
QUARTERLY OF APPLIED MATHEMATICS
VOLUME LVII, NUMBER 3
SEPTEMBER 1999, PAGES 465-474

A CLASS OF INVERSE PROBLEMS
FOR VISCOELASTIC MATERIAL

WITH DOMINATING NEWTONIAN VISCOSITY

By

JAAN JANNO (Department of Mechanics and Applied Mathematics, Institute of Cybernetics,
Tallinn, Estonia)

LOTHAR VON WOLFEESDORF (Institut fur Angewandte Mathematik I, TU Bergakademie
Freiberg, Germany)

Abstract. Memory kernels in linear stress-strain relations involving a Newtonian
viscosity are identified by solving a class of inverse problems. The inverse problems are
reduced to nonlinear Volterra integral equations of the first kind which in turn lead to
corresponding Volterra equations of the second kind by differentiation. Applying the
contraction principle with weighted norms we derive global (in time) existence, unique-
ness and stability of the solution to the inverse problems under similar assumptions as
for related inverse problems in heat flow.

1. Introduction. In the linear theory of viscoelasticity for general materials with
memory the constitutive stress-strain relation involves an integral term over the past
history of the material containing a time-dependent kernel (cf. [13]—[15]). For identify-
ing such memory kernels inverse problems have been used starting with the papers by
Grasselli, Kabanikhin, Lorenzi [4, 5] and continued, for instance, in Grasselli [2], Lorenzi
[12] and in our papers [8, 9].

In this paper we continue the investigations in [8, 9] to inverse problems for memory
kernels in stress-strain relations involving a Newtonian viscosity term (see [15, pp. 21,
28]). As in [8, 9], by means of Fourier's method of eigenfunction expansion for the direct
initial-boundary value problem, we reduce the inverse problem to a nonlinear Volterra
integral equation of the first kind. Differentiation of it leads to a corresponding equation
of the second kind. To this equation we apply the contraction principle in weighted
norms obtaining global (in time) existence and uniqueness of the solution and stability
estimates for it. This method has been applied to related problems first in Janno [7]
and more generally in Bukhgeim [1]. In contrast to the "hyperbolic" cases dealt with
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in [8, 9] in the present "parabolic" case the needed assumptions are as weak as in the
corresponding inverse problems for heat flow (cf. [10]).

The application of the contraction principle to the Volterra integral equation of the
second kind gives a basis for the numerical computation of the solution by the iteration
method. For simplicity, in the following we only deal with continuous memory kernels in
the generic "main case". Corresponding problems with weakly singular memory kernels
can be dealt with as in [9] and [10] and additional cases to the main case as in [8,
9]. Further, as in [8]—[10] inverse problems with observation functionals containing the
traction can be treated (see also Grasselli [3]).

2. Problem formulation. We deal with the problem of identifying the continuous
kernel m appearing in the linear parabolic integrodifferential equation

putt(t,x) = r)Aut + (3Au — / m(t — t)Au(t,x) dr +
Jo (1)

in Q = D x (0, T), where D is a bounded domain in R" with piecewise smooth boundary
S, r/ > 0, (3 > 0 are given constants, p > 0 and \ are given continuous functions on Q,
and A denotes the Laplacian.

In the case n = 1 Eq. (1) occurs for viscoelastic wave propagation in a material with
memory governed by the stress-strain relation

a(t,x) = r)£t(t,x) + /3s(t,x) — / m(t — r)e(r, x) dr (2)
J — OC

between the strain e and the stress <r, where r\ is a Newtonian viscosity which we take as
positive (for the case r\ = 0 see our papers [8, 9]) and m is the relaxation memory kernel
(see [15], pp. 21, 28). Further, we have e = ux with the displacement u and, as usual,
we assume u(x, ()e0 for t < 0.

