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Abstract. The author gives a broad class of inverse theorems on mathematical programming problems, where the
objective function is either a recursive function with strict increasingness or a recursive function with strict decreasing-
ness, and so is the constraint function. It is also shown that the optimal-value functions of main and inverse problems
can be expressed by the successive use of some nonlinear operators defined in this paper. Each expression is based
upon either Bellman’s Principle of Optimality or its modified principle. Further each inverse theorem accompanies

an example.

1. Introductiyon and summary

Recently the author has established INVERSE THEOREMS I, II AND III IN DY-
NAMIC PROGRAMMING [3,4,5,6]. 1In those theorems both objective and constraint
functions satisfy dynamic programming structure, that is, they are recursive
functions with strict "increasingness".

This paper studies a braod class of inverse theorems on mathematical pro-
gramming problems, where the objective function is either a recursive function
with strict increasingness or a recursive function with strict "decreasingness”
, and so is the constraint function.

In Section 2 we define both recursive function with strict increasingness

and recursive function with strict decreasingness, Considering 5 pairs of main

and inverse problems having these functions as the obJective and constraint
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Inverse Theorems on Recursive Programming 95

functions, 5 inverse theorems associated with the corresponding pairs are es-
teblished, respectively, like as in [5].

Section 3 is devoted to proofs of inverse theorems.

In Section L, given 2-variable functions f and g we define important op-
erators T(f;g), S(f;g), P(f;g) and Q(f;g). Each operator maps one class of
continuous and strictly monotone functions into another. According to the mo-
notonicity in 2-nd variable of f and g, pairs (T(f;g), S(g;f)), (P(f;g), Plg;f
)) and (Q(f;g), Qlg;f)) preserve an inverse relation in Iwamoto sense [3,L4,5,
6], respectively. Moreover, it is shown that the optimal-value functions of
main and inverse problems can be expressed by the successive use of these op-
erators, provided the obJective function is either a recursive function with
strict increasingness or a recursive one with strict decreasingness and so is
the constraint function. These expressions are immediate consequences from
Bellman's Principle of Optimality [1,2,3,11,12] and its modified principle [9,
10, 12].

The last section illustrates an example of each inverse theoremn.
2. Inverse theorems

This section deals with N-variable (N22) problems except a pair of main
and inverse problems studied extensively by the author [3,4,5]. In this paper
the omitted pair is denoted by Main Problem I and Inverse Problem I or simply
by MP I and IP I.

Throughout the paper we shall use the following notations [3,4,5,6,8] :
For 4 < e, <d,e> denotes an arbitrary interval in the real line Rl. Let E be

the Cartesian product of intervals <dk,ek> 1<kgN, namely,

E = <dl’e > X <d2,e2> X ees X <dN’eN>'

1
*
A continuous function f : E ——*-Rl is called the recursive function on E if

it is expressed as follows

f(xl,xz,--.,xN) = fl(xl;f2(x2;..-fN-l(xN_l;fN(xN))-..))’

*
Our definition of recursive function is slightly different from definition of

recursive function in mathematical logic. See also [10].
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96 S. Iwamoto

1 1
<dpsey> —> R, £y 5 <dp,e> x range(fk+l) — R™ (1<k<N-1) are con-

where f N

N :

tinuous. Here note that range(fk) = {z ; z = £ {x3y), (x,y)e<dk > x range(

’ek

} 1<k<N-1, and range(fN) ={y ; vy = fN(x), x€ <4 eN>}. A recursive func-

fk+1) N?
tion f on E is called the recursive function with strict increasingness (resp.
decreasingness) on E if each fk(x;-) (1<k<N-1, x_e.<dk,ek>) is strictly increas-
ing (resp. decreasing) and fN is strictly increasing.

In this paper "monotone" denotes "either inecreasing or decreasing'". TFor
example, a strictly monotone function denotes either a strictly increasing
function or a strictly decreasing function.

