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By a ' representation ' we shall mean throughout a representation by n x n matrices with
entries from an arbitrary field. Elsewhere [9] the author has introduced the concept of a
principal representation of a semigroup S (see § 3 below for the definition) and has shown that
if S satisfies the minimal condition on principal ideals then every irreducible representation is
of this type. Moreover, if S satisfies the minimal conditions on both principal left and right
ideals, which together imply the minimal condition on principal two-sided ideals [6, Theorem
4], the irreducible representations of S can ultimately be expressed explicitly in terms of group
representations.

For an arbitrary semigroup, however, there may exist irreducible representations which
are not principal and a different approach is required. The purpose of this paper is to begin a
study of representations of semigroups without minimal conditions. We confine our attention
here to inverse semigroups.

As a first step, we examine certain congruences on an inverse semigroup S. It is shown in
Theorem 1 that there is a congruence a on S such that (i) Sja is a group and (ii) if T is any con-
gruence on S such that Sjx is a group then every r-class is a union of cr-classes; that is, i r £ t .
Thus every group which is a homomorphic image of S is isomorphic with a quotient group of
Sja: we denote Sja by Gs and call it the maximal group homomorphic image of S.

A representation F of a semigroup is termed prime if the set K(F) on which it vanishes is
either a prime ideal or the empty set. In Theorem 2 we determine all the prime irreducible
representations of an inverse semigroup S. If F is such a representation, the complement of
V(F) in 5 is itself an inverse semigroup and F is essentially an irreducible representation of its
maximal group homomorphic image. While every inverse semigroup has at least one prime
irreducible representation, an irreducible representation need not be prime.

The last section of the paper is concerned with a semigroup S with the property that
aeSa2S for all aeS; such a semigroup is called intraregular and, in the terminology of [3],
may be characterised as a semilattice of simple semigroups. We show that every irreducible
representation of an intraregular semigroup S is prime (Theorem 3); here S does not require
to be an inverse semigroup. From Theorems 2 and 3 we may obtain all the irreducible repre-
sentations of an intraregular inverse semigroup. In particular, the results apply to the interest-
ing case of a semilattice of groups: we conclude by deducing the form of the principal irreducible
representations of such a semigroup and an example is given of non-principal irreducible
representations.

1. The maximal group homomorphic image of an inverse semigroup. A semigroup is a
set which is closed under an associative binary operation: this will, as usual, be denoted by
juxtaposition.

Let S be a semigroup and let aeS. By an inverse of a we shall mean an element a'eS such
that

ad a = a, dad = d.
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This is a natural extension of the concept of a group inverse, but in general when such an
element a' exists, it will not be uniquely determined by a. The elements aa' and a'a are
evidently idempotents, but they need not be equal. We say that S is regular if and only if
aeaSa for every a e S: it is not difficult to see that if this is the case then every element of S
possesses an inverse in the above sense.

The following three properties of a semigroup S are equivalent [7, 10].

PI. S is regular and its idempotents commute.
P2. Every element of S has a unique inverse.
P3. Each principal left ideal and each principal right ideal ofS is generated by one and only

one idempotent.

A semigroup with these properties is called an inverse semigroup. Such semigroups were first
studied by Vagner [15] (under the title ' generalised groups ') and, independently, by Preston
[11], in both cases with property PI as the definition; this property is the one which we shall
use most frequently. The unique inverse of a in S is denoted by a"1. Then it may readily be
shown that (a" 1 )" 1 = a and that {ab)~l = b~la~1 for any elements a, beS; furthermore, if
e is an idempotent of 5, then e~1 = e. Inverse semigroups retain certain of the features of
groups and have been examined in some detail; an account is given in [4].

Notation. The empty set will be denoted by D- If B is a subset of a set A then A\B will
denote the set-complement of B in A.

THEOREM 1. Let S be an inverse semigroup and let a relation a be defined on S by the rule
that xay if and only if there is an idempotent eeS such that ex = ey. Then a is a congruence and
Sja is a group. Further, ifx is any congruence on S with the property that 5/T is a group then
a E T and so 5/T is isomorphic with some quotient group of Sja. We denote the maximal group
homomorphic image Sja by Gs.