The solution u of Eq. (1) should meet the initial and boundary conditions

u(0,x) = ip(x), ut{0,x)=ip(x) on D, (3)

u(t,x) = 0 or dvu + au = 0 on E = 5x (0,T), (4)

where v is the outer normal to S and ip, tp and a > 0 are given continuous functions on
D and S, respectively.

In the inverse problem we have to find m for t £ [0,T] from Eqs. (1), (3), (4) and, in
addition, from a condition of the form

*[u](t) = h{t), t e [0,T], (5)

where h is a given continuous and differentiable function on [0, T\ and ^ a linear func-
tional on u(t, •), for instance the values u(t, xq) of u in some fixed point Xq S D.

If we introduce the velocity v = Ut in Eq. (1) we obtain the following equation for v
(cp. [6] or [14, p. 135], for instance):

pvt — T]Av - f G(t — t)Av(t,x) dr + (6)
Jo
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where the kernel G is given by

G(t) = ( m(s)ds — (3 (7)
Jo

and the function x by

X(t, x) = f{t, x) - A<p{x)G{t). (8)

So, in the case A</? e 0 we arrive at a corresponding inverse problem for the smooth
kernel (7) in a heat conduction problem which has been treated in [11], Therefore, we
assume Aip ^ 0.

In the following we consider the inverse problem for Eq. (1) as a particular case of the
abstract problem

il(t) + i)Aii[t) + /3Au(t) — f m(t — t)Au(t) cLt = /(£) (9)
Jo

in [0,T] with the conditions u(0) = p, u(0) = xp and (5), where u, f £ ([0,T] —> X)
are abstract functions with values in a Hilbert space X, >3/ is a linear functional on X,
and A is a linear symmetric operator in X possessing a complete orthonormal system of
eigenelements vn with nonnegative eigenvalues jj,n of finite multiplicity:

Avn = nnvn, 0 < Hx < fj,2 < ■ ■ ■ ■ (10)

In the case of Eq. (1), where A = — (l/p)A with (4), we will not specify the space X
in advance and deal with a general functional not necessarily continuous; only the
coefficients 7„ = ^[un] are assumed as finite numbers.

3. Reduction to an integral equation of the first kind. The solution u of Eq.
(9) is taken in the form of the Fourier expansion

OC

«(*) = £*»(*)«„. (n)
n=l

By Eq. (9) and u(0) = <£>, u(0) = ip the scalar coefficient functions Bn in (11) are the
solutions of the initial-value problem

Bn{t)+ rnj,nBn(t) + (3/jnBn(t) = Hn(m* Bn)(t) + fn(t), te[0,T], (12)

B„ (0) = ipn, Bn{ 0) = Vn, (13)

where fn(t), (pn, 4>n are the Fourier coefficients of f(t), <p, tp, respectively, and * denotes
convolution.

The problem (12), (13) is equivalent to the Volterra integral equation for Bn,

Bn{t) - (Ln[m\ * Bn)(t) = $„(t), t € [0,T], (14)

where

Ln[m\(t) = fj,n(ln (15)
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and ln are the solutions of

^n ~t~ Vf^n^n ~t~ P/-^n^n = /n> ^n(O) — ̂ Pni ^n(O) = V'n; (1^)

In + VlJ-nin + In = 0, ^n(O) = 0, /'n(O) = 1. (17)

From (16), (17) we have

ln(t) = exp [~ant]Sm^bnt (18)
Un

with

an = Wn/2, bn = (??Vn/4 - /?Mn)1/2, (19)

where Re 6n > 0, and

$n(*) = fn(in{t) + r)fJ,nln(t)) + l/jnln(t) + (/„ * /„)(t). (20)

By (11) the additional condition (5) takes the form
OC

Y^lnBntt) = h(t), t e [0,T], (21)
n= 1

provided the series in (21) is (pointwise) convergent. Using (14) with (15) the condition
(21) is reduced to the nonlinear Volterra integral equation of the first kind

[ K[m](t — s)m(s) ds = g(t), te[0,T], (22)
Jo

where
OC

K\rn\(t) = ^ ^ 7nMn(^n * -^n)(0? (^3)
71=1

oo

g(t) = h(t) ~ ^2 7n$n (*)■ (24)
n= 1

Defining the solution u of problem (9) with «(0) = <p, u(0) = xj) by Eq. (11), the
integral equation (22) for m together with Eqs. (14) for the Bn = Bn[m\ are equivalent
to the inverse problem.