If h : <a,b> —> <c,d> is an onto continuous and strictly monotone func-
tion, then so is the inverse function h_l : <¢,d> — <a,b>. This is an ele-
mentary result in mathematical calculus. If f : X — Y and g : Y —> Z are
functions, we denotes by gof : X — Z the composition

(gof)(x) = g(f(x)).

First, we consider a pair of main and inverse problems as follows

MP I Maximize f{u,(x. ), u

(% x50y oeey alxg))

5!
subject to (1) glx xy,tteuxy) <o
(i) (x

lsx29"'axN) €E

\ e s
IP I Minimize g(vl(yl), v2(y2), s VN(yN))
subject to (i)' f(yl,y2,°"syN) zec
(ii)' (yl,yz,"',}’N)G E.

Here £ : E — <a,B> and g : E —> <a,b> are onto recursive functions with st-

<4, ,e.> — <4 > is an onto continuous and

k ok k*k
strictly monotone function for 1<k<N-1, uy <dN,eN> — <clN,eN> is an onto

rict decreasingness on E, u

continuous and strictly increasing function, and vk is the inverse function to

e for 1<k<N,

Second, let us consider four pairs of main and inverse problems as follows
t 3 1 LR
MP II (resp. II') Maximize f(ul(xl), u2(x2), . UN(XN))
subject to (i) g(xl,xz,-“,xN) >c

(ii) (xl,xgp--,xN)eE
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IP II (resp. IT') Maximize g(vl(yl), v2(y2), see, VN(yN))
subject to (i)' £y ,¥,s e uyy) 2 ¢
(ii)’ (ylsy2’°":yN)EEs
and

MP III (resp., III') Minimize f(ul(x]_), u2(x2), vae, uN(xN))
subject to (i) g(xl,xg,-",xN) <c
(ii) (xl,x2,°--,xN)eE
IP III (resp. III') Minimize g(vy(y;), vo(y,), <o+ vylyy))
subject to (i)' f(yl,y2,°--,yN) e
(11)' (¥ sy peteesyy)€E,
where f : E —> <a,8> and g : E — <a,b> are onto recursive functions with

strict increasingness (resp. decreasingness) on E, W <dk’ek> - <d_k,ek> is

an onto continuous and strictly monotone function for 1<k<N-1, uy ¢ <dN,eN> —_—
<dN,eN> is an onto continuous and strictly decreasing function, and Vi is the

inverse function to w for 1<k<N.

Then we have Theorem X which establishes an inverse relation between MP X
and IP X, where X = I', II, II', III, III'.

THEOREM X. (i) MP X has an onto continuous and strictly monotone optimum-
value function U : <a,b> —> <a,8> and an optimum-point function (x‘;_,x;,-",x;)
: <a,b> —> E if and only if IP X has an onto continuous and strictly monotone

optimum-value function U_l : <a B> — <a,b> and an optimum-point function (u

1
- - *
Ox*]'.OU l, uZOXZOU l, *ee, upex ol l) : <a,B> —> E.
(i1) IP X has an onto continuous and strictly monotone optimum-value function

A A A
V : <a,B8> > <a,b> and an optimum-point function (yl,yz,--- yN) i <0,f> — E

if and only if MP X has an onto continuous and strictly monotone optimum~value
function VL : ?a,b> —> <q,f> and an optimum-point function (vl°§l°V-l, v20§2
°V-l, ey, vNogr\NOV_l) : <a,b> — E.

Note that according to X "monotone" becomes either "increasing" or "decrea-
ing" and "optimum" does either "maximum" or "minimum". These correspondences

are immediate from the structure of MP X and IP X.
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98 S. Iwamoto
3. Proofs

This section gives proofs of theorems stated in Section 2. Note that in
each theorem (i) is equivalent to (ii), and that in (i), (ii) "if" part can be
proved by the same method as "only if" part. Therefore we shall prove only "
only if" part of (i) in each theorem,

3.1. Proof of Theorem I'

* % *
Let U and (xl,xz,---,xN) be a continuous and strictly increasing maximum-

value function and a maximum~point function. Then we have for any fixed ce <

a,b>
(3.1) U(e) = £luy (x(e)), uylxgle)), *==, uylxy(e)))
(3.2) g(x;(c), x;(c), coe, x;(c)) s c.

