A CLASS OF HYPERSURFACES WITH CONSTANT PRINCIPAL CURVATURES IN A SPHERE

RYOICHI TAKAGI

Introduction

In a series of papers [1], [2], [3], [4] E. Cartan investigated hypersurfaces M in a simply connected space form M(c) of constant curvature c such that all principal curvatures of M are constant. He classified such hypersurfaces completely for the case $c \le 0$, [1], and partially for the case c > 0, [2], [3], [4]. Recently H. F. Münzner [5] developed Cartan's theory and proved that to classify such hypersurfaces in a sphere is equivalent to find all homogeneous polynomials satisfying certain simultaneous differential equation. The purpose of this paper is to determine a class of M by giving a partial solution of the equation.

To state our result we shall describe an example of M in a sphere. For an integer $n \ge 2$ we denote by F_n a homogeneous polynomial

$$\left(\sum_{i=1}^{n+1} (x_i^2 - x_{i+n+1}^2)\right)^2 + 4 \left(\sum_{i=1}^{n+1} x_i x_{i+n+1}\right)^2$$

of 2n + 2 variables. Let S^{2n+1} denote the unit hypersphere in a Euclidean (2n + 2)-space \mathbb{R}^{2n+2} centered at the origin. For a number t with $0 \le t \le \pi/4$ we denote by $M^{2n}(t)$ a hypersurface in S^{2n+1} defined by the equation

$$F_n(x) = \sin^2 2t$$
, $x = (x_1, \cdots, x_{2n+2}) \in S^{2n+1}$.

It will be shown that $M^{2n}(t)$ is a connected compact hypersurface in S^{2n+1} having 4 constant principal curvatures with multiplicities 1, 1, n - 1 and n - 1, and admits a transitive group of isometries. Our result can be stated as

Theorem. Let M be a connected complete hypersurface in S^{2n+1} having 4 constant principal curvatures. If the multiplicity of one of the principal curvatures is equal to 1, then M is congruent to $M^{2n}(t)$. In particular, M admits a transitive group of isometries.

We note that, as mentioned above, E. Cartan classified those hypersurfaces in a sphere which have at most 3 constant principal curvatures or 4 constant principal curvatures with the same multiplicity. Thus for the case n = 2 the above theorem is due to E. Cartan. The polynomial F_2 was first found by E. Cartan [3], and F_n by K. Nomizu [6].

Received April 22, 1974, and, in revised form, April 18, 1975. Partially supported by Sakko-kai Foundation.

RYOICHI TAKAGI

1. Differential equation

In the first place we write up all indices and their ranges used in this paper. In § 1, α , $\beta = 1, \dots, 2n + 2$; $u = 1, \dots, 2n + 1$; $i, j = 1, \dots, 2m_0 + m_1$; $r, s, t = 2m_0 + m_1 + 1, \dots, 2n + 1$, where $m_0 + m_1 = n$. In § 2, u = 1, $\dots, 2n + 1$; $i, j = 1, \dots, 2n - 1$; r, s, t = 2n, 2n + 1; $a, b, c = 1, \dots, n - 1$. In § 3, $u = 1, \dots, 2n + 1$; $i, j = 1, \dots, n + 1$; $r, s, t = n + 2, \dots, 2n + 1$.

Let M be a connected complete hypersurface in S^{2n+1} having 4 constant principal curvatures $\cot \theta_a$ $(a = 1, \dots, 4)$ with $0 < \theta_1 < \theta_2 < \theta_3 < \theta_4 < \pi$. Let m_a be the multiplicity of $\cot \theta_a$. Then by theorems of H. F. Münzner [5, Theorems 1, 2 and 3] we know that $m_0 = m_2$ and $m_1 = m_3$ (so $m_0 + m_1 = n \ge 2$), and that there exist a number t with $0 < t < \frac{1}{4}\pi$ and a homogeneous polynomial \tilde{F} of degree 4 of 2n + 2 variables x_a such that