4. Preparations. At first we prove the following estimates for the functions ln in
(18). For t > 0 and k = 0,1,... it follows that

lin\l^{t)\<Ck^ n= 1,2,... (25)

with positive constants Ct• Namely, from (18) we have

k /,A f smhbnt\^Mn4fc) W = ^2 (^j (exp[-ani])(fc~
3= 0 W \ K y ^

= (-1 )\2/r1)a^e-^tS^b^ + Sk,
On



VISCOELASTIC MATERIAL WITH DOMINATING NEWTONIAN VISCOSITY 469

where So = 0 and

Sfe = (At„/2)^[fcV-an)fc-^n-1e-a"t(eh"t-(-l)^e-b"t), k > 1. (27)
j=l

Further, since the function sinhy/y is increasing for y > 0 and 0 < bn < an in the
case of real bn we can estimate

sinh6„i „ ,sinh a„t 1
—— < ante~ n  — < 28
bn - ant - 2 '

For imaginary bn we have | smhbnt/bnt\ < 1 which together with \ante~ant\ < 1/e yields

a„e ant

^_Q?itsinh bnt <i. (29)

Moreover, by (19)

|e-°nte6„t|, |e-o„te-6„t| < L (30)

Using (28)-(30) in (26), (27) as well as an = r)fin/2 and the inequalities

\bn\ < max (/?Mn)1/2) , ^ < P>~1/2Hn

where p, is the first non-vanishing eigenvalue, we obtain (25).
For proving existence and stability of the solution m to Eq. (22) we introduce the

scale of norms

IHU := l|e"CTtTO||c[o,T] = omaxr(e-a'|m(£)l)> ° > 0

with ||m|| := ||m||o- It follows that

e~aT\\m\\ < ||m||CT < ||m||, a > 0. (31)

Further, we denote the data set by d = {(<fn)n>i, (V0n>i> (fn)n>i)- Then our main
lemma becomes

Lemma. Let m, /„ G C[0,T] and
OO OO OO

\ln\vl\Wn\ < 0°, ^2hn\^l\i>n\ < ^2 \ln\fJ-l\\fn\\ < OO. (32)
n=1 n=1 n=1

Then A^3^[rn] e C[0,T\. Further, for kernels K[ma,da} corresponding to ma, da,
a = 1, 2, respectively, the following inequality holds for a > 0:

||- K{i)[m2,d2]||CT < M(\\m}\\,y, ||m2||CT, Irf1^)

x {Hm1 - m2\\a + Id1 - d2\0},

where M is a continuous function nondecreasing in each of its arguments and
OO

Mlo := ^2 hnlnliVnlVn] + \lpn\ + ||/n||]- (34)
n= 1
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Proof. First, observe that for , v<2 £ C[0,T} we have

||V1 * W2II0- < T'lluiHo-IIWaller, <7 > 0. (35)
Thus, by (15) and (25) the kernel Ln[m\ of Eq. (14) fulfills the estimation

\\Ln[m]\\a < c\\m\\a, a > 0, (36)

with the positive constant c = CqT.
We write Eq. (14) in the form

e~CTtBn(t) - [ e-a(t-^Ln[m]{t - s)e~asBn{s) ds = e~ct^n(t)
Jo

and estimate its solution by means of Gronwall's lemma, obtaining the inequality

||5n|U < exp(T||Ln[m]||CT)||$n||. (37)

Further, the difference A?l = Bn[m1,d1] — Bn[m2, d2] of Bn for two ma and da, a = 1,2,
satisfies the equation

e~at An(t) — ( e~a(t~s^Ln[m2](t — s)e~CTSA„,(s) ds
Jo

= KM ~ ^nW + (Ln[m1 - m2] * Bn[m\dl]){t)

where = <&n\da], a = 1,2. Again by Gronwall's lemma and (35) we get

||A„||ct < exp(r||Ln[m2]||CT) x [||$* - <I>2|| + T\\Ln[m1 - m2]\\a\\Bn[ml ,dl]\\a\.