Now assume that

* * *
glx,(c), xy(c), =+, xle)) =c' <c
in (3.2). Then the strict increasingness of U implies
(3.3) U{e') < U(e).
* * * .

On the other hand, since (xl(c), x2(c), TN xN(c)) is a feasible solution of
MP I' with c!

Maximize f(ul(xl), u2(x2), ses, U.N(XN))

subject to (i) g(xl,xg,“-,xN) e

(i1) (xl,xz,---,xN) € E,

we have

U(e') 2 £uy(x;(e)), uplxgle)), ==+, wy(xyle))).

Hence (3.1) yields that

U(e') 2 U(e).
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This contradicts (3.3). Therefore

(3.4) g(x;(c), xp(e), ==, xy(e)) = c.
~ * * Ta)
Let y, = wox,. Thenx =v oy . Hence (3.4) and (3.1) yield
g(vy (7)), vy (), »oey wi(Fle))) = e
£(7,(e), Ty(e), =or, Fyle)) = Ule).

Let V(c) be the infimum-value of IP I'. Since (;l(c), ;2(c), ces, ;N(c)) is a
feasible solution of the minimizing proolem :
(3.5) Minimize g(v (¥ ), vo(yp)s <oy vylyy))
(3.6) subJect to (i)' fly .y, e,¥y) 2 Ule)
(11)" (3 s 0" syy) €E,
we have
v(d) < ¢,

where 4 = U(c)€<a,8>. If V(d) < ¢, then we may without loss of generality

A A A
choose (yl(d), y2(d), se+. y(d)) in E such that
) A A R
(3:8) g(v,(y1(a)), vy(yp(@)), «oey vilyy(d))) = V(a) < ¢
A R A
(3.9) £y, (@), y,(a), ++o5 Fy(2)) = a.

By replacing x:*(c) = vn(;rAn(d)) for 1<n<N, (3.9) and (3.8) reduce to
£(uy (xy(e))y uplxy (e)), =ony we(xy (e))) = a

*% *% * %
g(xl {e), X, (e)y ovey xy (e)} <c.
Let

g(xz*(C), xz*(c), XTI x;*(C)) = c¢" < ¢,

Then the strict increasingness of U implies

(3.10) Ule") < Ule).

™ %% "
On the other hand, since (xl (c), X, (c), =°», Xy (c)) is a feasible solution
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100 S. Iwamoro

of MP I' with c" :
Maximize f(ul(xl), u2(x2), ose, uN(xN))

n

subject to (i) g(xl,xe,-°°,xN) c

fin

(ii) (xl’xz’...’xN) € E,

we have

U™ 2 £(uy(x) (e)), uplay (e)), +oe, uylay (e))).

That is,
U(e") 2 d = U(e).
This contradicts (3.10). Therefore we have for c € <a,b>

v({u(e)) = ¢

and (§1(U(C))’ ?2(U(c)), ceey ?N(U(c))) is & minimum-point of the problem (3.

5), (3.6), (3.7). This implies that V = U™t is & continuous strictly increas--

*

*  _ *
ing minimum-value function of IP I' and that (u, ox. oU l, u2°x oU l, LR AN uNoxN

171 2

°U-l) is a minimum-point function of IP I'., This completes the proof.

3.2. Proofs of other theorems

The proofs are similar, mutatis mutadis, with the proof of Theorem I',
4, Operator expressions of optimal-value functions

In this section we define fundamental operators T(f;g), S(f;g), P(f;g)
and Q(f;g) for given recursive functions f,g with monotonicity on F = <dl,e >

1
x <d,,e,>. By decomposing MP X {(resp. IP X) into subproblems MP X(N-n) (resp.
IP X(N-n)) 1gn<N, we will find that a successive use of above operators yields

a continuous and strictly monotone optimal-value function of MP X (resp. IP X),
where = IT, III, I', II', III'.