(1.1)
$$\sum_{\alpha} \left(\frac{\partial \tilde{F}}{\partial x_{\alpha}} \right)^2 = 16 \left(\sum_{\alpha} x_{\alpha}^2 \right)^3$$

(1.2)
$$\sum_{\alpha} \frac{\partial^2 \tilde{F}}{\partial x_{\alpha}^2} = 8(n-2m_0) \sum_{\alpha} x_{\alpha}^2 ,$$

and $M = \{x = (x_a) \in S^{2n+1}; \tilde{F}(x) = \cos 4t\}$. Conversely, for every t with $0 < t < \frac{1}{4}\pi$ and every homogeneous polynomial \tilde{F} satisfying (1.1) and (1.2), the set $\{x \in S^{2n+1}; \tilde{F}(x) = \cos 4t\}$ is a connected compact hypersurface in S^{2n+1} having 4 constant principal curvatures with multiplicites m_0, m_0, m_1 and m_1 .

Put $2F = (\sum_{\alpha} x_{\alpha}^2)^2 - \tilde{F}$. Then (1.1) and (1.2) are equivalent to

(1.3)
$$\sum_{\alpha} \left(\frac{\partial F}{\partial x_{\alpha}} \right)^2 = 16 \sum_{\alpha} x_{\alpha}^2 F ,$$

(1.4)
$$\sum_{\alpha} \frac{\partial^2 F}{\partial x_{\alpha}^2} = 8(m_0 + 1) \sum_{\alpha} x_{\alpha}^2.$$

Thus in order to prove our theorem it is sufficient to prove that if $m_0 = 1$ or $m_0 = n - 1$ then every homogeneous polynomial F satisfying (1.3) and (1.4) is congruent to F_n , i.e., $F(x) = F_n(\sigma(x))$ for an orthogonal transformation σ of \mathbb{R}^{2n+2} . In the remainder of this section we shall give the general properties of F. First fix an arbitrary index α . Without loss of generality we may assume that $F | S^{2n+1}$ takes its maximum at the point $p_\alpha = (0, \dots, 1, \dots, 0)$ (i.e., all the coordinates x's are zero except $x_\alpha = 1$). Then we have at p_α

(1.5)
$$\frac{\partial F}{\partial x_{\beta}} - cx_{\beta} = 0$$
 for a constant c and each β .

Here we put $F = a_{\alpha}x_{\alpha}^4 + Lx_{\alpha}^3 + Ax_{\alpha}^2 + Bx_{\alpha} + C$, where a_{α}, L, A, B and C denote homogeneous polynomials of $x_1, \dots, x_{\alpha-1}, x_{\alpha+1}, \dots, x_{2n+2}$ of degree

0, 1, 2, 3 and 4 respectively. From (1.5) we have $\partial L/\partial x_{\beta} = 0$ for $\beta \neq \alpha$ at p_{α} , and $c = 4a_{\alpha}$. From (1.3) and (1.5) it follows that $c^2 = 16a_{\alpha}$. These imply that L = 0, and $a_{\alpha} = 0$ or $a_{\alpha} = 1$. Next we shall give the relations which the polynomials A, B and C must satisfy under the assumption that $a_{\alpha} = 1$ for some index α , say 2n + 2. Thus A, B and C are polynomials of x_1, \dots, x_{2n+1} . From (1.3) and (1.4) we have respectively

(1.6)
$$\sum_{u} \frac{\partial^2 A}{\partial x_u^2} = 8m_0 - 4 ,$$

(1.7)
$$\sum_{u} \frac{\partial^2 B}{\partial x_u^2} = 0 ,$$

(1.8)
$$\sum_{u} \frac{\partial^2 C}{\partial x_u^2} + 2A = 8(m_0 + 1) \sum_{u} x_u^2;$$

(1.9)
$$\sum_{u} \left(\frac{\partial A}{\partial x_{u}}\right)^{2} = 16 \sum_{u} x_{u}^{2} ,$$