If' M is an ideal of S, then M is an inverse semigroup and GM = Gs.

Proof It is clear that a is reflexive and symmetric. Suppose that x, y and z are elements
of S such that xay and yaz. Then there exist idempotents e and / i n S such that ex = ey and
fy =fz. But since ef=fe, ef is also an idempotent and efx =fex =fey = efy = efz; hence
xaz and therefore a is transitive.

Now let xay (x, yeS) and let z be any element of S. To establish that a is a congruence
we have only to show that (xz)a(yz) and that (zx)a(zy). By hypothesis, there is an idempotent
eeS such that ex = ey: thus exz = eyz and so (xz)a(yz). For the second part, consider the
idempotent {ze)(ze)~l = zez~x. We have

(zez~1)zx = zz~lzex = zz~izey = (zez~l)zy,

which shows that (zx)a(zy).
We next prove that the quotient semigroup S/a is a group. For any x e S let xa denote

the a-class of S containing x; thus x -* xa is the natural homomorphism of S onto Sja. If e
and/are idempotents in S, it follows from the relation (ef)e = (e/)/that ea=fa; that is, all the
idempotents belong to the same a-class, which we denote by 1. Then

lxa = (xx-1)axa = (xx"1*), = xa = x^x-tx), = xal;

https://doi.org/10.1017/S2040618500034286 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500034286


REPRESENTATIONS OF AN INVERSE SEMIGROUP 43

also

and therefore S/a is a group.
Let T be a congruence on S with the property that Sji is a group. We shall show that

if two elements of S lie in the same c-class they must lie in the same t-class. Let the r-class of S
containing x be denoted by xx. Suppose that xay [x ,y e S). Then there is an idempotent e in S
such that ex = ey and so etxT = ezyt. But ex is an idempotent of the group S/z and so it is the
identity. Hence xt = yT which shows that a £ T. It follows that 5/T is isomorphic with some
quotient group of S/a.

Finally, let M be an ideal of 5 and let aeM. Then since a~l = a~laa~leM'we see that
M is regular; since, a fortiori, its idempotents commute, it is an inverse semigroup. Let the
relation // be defined on M by analogy with a on S: we write x\iy (x, y e M) if and only if there
is an idempotent eeM such that ex = ey; then GM = M\\L. TO show that GM = Gs it is suffi-
cient to prove that every a-class of S contains one and only one ji-class of M. Let xeS and
let e be an idempotent in M; then since ex = e(ex) we see that xa(ex). But exeM and so
xanM T* • « We complete the proof by showing that xanM is a ji-class of M. If y, z e xa n M
there is an idempotent fe S such that fy =fz. Let e be any idempotent in M; then e/is an
idempotent in M and from the relation efy = efz we have yfiz. Conversely, if two elements of
M belong to the same /z-class then, a fortiori, they belong to the same c-class of S.

For the remainder of the paper we shall write x in place of xa; thus the natural homo-
morphism of an inverse semigroup onto its maximal group homomorphic image will be de-
noted by x-*x.

Suppose that an inverse semigroup S has a kernel K (a minimal ideal, necessarily unique)
and that K is a group. Then it is clear from the last part of the theorem that Gs = K. In fact
it may easily be verified that x =y (x, y e 5) if and only if ex = ey, where e is the identity of K,
and that

x->ex (xeS) (1.1)

is an isomorphism of Gs onto K. This is a special case of a result due to Stoll [14, p. 481].
An alternative, if less direct proof of the first part of Theorem 1 may be outlined as follows.t

An inverse semigroup 5 is isomorphic with a certain subsemigroup £ of the semigroup of all
one-to-one partial transformations of itself [15; 12, Theorem 1]. Since 2 does not contain the
null transformation, we may define a congruence ~ on it in the manner described by Rees [13]
and the quotient semigroup Z /~ is a group [13, Lemma 1.23]. The maximality of S /~
amongst the group homomorphic images of S was proved by Stoll [14, p. 479].