DEFINITION, Let f : F — <a,8>, g : F —> <a,b> be onto recursive func-
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Inverse Theorems on Recursive Programming 101

tions with monotonicity on F., Let u : <d2,e2> — <d2,e2> be an onto continu-

ous and strictly monotone function. Then functions T(f;g)u, S(f;g)u, P(figlu

and Q(f;g)u : <a,b> —= <a,B8> are defined (if they exist) by

(4,1) T(f3g)u{c) = Max f£(x, uly)),
S(X,Y);p
(x,y)eF

(4.2) s(fig)u(e) = Min f(x, uly)),
g(x’y>;§
(x,y)eF

(4.3) P(f;glulc) = Max f£{x, uly)),
g(x,y)2e
(x,y)erF

and

(4.h) Q(fygiule) = Min  f£(x, uly)),
g(x,y)ze
(x,y)eF

respectively.

As for the properties of T(f;g), S(f;g), see [3,4,5]. The reader will
find that according to the strict monotonicity in the 2-nd varisble of f, g
each operator maps one class of continuous and strictly monotone functions into
another.. Note that S(g;f)v, P(g;f)v and Q(g;f)v are also defined by (4.2), (
4.3) and (L.4), respectively, where v is the inverse function to u. Moreover,
under some appropriate conditions, pairs (2(fj;glu, P(g;f)v), (Q(fig)u, Q(g;f)v)
become inverse functions each other like as a pair (T(fjg)u, S(g;f)v), respec-
tively. The detailed analysis of the former pairs is omitted, since it is simi-
lar to one of the latter pair [3,4,5].

Throughout the remainder of this section we shall use the following nota-

tions : Given a recursive function

h(Z . ) = hl(zl;h2(Z2;'"hN_l(ZN_l;hN(ZN))"'))

>, we define hn (l;n;N) by
(z

-,zN) is also a recurisve function on <d ,e > x <@

192‘2’. .’ZN

on E = <d_,e.> x <4 e>x'*-x<dN,e

1’71 22

hn( Z,2

N

Y =h (z

. ’ZN n n;hn+1

n+l®’ " By (st 2g) ) e )

Clearly hn( ZyaBo gt n+1°%n+1”

X eee X <dN,e > for 1<n<N-1 and

N
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102 S. Iwamoto

hl( Z)sZps" 0 ,zN) = h{ ZysZpst " ,ZN) .
It will be clear from the context whether a function hn is considered hn(z;w)

or hn(zn,z --,zN). Further, given a 2-variable function h = h(x;y):<a,b>x<c,d>

n+l®
— R", we define for xe <a,b> l-variable function n* . <c,d> —* R‘by
X

h{y) = hi(x;y).

Let us now consider subproblems of problems discussed in Section 2. First
we define (N-n)-subproblems of MP II, IP II, MP III and IP III as follows

For 1<nz<N

MP II(N-n) Max fn(un(xn), un+l(xn+l), coey U“N(XN))
s.te (1) g (x X os0eeuxy) 2
(ii) x € <d, ,e, > n<ks<N,
IP II(N-n) Max g (v (y)s v 2 (¥ 1) oors vyloy))
s.t. (i)' fn(ynQyn+ls"°$yN) 2¢c
(ii)! yke <dk ,ek> n<k<N,
MP III(N-n) Min £ (u (x ), un+l(xn+l), ey ug(xg))
s.t. (i) gn(xn’xn'l‘l’...’xN) sec
(ii) xke <d‘k ,ek> n<k<N,
IP III(N-n) Min gn(vn(yn), vn+l(yn+l)’ see, VN(}’N))

sit. (1) £ (¥ ¥ ettt aVy) Soc
(11)' x e<q ,e> n<k<N.
On the other hand, according to either oddness or evenness we define sub-

problems of the problems I', II' and III' as follows

For n odd (resp. even), where 1<n<N

MP I'(N-n) Max (resp. Min) fn(un(xn), (xn+l)’ seey uN(xN))

ceaxy) £ (resp. 2) ¢

u
n+l

s.t. (i) gn(xn’xn+l’.