Using here (36) and (37), we derive the inequality

||An||CT < Midlm1 ||ff, Hm2^)!!^IKUm1 - m2||CT + ||$* - $2||} (38)

with a continuous and nondecreasing function M\.
To obtain an analogous inequality for the derivative A„ we observe that Bn also

satisfies Eq. (14) with the same kernel and the right-hand side $ra = <i>„ + Ln[m]ipn.
Therefore, estimating as above we get

||An||CT<M2(||m1||CT,||m2||(T)(||^|| + |^|)

x {Hm1 - to2\\a + ||$* - <j>2|| + \ip\ - LplW
with a continuous and nondecreasing function Mo again.

Now we can estimate the derivative A"'3). In view of the relations ln{0) = 0, Zn(0) = 1,
ln (0) = — rnin in (17) from (23) we have

\m] = ^2 7nMn(43) * Bn + Bn - rinnBn). (40)
n= 1

This on account of (25) and (35) implies
DO

IIA^Im1,^1] - K^[m2, d2]\\a < a ^ \-yn\[(l4i + /4)llAnlU + Mn||A„y (41)
n— 1

with a positive constant c\. For using here the inequalities (38) and (39) for A„ and An
we need estimations for <3>n and Observing (25) from (20) we obtain

Mnll^ll < C2,iHln\Hn\yn\ + \tn\ + ||/n||], i = 0, 1, (42)
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with positive constants C24, i = 0,1. Now the inequalities (41), (38), (39), and (42) imply
the asserted inequality (33) with (34).

Finally, due to m, fn e C[0,T] from Eq. (14) we see that Bn, Bn e C[0,T]. More-
over, analogously as in the proof of (33) in view of the assumptions (32) we derive the
uniform convergence of the series in (40). This implies A"(3'[m] £ C[0, T]. The Lemma
is completely proved.

5. Reduction to an integral equation of the second kind. Under a regularity
assumption we reduce Eq. (22) to an integral equation of the second kind by differenti-
ating Eq. (22) three times. Precisely, we have

Theorem 1. Let h € C3[0,T], fn e C^O, T\. Further, let the convergence conditions
(32) and

OO

^ l7n| ||/J < 00 (43)
n= 1

be fulfilled. Moreover, the matching conditions
OO OC

HO) = X InVn, MO) = ^2 Inlpn,
n=l n—1

OC OC OC

h(0) = ^2 T™/™(0) InHnVn ~ P ^ Inl^n^n
(44)

n— 1 n= 1 n= 1

are assumed. Then

geC3[0,T], g(0)=g(0)=m = 0- (45)

If, in addition,
OO

CL := ^ ^ "7nl^n^Pn 7^ (^6)
n= 1

then Eq. (22) for m € C[0, T] is equivalent to the Volterra equation of the second kind

+ ~ [ K^[m\(t — s)m(s) ds =£e[0,T], (47)
a J o a

where K^[m] € C[0,T],

Proof. By (24) we have for the derivatives of g

OC

= i = 1,2,3, (48)
n= 1

where h 6 C3[0, T] by assumption and 6 C3[0,T] by (16) with the assumption
fn € C^OjT], Moreover, from (16)

<1>;? = Pf^n^n fw (49)
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Using (42) from (16) and (49) we get the estimations

II ̂ n || < C3(fJ.n + l)(fJ,n\lfn\ + \lpn\ + ||/n||),
(50)

||$n|| < C4^n(Mn + 1)(/Xn|v?n| + \lpn\ + ll/n||) + ll/n||-

In view of the assumptions (32) and (43) the estimation (50) shows that g € C3[0,T] by
(48). Further by (16) and (48) at t = 0 for i = 0,1, 2 and the matching conditions (44)
the relations g(0) = g(0) = g(0) = 0 follow. So, (45) is proved.