(1.10)
$$\sum_{u} \frac{\partial A}{\partial x_{u}} \frac{\partial B}{\partial x_{u}} = 4B ,$$

(1.11)
$$\sum_{u} \left(\frac{\partial B}{\partial x_{u}}\right)^{2} + 2 \sum_{u} \frac{\partial A}{\partial x_{u}} \frac{\partial C}{\partial x_{u}} + 4A^{2} = 16A \sum_{u} x_{u}^{2} + 16C$$
,

(1.12)
$$\sum_{u} \frac{\partial B}{\partial x_{u}} \frac{\partial C}{\partial x_{u}} + 2AB = 8B \sum_{u} x_{u}^{2},$$

(1.13)
$$B^2 + \sum_{u} \left(\frac{\partial C}{\partial x_u}\right)^2 = 16C \sum_{u} x_u^2 .$$

By a suitable choice of orthogonal transformation on x_1, \dots, x_{2n+1} we may set $A = \sum_u a'_u x^2_u, a'_1 \ge \dots \ge a'_{2n+1}$. From (1.6) and (1.9) we have $a''_u = 4$ and $\sum_u a'_u = 4m_0 - 2$. Hence $a'_i = 2$ and $a'_r = -2$.

Decompose B into P' + Q' + R' + S', where P', Q', R' and S' denote homogeneous polynomials of x_i and x_r whose degrees with respect to x_i are equal to 3, 2, 1 and 0 respectively. Then taking account of the degree with respect to x_i in (1.10) and using a relation $\sum_i x_i (\partial P' / \partial x_i) = 3P'$, etc. we know P' = R' = S' = 0. In other words, B is of the form $4 \sum_r x_r B_r$, where B_r 's denote homogeneous polynomials of x_i of degree 2.

Similarly decompose C into P + Q + R + S + T, where P, Q, R, S and T denote homogeneous polynomials of x_i and x_r whose degree with respect to x_i are equal to 4, 3, 2, 1 and 0 respectively. Then we know from (1.11)

(1.14)
$$P = -\sum_{r} B_{r}^{2} + \left(\sum_{i} x_{i}^{2}\right)^{2},$$
$$R = \sum_{i} \left(\sum_{r} \frac{\partial B_{r}}{\partial x_{i}} x_{r}\right)^{2} - 2\sum_{i} x_{i}^{2} \sum_{r} x_{r}^{2},$$
$$S = 0, \qquad T = \left(\sum_{r} x_{r}^{2}\right)^{2}.$$

Hence (1.7), (1.8) and (1.12) are reduced respectively to

(1.15)
$$\sum_{i} \frac{\partial^2 B_r}{\partial x_i^2} = 0 \quad \text{for each } r;$$

(1.16)
$$\sum_{i} \frac{\partial^2 Q}{\partial x_i^2} = 0 ,$$

(1.17)
$$\sum_{i,j} \left(\sum_{r} \frac{\partial^2 B_r}{\partial x_i \partial x_j} x_r \right)^2 = 8m_0 \sum_{r} x_r^2;$$

(1.18)
$$\sum_{r} B_{r} \frac{\partial Q}{\partial x_{r}} = 0 ,$$

(1.19)
$$\sum_{i,r} \frac{\partial B_r}{\partial x_i} \frac{\partial Q}{\partial x_i} x_r = 0 ,$$

(1.20)
$$\sum_{i,j,r,s,t} \frac{\partial B_r}{\partial x_i} \frac{\partial B_s}{\partial x_j} \frac{\partial^2 B_t}{\partial x_i \partial x_j} x_r x_s x_t - 8 \sum_r x_r^2 \sum_s x_s^2 = 0.$$

From (1.13) we have

(1.21)
$$\sum_{i} \left(\frac{\partial P}{\partial x_{i}}\right)^{2} + \sum_{r} \left(\frac{\partial Q}{\partial x_{r}}\right)^{2} - 16P \sum_{i} x_{i}^{2} = 0.$$