(ii) X €<q, ,e,> n<k<N,
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Inverse Theorems on Recursive Programming 103

IP I'(N-n) Min (resp. Max) g (v (y_),

n' ' n'n vn+l(y

ap)s e vlyg))

i)t sae :
s.t. (1) fn(ynsyn+19 ’yN) Z (resp. ;) ¢

(11)' y e<d, ,e> n<ks<N,

MP IT'(N-u) Max (resp. Min) f (u (%), u

n n'n n+l(xn+l)’ ) uN(xN))

s.t. (i) gn(x .’XN) 2 (resp, 2) ¢

n**p+12""
(ii) x € <4, ,e, > n<k<N,
' — i .o o
IP II'(N-n) Max (resp. Min ) gn(vn(yn), vn+l(yn+l)’ , VN(}’N))
s.t. (i)! fn(yn,yn+l,---,yN) 2 (resp. g) ¢

(i1) Y€ <4, se> n<ks<N,

MP III'(N-n) Min (resp. Max) fn(un(xn), un+l(xn+l)’ see, U.N(XN))

s.t. (i) gn(xn,xn+l,---,xN) < (resp. 2) ¢
(i1) x e<d ,e> n<keN,

, .
IP III'(N-n) Min (resp. Max) gn(vn(yn), Vn+l(yn+l)’ . vN(yN))

: t s 00
s.t. (i) fn(yn,yn+l, ,YN) < (resp. 2) ¢

(11)' Vi ® <48y ngk<N,

Note that (N-1)-subproblem is identical with the original problem and that
the parameter ¢ of MP X(N-n) (resp. IP X(N-n)) ranges over the range(gn) (resp.
range(fn)), where X = IT, III, I', II' and III'. Of course, range(fn) and range

. 1
(gn) are intervals of R™.

Let us define u' ™" : range(gn) —_— range(fn) and v © . ra.nge(fn) — range

(g, )by

uN—n( c )

the optimum-value of MP X(N-n)
vN—n(c) = the optimum-value of IP X(N-n)

, 1f they exist, respectively, where X = II, IIT, I', II', III'. Here note that
according to X and n "optimum" means either "maximum" or "minimum". For exam-
ple, uN_n(c) denotes the maximum-value of MP IT(N-n) for n=1,2,*+*,N. On the

other hand, vN—n(c) denotes the minimum-{resp. maximum-) value of IP I'(N-n)
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104 S. Iwamoto

for n odd (resp. even).
The usual dynemic programming analysis [1,2,3,9,10,11] combines both (N-n)-

and (N-n-1)-subproblems as follows :
THEOREM IV (BELIMAN'S PRINCIPLE OF OPTIMALITY)

N-n N-n-1,, *n,-1
MP II (resp. ITI) u - (c) = Max {resp. Min) fn(un(xn);u - ((gnn)_ (e)))
X €<d4_,e >
n n*n
X

(g,") " (cerange(s ) 1<n<N-~1

n+l

Yy
IP II (resp. III) W R(e) = Max (resp. Min) gn(vn(yn);vN—n_l((fnn)—l(c)))
y. €<d_,e >
n n®n
Iny-1
(fn) (c)erange(fn_,_l) 1<ngN-1
WP II, IIT wle) = rylu(grt(e))
IP II, III Vle) = gN(vN(fgl(c)))

PROOF. Follow the same line as in Proposition 3.2 of [3].