Differentiating the kernel (23) two times and observing that from (17) and (13) we
have /„(0) = 0, ln(0) = 1 and Bn(0) = tpn we see that

A'[m](0) = A"[m](0) = 0 and K[m](0) = a, (51)

where a is given by (46). Further by the Lemma we have A"(3'[m] G C[0, T] for m <E
C[0,T]. Now, due to (45), (46), and (51) Eq. (22) is equivalent in C[0,T] to Eq. (47)
obtained by differentiating it three times. Theorem 1 is proved.

6. Existence, uniqueness and stability. Using the equivalence of Eqs. (47) and
(22) we derive the existence, uniqueness and stability of the solution to the inverse
problem. At first we prove existence and uniqueness.

Theorem 2. Let the assumptions of Theorem 1 be fulfilled. Then Eq. (22) has a unique
continuous solution in [0, T}. The solution can be calculated from the equivalent Eq. (47)
by the method of successive approximation.

Proof. By Theorem 1 Eqs. (22) and (47) in C[0, T] are equivalent. We write Eq. (47)
in the form

m + L(G[m],m) = x (52)

in the Banach space E = C[0, T] equipped with the scale of weighted norms ||m||CT where

G[m] = (l/a)A'(,i)[m], L(mi,m2) = mi *m,2 (53)

and x = (1 /a)g{3).
By Corollary 1 in [10], Eq. (52) has a unique solution for any x G A if G is an operator

in E satisfying the condition

||G[mi] - G[m2]||cr < M(||mi||a, ||m2||<T)||mi - m2\\„ (54)

for a > 0 and for every mi,m2 € E, where M is a continuous function from into R+
increasing in each of its arguments, and L is a bilinear operator from E x E into E such
that the inequalities

||L(mi,m2)||(T < ^Vi||mi||<J||m2||<T, a > 0, (55)

||L(mi,m2)|U < 7V2(cr)min(||mi||CT||m2||, ||mi|| ||m2||ff), a > 0 (56)

are fulfilled for every mi,m2 € A, where N\ is a positive constant and A2 is a continuous
decreasing function from R+ into M+ vanishing for er —> oo.
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The condition (54) is fulfilled for the operator G in (53) in view of the estimation (33)
for dl = d2 = d in the Lemma. The inequality (55) with Ni = T follows from the basic
estimation (35) of the convolution. Also we have the estimation

\\mi * m2\\a < \\mi\\a\\m2\\ [ e~crs ds = -(1 - e<7T)||m1||<T||m2||
Jo a

implying (56).
The proof of the applied Corollary 1 in [10] uses the contraction principle in a scale of

norms ||m||CT for sufficiently large a. Therefore the method of successive approximation
can be used for calculation of the solution m to Eq. (47). Theorem 2 is proved.

Finally, by Lemma 4 in [10] using the estimation (33) for general da, a = 1,2, we can
prove the following stability theorem (cp. Theorem 2 in [10]).

Theorem 3. Let the assumptions of Theorem 1 be fulfilled for two data sets Da =
(da,ha), a = 1,2, of the inverse problem. Then for the corresponding solutions ma,
a = 1,2, the stability estimate

llm1 - m2|| < Cdlm1!!, U^WHI, [a1)"1, |a2\~\\D\\D2\)\Dl - D2\
holds provided ID1 — D2| is sufficiently small. Here C denotes a positive constant, a1 are
the non-vanishing constants

a — ^ ] In^n'Pm i — 1> 2,
71=1

and the semi-norm |D| is defined by
OO

PI :=Mlo + ^|7n|||/n|| + ||^(3)||
n=1

with |d|0 given by (34).
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