Put $B_r = \sum_{i,j} b_{ij}^r x_i x_j$ and denote by B^r the symmetric matrix (b_{ij}^r) of degree $2m_0 + m_1$. Then (1.15), (1.17) and (1.20) are reduced to

- (1.22) trace $B^r = 0$ for each r,
- (1.23) trace $(B^r)^2 = 2m_0$ for each r,
- (1.24) trace $B^r B^s = 0$ for each distinct r, s,
- (1.25) $(B^r)^3 = B^r$ for each r,
- (1.26) $B^s B^r B^r + B^r B^s B^r + B^r B^r B^s = B^s$ for each distinct r, s,
- (1.27) $\Im B^r B^s B^t = 0$ for each mutually distinct r, s, t,

228

where \mathfrak{S} denotes the cyclic sum with respect to r, s and t. (1.27) is significant only if $m_1 \geq 2$.

Now we assert that in order to solve (1.3) and (1.4) for $m_0 = 1$ or $m_0 = n - 1$ it is sufficient to consider the following two cases:

- (1) $m_0 = n 1$ and $a_\alpha = 1$ for some α ,
- (II) $m_0 = 1$ and $a_{\alpha} = 1$ for each α .

In fact, all the possible cases besides (I) and (II) are (1) $m_0 = n - 1$ and $a_{\alpha} = 0$ for each α , (2) $m_0 = 1$ and $a_{\alpha} = 0$ for each α , and (3) $m_0 = 1$ and $a_{\alpha} = 1$, $a_{\beta} = 0$ for some α, β . In any case we put $G = (\sum_{\alpha} x_{\alpha}^2)^2 - F$. Then G satisfies

$$\sum_{\alpha} \left(\frac{\partial G}{\partial x_{\alpha}} \right)^2 = 16 \sum_{\alpha} x_{\alpha}^2 G , \qquad \sum_{\alpha} \frac{\partial^2 G}{\partial x_{\alpha}^2} = 8(n - m_0 + 1) \sum_{\alpha} x_{\alpha}^2 .$$

This means that each of the cases (1), (2) and (3) is reduced to (I) or (II). We shall consider the case (I) (resp. (II)) in § 2 (resp. § 3).

2. The case (I)

We may assume that $a_{2n+2} = 1$. From (1.22), (1.23) and (1.25) it follows that by a suitable choice of orthogonal transformation on x_1, \dots, x_{2n-1} we may set $B_{2n} = \sum_a x_a^2 - \sum_a x_{a+n-1}^2$, or equivalently

$$B^{2n} = \begin{bmatrix} I & 0 & 0 \\ 0 & -I & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

where I denotes the unit matrix of degree n - 1. Denote the transpose of a matrix J by ^{t}J , and put

$$B^{2n+1}=egin{bmatrix} X&Y&u\ ^tY&Z&v\ ^tu&^tv&w \end{bmatrix},$$

where $Y = (Y_{ab})$ is a matrix of degree n - 1, and $u = (u_a)$ and $v = (v_a)$ are column vectors. Then by (1.26) we obtain X = Z = 0, w = 0, and

(2.1) $\sum_{c} Y_{ac} Y_{bc} + 2u_a u_b = \delta_{ab} \quad \text{for each } a, b ,$

(2.2)
$$\sum_a u_a^2 = \sum_a v_a^2 .$$

Hence from (1.25) it follows that

RYOICHI TAKAGI

(2.3)
$$u_a \sum_c Y_{bc} v_c + u_b \sum_c Y_{ac} v_c = 0$$

(2.4)
$$v_a \sum_c Y_{cb} u_c + v_b \sum_c Y_{ca} u_c = 0 \quad \text{for each } a, b .$$

Putting a = b in (2.3) we get $u_a \sum_c Y_{ac}v_c = 0$. Then by multiplying (2.3) by u_a and taking the sum over a we have $\sum_a u_a^2 \sum_c Y_{bc}v_c = 0$ for each b. Thus we need to divide our discussion into two cases.