On the other hand, the recursive programming analysis [9,10 .p.378, 12 p.Lh]
yields the following version of Bellman's principle for the problems I', II' and
111’

THEOREM IV!'
N-n N~n-1,, *n,-1
MP I', IT' u (c) = Max (resp. Min) f_(u (x_);u ((g. ™M™ (e)))
n''n''n n
x €<d_,e >
n o n’n
xn 1
(gn ) (c)erange(gn+l) n = odd (resp. even) 1<n<N-1
- Yn. -
Ip I', III' vN_n(c) = Min (resp. Max) gn(vn(yn);VN o l((fnn) 1(0)))
Y. €<d_,e >
n n’>n
n,-1
(fn ) (c)erange(fn+l) n = odd (resp. even) l<n<N-1
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¥y
IP II' vN_n(c) = Max (resp. Min) gr(vn(yn);vN_n 3'((fnn)_l(c)))
y €<d ,e > i
n n’n
(fyn)_l(c)eran (£ ..) n = odd (res ven) 1<n<N-1
n ge n+l p. e =
X
MP III' uN-n(c) = Min (resp. Max) fn(un(xn);uN_n_l((gnn)_l(C)))
x €<d_,e >
o n’n
xn -1
(gn ) (c)erange(gn_‘_l) n = odd (resp. even) 1l<n<N-1
MP I', II', IIT' (e) = £ (u (g'l(c)))
’ ? N' 'N'°N
IP I', II', III' WPle) = g (v (£3e)))
’ > By Vit

PROOF. A more generalized form of this theorem has been stated and proved
the author [9].

Further we may restate Theorems IV and IV' in terms of operators defined

(h.1) — (b.b).

COROLLARY. The optimum-value functions of MP X, IP X can be represented

the successive use of the modified operators as follows

* * * 0
MP TI P(£)38))P(£,38,) *+ P(£_ 38y 1)
A ~ ~ 0
IP II P(g, ;£ )P(gy3f,) ove Plgy_3fy v
* * * . 0
MP III a(f) 38,0008 58,) == Qlfy_ sy )u
"N A A O
IP III gy 37)QlEy3E,) +or Qg 3fy )V
, *. ( *. * ) ( *. ) * .
MP I T(f)38,)8(1,38,) T(£538,)8(f)58)) + o (£ 138y ()
' ~n Y A "~ ) fa) 0
1P I S(gl,fl)T(gz;fQ)S(g3;f3)T(gh;fu or (gy_13fy_1)Y
* * * * * )
MP IT' P(f38,)Q(1,38,)P(f5385)Q(8)38),) «or (£ 58y )u
1P II' P38 )Q(E,5,)P(8,5 208083 5,) +ov (By 138 ;)"
81301 /9 B3t p/ P83 L5 /RIE) 30, Ey-1"N-1
*- *. *. *. PR * . 0
MP III' alr e, )P(1,58,)a(f53e,)P(1) 58),) (fy_ys8y_q)u
, ~ . ~ . ~ . ~ . v "N .. 0
IP III Qley 311 )P(g,3f,)A(e,31,)P(g)51)) (gy_13fy1)v
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106 -S. Iwamoto

* ~ 0 -
» vhere £ (x3y) = £ (u (x)3y), g (x37) = g, (v (x);y) lsncN-1, u” = fyoujogy

and vO = g ov, of l.
N
PROOF. These are immediate consequences from Theorems IV and IV'.

Note that the corollary tells us that for N even (resp. odd) the maximum-

value function of MP I' is expressed by

* * . * * * 0
T(£)38,)8(1,36,)T(£5385)8(8),3¢),) === S(fy_ 3y )u

0

* * * * *
(resp. T(f 3g,)8(f,38,)T(f5385)8(F) 58),) « =+ T(£y 58y 1)u).

