks. An optimal 
(under the assumption that any node in a HGnetwork can 
send atmost one message at a time) n-step broadcast alge 
rithm has also been presented. Both these algorithms can 
be implemented in a distributed manner and work for any 
€&network. 

6 Embedding 
It has been proved that the n-dimensional hypercube can 

embed graphs like (n - 1)-level binary trees and arbitrary 
size meshes, the twisted n-cube can embed n-level binary 
trees. Embedding a cycle on all the vertices in a graph re- 
quires the graph to  be hamiltonian. We have observed, 
during our studies, that all HGgraphs of dimension 2 or 
higher that we have come across, including the ones which 
do not belong to any of the known hypercube variants, are 
hamiltonian - the hypercube, the twisted n-cube and the 
multiply twisted n-cube are known to be hamiltonian. We 
conjecture that all HGgraphs of dimension 2 or higher are 
hamiltonian. Thus, we observe that networks belonging to 
the class of hypercube-like graphs can embed many of im- 
portant algorithmic graphs. 

7 Reconfigurability 
The class of HL-graphs is rich in terms number of mem- 

bers that belong to  the class. By altering the permutation at 
one or more nodes in the binary tree that represents the con- 
struction of an HGgraph, it is possible derive one HGgraph 
from the other. This would amount to either a relabeling of 
the original HGgraph or deriving a different non-isomorphic 
HGgraph. Figs. 8(a) and (b) show examples of fully and 
partially reconiigurable %dimensional HGnetworks. 

The reconfiguration scheme proposed above preserves the 
labels of the nodes and of each link incident on it; the only 
thing that changes with respect to any particular node is 
a subset of its neighbours. Thus, the generalized routing 
and broadcast algorithms proposed earlier, in section 5 can 
continue to  be used without modification in the reconfigured 
HGnetwork, which is a strong point in their favour. 
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8 Conclusions 
In this paper we have presented the class of hypercube- 

like graphs, and discussed the method of constructing such 
graphs. Several topological properties of this class of graphs 
have been discussed. It has been found that several of these 
properties resemble those of the binary hypercube graph. 
This class of graphs has a rich membership. The twisted 
n-cube and the multiply-twisted n-cube as well as the hy- 
percube have been shown to belong to this class of graphs 
(However, the class is not limited to these alone.). A wont- 
case n-step routing strategy and a n-step broadcast strat- 
egy, applicable to all HLnetworks, have been presented. 
Some properties related to emedding and schemes for achiev- 
ing partial and full reconfigurability amongst HLnetworks 
have been briefly indicated. We envisage that the class of 
hypercubelike graphs would be of interest to designers of 
multicomputer interconnection networks. 
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