(1) The case $\sum_a u_a^2 = 0$. It follows from (2.1) and (2.2) that v = 0 and Y is an orthogonal transformation on x_n, \dots, x_{2n-2} . Putting $y_a = \sum_b Y_{ab} x_{b+n-1}$, we have $B_{2n+1} = 2 \sum_a x_a y_a$, $B_{2n} = \sum_a (x_a^2 - y_a^2)$ and $A = 2 \sum_a (x_a^2 + y_a^2) + x_{2n-1}^2 - \sum_r x_r^2$. Since Q is of the form $\sum_r Q_r x_r$, where Q_r 's denote homogeneous polynomials of x_i of degree 3, we have, in consequence of (1.18),

$$0 = \sum_{r} B_{r}Q_{r} = \sum_{a} (x_{a}^{2} - y_{a}^{2})Q_{2n} + 2 \sum_{a} x_{a}y_{a}Q_{2n+1}$$

Hence $Q_{2n} = B_{2n+1}L$ and $Q_{2n+1} = -B_{2n}L$ for a linear combination L of x_a , y_a and x_{2n-1} . Substituting these in (1.16) we get $\partial L/\partial x_a = \partial L/\partial y_a = 0$, i.e., $L = kx_{2n-1}$ for a constant k. Substituting P in (1.14) and the above Q in (1.21) we find $k^2 = 16$. Clearly we may adopt k = 4. Thus F must be of the form

$$\begin{aligned} x_{2n+2}^{4} + 2 \bigg(\sum_{a} (x_{a}^{2} + y_{a}^{2}) + x_{2n-1}^{2} - \sum_{r} x_{r}^{2} \bigg) x_{2n+2}^{2} \\ &+ 4 \bigg(\sum_{a} (x_{a}^{2} - y_{a}^{2}) x_{2n} - 2 \sum_{a} x_{a} y_{a} x_{2n+1} \bigg) x_{2n+2} \\ &+ 4 \sum_{a} x_{a}^{2} \sum_{a} y_{a}^{2} - 4 \bigg(\sum_{a} x_{a} y_{a} \bigg)^{2} + 2 \sum_{a} (x_{a}^{2} + y_{a}^{2}) x_{2n-1}^{2} + x_{2n-1}^{4} \\ &+ 4 \bigg(2 \sum_{a} x_{a} y_{a} x_{2n} + \sum_{a} (x_{a}^{2} - y_{a}^{2}) x_{2n+1} \bigg) x_{2n-1} \\ &+ 2 \bigg(\sum_{a} (x_{a}^{2} + y_{a}^{2}) - x_{2n-1}^{2} \bigg) \sum_{r} x_{r}^{2} + \bigg(\sum_{r} x_{r}^{2} \bigg)^{2} . \end{aligned}$$

However, an orthogonal transformation $(x_1, \dots, x_{2n+2}) \rightarrow (x_1, \dots, x_{2n-2}, (x_{2n-1} + x_{2n})/\sqrt{2}, (x_{2n-1} - x_{2n})/\sqrt{2}, (x_{2n+1} + x_{2n+2})/\sqrt{2}, (x_{2n+1} - x_{2n+2})/\sqrt{2})$ of \mathbf{R}^{2n+2} deforms the above polynomial into a polynomial of degree 2 with respect to each x_{α} . Therefore it should appear in § 3 if it is a solution.

(2) The case $\sum_{a} u_{a}^{2} \neq 0$. Since $\sum_{c} Y_{bc}v_{c} = 0$ for each b, (2.2) and (2.4) imply $\sum_{c} Y_{ca}u_{c} = 0$ for each a. Multiplying (2.1) by u_{b} and taking the sum over b we get $2u_{a} \sum_{b} u_{b}^{2} = u_{a}$ for each a. Hence $\sum_{a} u_{a}^{2} = \sum_{a} v_{a}^{2} = \frac{1}{2}$. It is easily seen that by a suitable choice of orthogonal transformation leaving B_{2n} invariant we may assume that $u_{n-1} = v_{n-1} = 1/\sqrt{2}$ and all the other u_{a} and v_{a} vanish. By (2.1), (2.3) and (2.4) we see that Y is of the form $\begin{bmatrix} Y' & 0 \\ 0 & 0 \end{bmatrix}$,