The similar interpretation is valid for IP I', MP II', IP II', MP III' and IP
III'. Moreover, by Theorems IV and IV', we have an algorithm to obtain both
optimum~value function and optimum-point function of MP X and IP X, where X =
II, III, I', II' and III'. The algorithm for the cases X = I, II and III is
the usual dynamic programming algorithm. On the other hand, the algorithm for
the cases X = I', II' and III' is the recursive programming one. Nevertheless,
inverse theorems are free from this algorithm, since they claim that the solu-
tion of one (main) problem is transformed into the solution of the other (in-

verse) problem in an inverse sense.
5. Examples

In this section Example X denotes an example of Theorem X, where X = I',
II, III, II', IITI'. We sketch an outline of each example. The author has

given a full detail of it [T].

EXAMPLE I' Let us consider a pair of N-variable problems as follows

MP I' Maximize

1+2

1+2x
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subject to (i) }l( 2 ¢ (20)
1+ =
1+ 3.
. X
. N-1
1+ ——=
1+xN
(i1) x_20 1<n<N,
_ Y1
Ir T' Minimize
Y2
1+
3
1+
e IN-1
l~0~yN
y
subject to (i)' }J; > ¢ (20)
1+2 5
1+2 — 3
. v
N-1
t 12
Tray,
(ii)? y,20 1<n<N.

Then the objective function f = f(xl,xz,--- Xy

tion with strict decreasingness on Rf, because we may choose fn(x;y) =

X
T+2y

107

) of MP I' is a recursive func-

1zngh-1, f(y) =y. Similarly, letting g (x3y) = £ 1<naN-1, gy(¥) =y, the

1+y

constraint function g = g(yl,y2,---,yN

with strict decreasingness on Rf. A successive use of ineguality

l, x X X 2
31 LTy £ Toy on R,
yields the inequality
b'd X
(5.1) L < L on RN
x2 = x2 +
1+2 - 1+ -
142 e 14 ——0U3
e N1 e *y-1
l+2xN l+xN

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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The sign of equality holds if and only if Xy =0 or x2 = 0., The inequality (
5.1) shows us the following solutions of main and inverse problems : MP I' has

a continuous and strictly increasing maximum-value function U(c) = ¢ and a maxi-
mzm—point function (XI(C)’ xZ(c), IR x;(c)), where xz(c) =c, xZ(c) = 0 and

x (c) is arbitrary for 3<ncN. IP I' has a continuous and striitly inireasing
minifum-value func:ion V(e) =Ac and a minimim—point function (yl(c), y2(c), ..
.o, yN(c)), where yl(c) =c, yz(c) =0 and yn(c) is arbitrary for 3<n<N. It

. . =1 . . . . -
is obvious that U is a continuous and strictly increasing minimum-value func-

* * . *
tion of IP I' and (xlOU l, x2°U l, LRI xN°U l) is a minimum-pcint function of
IP I', and that V = is a continuous and strictly maximum-value function of MP

1

' M SR A S A . . : '
I' and (leV , y20V s "ty yNOV ) is a maximum-point function of MP I'.

This fact is also a direct application of Theorem I'.

EXAMPLE IT Let us consider the following pair :

X X, XX
MP II Maximize -2 34
x
5
*s
subject to (i) >c (€(0,))
+ + ¥ TS s
xlx5 x2x5 x3x5 xux5 1
(ii) X, > 0 1<n<3,
IP 1II Maximi ze ——————3;———‘———
yl+y2+y3+y)4+y 5

subject to (i)' VY FFYs 2 (e (0,=))

(i) v, > 0 l<ns<5.

Note that
b'd

>
X X_+x, X _+xX.X +xkx +1

175 7275 7375 5
1

1
+X, X X, + =
X XA+ T

5
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is a recursive function with strict increasingness on (O,w)s, where (0,=)" =
(0,2) x (0,2) x oo+ x (0,») (n factors). Then by dynamic programming analysis
[1,2,3,12] MP II has a continuous and strictly decreasing meximum-value func-

*

5

tion U(e) = (—1“-)5 and a maximum-point function (x;(c), x;(c), x;(c), x:(c), x

5¢
(C))=(l 1 1 1

e’ 5o’ 5o? 5o’ 5¢). IP II has a continuous and strictly decreasing

maximum-value function V(c¢) = ]]: and a maximum-point function (;l(c), ;2(c),
5¢ /5
1 1 1 1 1
y3(c),/3\rh(c), /5}5(c)) = (e /5, c /5,c /5, c /5, c /5). Of course, Theorem II

holds true in this problem.