2. Prime irreducible representations of an inverse semigroup. Let O be a field and n a
positive integer. We shall denote by <Dn the set of all n x « matrices over <&. With respect to
the usual matrix operations of addition, multiplication and scalar multiplication On is a simple
algebra over 0 . Let 5 be a semigroup. By a representation of S of degree n over O we shall
mean a homomorphism of S into the multiplicative semigroup of <5n. The term ' irreducible ',
as applied to a set of matrices or to a representation, will have its customary meaning. By
convention, we shall not regard the set consisting of the 1 x 1 zero matrix as irreducible; thus
we shall not regard the null representation of degree 1 as an irreducible representation. It should

t Another proof (unpublished) has been obtained by Dr G. B. Preston.
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be noted that since S need not have an identity element there is no counterpart of the familiar
additional requirement for group representations that the image of the identity should be the
identity matrix. It is frequently the case with a representation r of S that T(x) is a singular
matrix for all xeS, even if F is irreducible.

In the proofs of Theorems 2 and 3 we shall make use of the following result from classical
representation theory. (See, for example, [4, Chapter V, Theorem 5.7]).

LEMMA. An irreducible subalgebra of<S>n is a simple algebra over $ .
The following notation will be used below. Let T be a subset of a semigroup S and let T

be a representation of S of degree n over <J>. Then F(T) will denote the set {F(t): teT} and
[r ( r ) ] will denote the subspace of <5>n spanned by T(T). It is easy to see that [T(S)] is a sub-
algebra of <t>n and that if T is an ideal of S then |T(r)] is an ideal of |T(S)]. We observe that
F(T) is an irreducible matrix set if and only if the same is true of |T(r)]. As in [9] we shall
write

Either F(T) = D or it is an ideal of S. If V(T) = • or is a prime ideal of S (that is, if K(r) ^ S
and 5\ V(F) is a subsemigroup of S) we shall call r a prime representation of S. Theorem 2
characterises all prime irreducible representations of an arbitrary inverse semigroup.

THEOREM 2. Let S be an inverse semigroup and O afield.
(i) Let T be a prime irreducible representation of S over <B and let V = V{V). Then S\ V is

an inverse semigroup and

*(;t) if xeSW,
0 if xeV, ( }

where x-*xis the natural homomorphism ofS\ V onto Gs \V and T* is an irreducible representation
ofGs\v.

(ii) Let V be the empty set or a prime ideal ofS. Then S\ V is an inverse semigroup and if f*
is any irreducible representation ofGsxv the mapping T, defined by (2.1), is a prime irreducible
representation of S.

Proof, (i) Let aeS\V and suppose that a~1eV; then a = aa~1aeV, which is a con-
tradiction. Hence a~ieS\V and so the semigroup S\V is regular. Since its idempotents
commute it is an inverse semigroup.

We define a positive integer r and a subset M of S\Vas follows:

r = min {rank T(a): a e 5\ V}, M={a:a<=S\ V, rank T(a) = r}.

Let aeM, xeS\V. Then axeS\V; also rank T(ax) ^ rank T(a) = r and so, by the mini-
mality of r, rank T(ax) = r. Hence axe M; similarly xa e M. Thus M is an ideal of S\ V and
since S\ V is an inverse semigroup so also is M.

Evidently 1 ^ r ̂  n, where n is the degree of I\ Suppose that r <n; we shall show that
this leads to a contradiction. Since M is an inverse semigroup it contains an idempotent/, say.
Corresponding to/ , there is a non-singular matrix P over O such that

, o l .
o oj
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Let A denote the representation x -* P~ * T {x)P of S. Since r is irreducible, so also is the equiva-
lent representation A. Thus [A(S)] is an irreducible subalgebra of <J>n and therefore, by the
lemma, it is a simple algebra over 4>. But [A(S)] = [A(S\F)] and [A(M)] is a non-zero ideal
of [A(S\ V)], since Mis an ideal of S\ V. Hence [A(M)] = [A(S\ K)], which shows in particular
that the matrix set A(M) is irreducible.