230

 $Y' \in O(n-2)$. Hence

$$B_{2n} = \sum_{s=1}^{n-2} (x_s^2 - y_s^2) + x_{n-1}^2 - y_{n-1}^2 ,$$

$$B_{2n+1} = 2 \sum_{s=1}^{n-2} x_s y_s + \sqrt{2} (x_{n-1} + y_{n-1}) x_{2n-1}$$

As in the case (1), from (1.18) we have $Q_{2n} = B_{2n+1}L$ and $Q_{2n+1} = -B_{2n}L$ for a linear combination L of x_a, y_a and x_{2n-1} . Then taking account of the coefficients of x_{2n}^2 and $x_{2n}x_{2n+1}$ in (1.19) we find Q = 0. But substituting the first equation of (1.14) in (1.21) we can easily see n = 2. In fact, the coefficient of $x_{2n}x_{2n+1}$ does not vanish if n > 2. Since $a_a = 1$ for $1 \le \alpha \le 6$, our polynomial should appear in § 3 if it is a solution.

3. The case (II)

We put

$$F = x_{2n+2}^4 + A x_{2n+2}^2 + B x_{2n+2} + C$$
,

where A, B and C denote homogeneous polynomials of x_1, \dots, x_{2n+1} of degree 2, 3 and 4 respectively. It follows from (1.22), (1.23) and (1.25) that by a suitable choice of orthogonal transformation on x_1, \dots, x_{n+1} we may set

$$B^{n+2} = egin{bmatrix} 0 & 0 & 1 \ 0 & 0 & 0 \ 1 & 0 & 0 \end{bmatrix},$$

where the central 0 denotes the zero matrix of degree n - 1. For each r > n + 2 we put

$$B^r = egin{bmatrix} x^r & p^r & w^r \ ^t p^r & Y^r & q^r \ w^r & ^t q^r & z^r \end{bmatrix},$$

where Y^r is a symmetric matrix of degree n - 1. Putting r = n + 2 in (1.26) and s = n + 2 in (1.26) we get, respectively, $x^s + z^s = 0$, $w^s = 0$, $Y^s = 0$ for each s > n + 2, and

(3.1)
$$(x^r)^2 + |p^r|^2 + |q^r|^2 = 1$$
, ${}^t p^r {}^t q^r + q^r p^r = 0$

for each r > n + 2. From (1.25) it follows that

$$(3.2) x^r((x^r)^2 + 2|p^r|^2 - 1) = 0, ((x^r)^2 + |p^r|^2 - 1)p^r = 0$$

for each r > n + 2. If n > 2 we put t = n + 2 in (1.27) so that

RYOICHI TAKAGI

$$(3.3) t p^r t q^s + t p^s t q^r + q^r p^s + q^s p^r = 0$$

 $(3.4) \quad p^{r} \, {}^{t}p^{s} + {}^{t}q^{r}q^{s} + x^{r}x^{s} = 0 \qquad \text{for each distinct } r, s \ge n+2 \; .$

Lemma. For each r > n + 2, either $|p^r| = 1$, $q^r = 0$ and $x^r = 0$, or $p^r = 0$, $|q^r| = 1$ and $x^r = 0$.

Proof. It follows from (3.1) and (3.2) that for each r > n + 2, (1) $|p^r| = 1$, $q^r = 0$, $x^r = 0$, or (2) $p^r = 0$, $|q^r| = 1$, $x^r = 0$, or (3) $p^r = 0$, $q^r = 0$, $x^r = \pm 1$. Suppose that case (3) occurs, or equivalently $B^r = \pm (x_1^2 - x_{n+1}^2)$. Then such an r is unique by (1.24). Hence the polynomial P (and so also F) does not involve the term x_1^4 . Since this is not the case, by the symmetry of p^r and q^r we may assume that $p^r \neq 0$ for some r > n + 2. Then from (3.3) we have $q^s p^r = 0$ for each s > n + 2 since $q^r = 0$ by (1). Thus $q^s = 0$ for each s. q.e.d.