EXAMPLE III Let us consider the following pair of N-variable problems

N qn N p
MP IIT Min ) —— IP III Min Iy °
t n
n=1_"n n=1
X
n
N Py N a,
s.t. (i) 1 x e (e (0,=)) s.t. (i)' Z—t—'; c (€ (0,»))
n=1 n=l n
yn
(i1) x >0 1<n<N (i)' y, > 0 1N

where P 4, and tn are positive for 1l<n<N. Then usual dynamic programming
anslysis [1,2,3,11] yields the following solutions : MP III has a continuous

and strictly decreasing minimum-value function U and a minimum-point function
*

2’
value function V and a minimum-point function (§l,§2,--- ’S;N) , Where

* *
(xl,x --,xN), and IP III has a continuous and strictly decreasing minimum-
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p
<k/tk> ()
S %
N gt i n/t N p i k/ty
ule) = 1 ( ) -(Z%—)-c s
k=1 Pk 1 %
Pk/tk l/tk
( ) ( )
Np 1 Np
* 9y by l/tk N a i Ko (%) i o/t
(c) = (— n( ) < c 1<k<N,
Py k=1 Px
p (s P
_ K k k ky 1
vie) = T (=) . - e c ,
p t
k=1 Pk 1 %k
1 1 1
qQ. .t /t Nop /t ==/t
/y\k(c = _k_l—{- k . (E —£ k . k 1<k<N.
Py 1 %
Note that

UoV = VoU = I, where I(x) = x on (0,=),
* A A *
xnoV = Yo yn0U =x, 1<ngN.

This completes Example III,

EXAMPLE II' Consider the following pair of main and inverse problems :

MP II' Max i— IP II' Max

X s.t. (i) 2c (&(0,=))

2+
Xy
(i1)' x> 0,y > O,

This is the case when

1
N=2, £,(x33) = 2, £(y) =y, w(x) = x, uy(y) =% » gy (xsy) = ii ’
= +y
(5.2) gy} =y, vy(x) = x, v,(y) = er" <dysey> X <dpeep> = (0,2) x (0,%),
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and <o,B> = <a,b> = (0,=).

It is easily verified that MP II' has a continuous and strictly decreasing ma-

* *
ximum-value function U(e) = —-1—2— and a maximum-point function (x (c), y (e)) =
he
(2c, —27:-:-), and that IP II' has a continuous and strictly decreasing maximum-val-
ue function V(c) = A and a maximum-point function (x(c), y(e)) = (—_l_ R —:l:) .
o/e Ye Yo
Note that
~ * A * * ~ * ~
(5.3) UoV =VoU =1, x = ujoX oV, y = u,o¥ ov, x = vloxoU, y = vzoyOU.
Therefore, Theorem II' holds true.
EXAMPLE III' Let us consider the following pair
MP III' Min % +y IP III' Min xy
st (1) e (e(0,) st (1) S+ 2 < e (€(0,)
y = x y=
(ii) x>0,y >0 (ii)' x>0,y >0
R _1 .1
This is the case when the other elements except for fl(x;y) = =+ -)7 . gl(x;y)

= '§- are the same ones as in (5.2). MP III' has a continuous and strictly de-
” *

creasing minimum-value function U(ec) = — and a minimum-point function (x (c),
% _ c

y (e)) = (Ve, —%). IP III' has a continuous and strictly decreasing minimum-

Ve
. L . . . A A
value function V(e) = —5 and a minimum-point function (x(e), y(e)) = (
c
Since (5.3) holds true in this problem, Theorem III' holds true.

bl

oo

2
(&4
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