Let g be any idempotent in M and let A(g) = FGi G2~| where the partitioning is such

that Gi is an r x r block. Then, since

A(fg) = [G1 G2~\, A(g/) = fG1 0"| and fg=gf,
[0 0 J \_G3 Oj

we see that G2 = 0 and G3 = 0. But A(/g) is an idempotent matrix of rank r and so Gv = /r.

Thus A(g) = P /r 0 "I and, since this also has rank r, we have G4 = 0.

Lo GJ
Now let a be an arbitrary element of M and let A(a) = rAj /12~|, with the same

U J
partitioning as before. Since a 1a is an idempotent in M, we have

A(a) = A(a)A(a-1f l )=p1 ^2"|r/ r 0 1 = 1"^ 0 l ,
U3 ^JLo oj LA3 oj

which shows that A(Af) is a reducible matrix set. But this contradicts our previous conclusion
and so we must have r = n. In particular, T(e) = /„ for every idempotent ee S\ V. Thus if x
and y are elements of S\ V such that ex = ey for some idempotent ee S\ V, then F(x) = InT(x)
= F(ex) = r(ey) = InT(y) = r ( » . This enables us to define a mapping T* of GSyv into On by
the rule that r*(Jc) = r(x). Since r*(x)r*(^) = r(x)T(y) = r(xy) = r*(xy) = T*(x . y),
T* is a representation of GsyK; further, since T*(GS\K) = T(S\K) and T is irreducible, the same
is true of T*.

(ii) As in the proof of part (i), S\ V is an inverse semigroup. Let T* be an irreducible
representation of Gsw over O and let r be defined on S by (2.1). Then, for any elements
JC, y e S\ V we have

Since r(x)r(y) = 0 = r(xy) if either x or y (or both) e V, we see that r is a representation of S
with V(X) = V. Since F(S\ P) = T*{Gsyv) and T* is irreducible, so also is T.

Every semigroup S has a trivial prime irreducible representation, namely the representation
F of degree 1 defined by T(x) — 1 for all xeS. However, an irreducible representation of an
inverse semigroup need not be prime. To illustrate this, consider the subset S of On consisting
of the n2 matrices E.., where EtJ is the matrix with 1 in the (/, j)th position and 0 elsewhere,
together with the zero matrix. Then it is easy to verify that, with respect to matrix multiplica-
tion, S is an inverse semigroup and that the self-representation of 5 is irreducible. But this
representation is not prime if n > 1.

In the next section we discuss an important class of inverse semigroups for which every
irreducible representation is prime.
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3. Application to intraregular inverse semigroups. By a semilattice we mean a commutative
semigroup of idempotents. We define a partial ordering in a semilattice Y by writing
e^f(e,fe Y) if and only if ef=f: any two elements have a unique greatest lower bound
with respect to this ordering, namely their product. A semigroup S is called a semilattice
of semigroups of type J!F [3, p. 499] if it is expressible as a union of disjoint subsemigroups
Sa of type 3T, where a belongs to a semilattice Y and the multiplication in S is such that
SaSp £ Sxp.

Following Clifford and Preston [4], we shall say that a semigroup S is intraregular if and
only if aeSa2S for every aeS. Such a semigroup may be characterised as a semilattice of
simple semigroups ([1, 5] ; see also [3, p. 502]). It may be shown that an intraregular
inverse semigroup is a semilattice of simple inverse semigroups and conversely.

THEOREM 3. Every irreducible representation of an intraregular semigroup is a prime
representation.

Proof. Let S be an intraregular semigroup and let F be an irreducible representation of S
over a field <J>. Let V = K(F) and let a, b e S\ V; to establish the theorem we have to show that
ab e S\ V. Suppose that this is false and that ab e V. Since aeSa2S £ SaS, the principal ideal
of S generated by a is SaS. Let xe SaS; there are thus elements y, zeS such that x = yaz.
Then since bya e S(bya)2S and abeV we have

bx = byazeS(bya)2Sz = Sby(ab)yaSz c V.

Hence T(b)T(x) = 0 for all xeSaS and so T(b)X = 0 for all matrices A'efJX.SaS)]. Now
[r(Sa5)] is an ideal of [F(S)] and is non-zero since it contains F(a) ^ 0. But, by the lemma
(§2), since F is irreducible, [ r (5 ) ] is a simple algebra. Hence [F(SflS)] = [F(S)] and so
[F(S)] contains a non-zero left annihilator, namely F(b). This contradicts the simplicity of
|T(S)] and completes the proof.