Owing to this lemma and (3.4) we may set $B_r = 2x_1x_{r-n}$ for each r. Then, since $\sum_u (\partial P/\partial x_u)^2 = 16 \sum_u x_u^2$, we have $\sum_r (\partial Q/\partial x_r)^2 = 0$ from (1.21). This implies that Q = 0. It is easily seen that the following polynomial which we just determine satisfies (1.3) and (1.4) for $m_0 = 1$:

$$egin{aligned} &x_{2n+2}^4 + \; 2 \Big(x_1^2 + \; \sum\limits_r \, x_r^2 - \; \sum\limits_r \, x_{r-n}^2 \Big) x_{2n+2}^2 + \; 8 x_1 \; \sum\limits_r \, x_r x_{r-n} x_{2n+2} \ &+ \; \Big(x_1^2 + \; \sum\limits_r \, x_{r-n}^2 - \; \sum\limits_r \, x_r^2 \Big)^2 + \; 4 \Big(\sum\limits_r \, x_r x_{r-n} \Big)^2 \; . \end{aligned}$$

This is nothing but F_n in the introduction.

4. Homogeneity of M

Let *M* be a hypersurface in S^{2n+1} satisfying the condition of our theorem. Then by § 1 there exist a number *t* with $0 < t < \frac{1}{4}\pi$ and a homogeneous polynomial *F* satisfying (1.3) and (1.4) such that $M = \{x \in S^{2n+1}; F(x) = \sin^2 2t\}$, and vice versa. In § 2 we prove that every homogeneous polynomial *F* satisfying (1.3) and (1.4) is congruent to F_n , i.e., $F(x) = F_n(\sigma x)$ for some $\sigma \in 0(2n + 2)$. On the other hand, it is known [6] that a hypersurface $M^{2n}(t) = \{x \in S^{2n+1}; F_n(x) = \sin^2 2t\}$ in S^{2n+1} admits a transitive group $G = SO(n) \times SO(2)$ of isometries, which can be considered as an analytic subgroup of O(2n + 2). Thus *M* admits a transitive group $\sigma^{-1}G\sigma$ of isometries.

Remark. There are more examples of connected compact hypersurfaces in S^{2n+1} having 4 constant principal curvatures with multiplicities m_0, m_0, m_1 and $m_1 (m_0 + m_1 = n)$ (cf. [7]). We shall mention only the pairs (m_0, m_1) : $(2, 2n - 1) (n \ge 2)$, $(4, 4n - 5) (n \ge 2)$, (4, 5) and (6, 9). Each of these examples admits a transitive group of isometries.

232

References

- [1] E. Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl. 17 (1938) 177-191.
- [2] —, Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z. 45 (1939) 335–367.
- [3] —, Sur quelques familles remarquables d'hypersurfaces, C. R. Congrès Math. Liège, 1939, 30-41.
- [4] —, Sur des familles remarquables d'hypersurfaces isoparamétriques des espaces sphériques à 5 et 9 dimensions, Rev. Univ. Tucumán, Ser. A, 1 (1940) 5-22.
- [5] H. F. Münzner, Isoparametrische Hyperflächen in Sphären, to appear.
- [6] K. Nomizu, Some results in E. Cartan's theory of isoparametric families of hypersurfaces, Bull. Amer. Math. Soc. 79 (1973) 1184–1188.
 [7] R. Takagi & T. Takahashi, On the principal curvatures of homogeneous hyper-
- [7] R. Takagi & T. Takahashi, On the principal curvatures of homogeneous hypersurfaces in a sphere, Differential Geometry, in Honor of K. Yano, Kinokuniya, Tokyo, 1972, 469–481.

TOKYO UNIVERSITY OF EDUCATION