Theorems 2 and 3 taken together enable us to find all the irreducible representations of an
intraregular inverse semigroup S. We note, in addition, that if Tx and T2 are equivalent
irreducible representations of S, then K(Ti) = K(F2) = V, say, and the corresponding
irreducible representations r t * and T2* of Gssy, defined by (2.1), are also equivalent; con-
versely, if Tx* and F2* are equivalent irreducible representations of Gs\v, where V = • or is a
prime ideal of S, then Fj and F2, defined by (2.1), are equivalent irreducible representations
of 5.

Elements of an arbitrary semigroup S are said to be ^-equivalent (f-equivalent, in the nota-
tion of Green [6]) if they generate the same principal two-sided ideal of S: evidently if M is
an ideal of S and Ja ^-class then either 7 s M or Jn M = Q. The ^/-classes have a natural
partial ordering: for any two ./-classes / and J', with corresponding principal ideals P(J) and
P(J'), we write / ^J' if and only if P(J) ^ P(J'). In [9], the author has defined a principal
representation of -S to be a representation F such that 5\ K(F) contains a unique minimal , / -
class (the apex of F) with respect to this partial ordering; a method is then given for obtaining
all the principal irreducible representations of S in terms of irreducible representations of the
principal factors of S [9, Theorem 1]. It is shown further that if S satisfies the minimal con-
dition on principal ideals then every irreducible representation is principal [9, Theorem 2],
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We shall now obtain the principal representations of an important type of intraregular
inverse semigroup from the results of the present paper.

The three properties of a semigroup 5 stated below are equivalent.

P4. 5 is a union of disjoint groups and its idempotents commute.

P5. S is regular and its idempotents are central (that is, if e is an idempotent then ex = xe
forallxeS).

P6. S is a semilattice of groups.

Clifford [2, 3] showed the equivalence of the properties P4 and P6. That P4 and P5 are
equivalent was shown by Liber [7]. Since a group is a special case of a simple inverse semi-
group, a semilattice of groups is an intraregular inverse semigroup. Alternatively, we may note
that P5 implies PI; also, ifaeSthena = aa - 1aand soa = aa~l((aa~i)a) = aa~la2a~1eSa2S.

The structure of a semilattice of groups may be described as follows [2, Theorem 3].
Such a semigroup S is a union of disjoint groups Sa, where a belongs to a semilattice Y.
To each pair of elements a, /? e Y such that a > /? there corresponds a homomorphism $a/J of
Sa into Sp and these homomorphisms satisfy the transitivity relation

If we take #.. to be the identity automorphism of the group Sa, then multiplication in S is
according to the rule

where xa, y0 are elements of Sa, S^, respectively, and y=a/? (a,/?e Y).
It is not difficult to see that the ./-classes of S are precisely the groups Sx and that their

partial ordering qua ./-classes coincides with that determined by the semilattice Y.
Now suppose that F is a principal irreducible representation of S over a field <£. Let V

denote V(T). By Theorem 3, T is prime; that is, S\ V is a subsemigroup of S. Hence, since T
is principal, there is an element cue 7such that Sw is the kernel of S\V. But by (1.1) the map-
ping xa -> ewxa = xa(j)aa (xa eSa^S\ V) is an isomorphism of C7S ̂  onto Sa, where ea is the
identity of S^. Thus, applying (2.1), we see that there is an irreducible representation F* of
Sa over 0 such that

(x«0««) i f xaeSa,a£(o,
0 if jc.eS., a £ a>. ( 3 J )

Conversely, if co is any element of Y and if T* is an irreducible representation of S^ over <D,
then (3.1) defines a principal irreducible representation of S over <D, with apex Su.

If S satisfies the minimal condition on principal ideals then every irreducible representation
is principal and therefore is of the type described in (3.1). The particular case in which S is
finite was treated in an earlier paper by the author [8, Theorem 9.6].

Finally, as an almost trivial example to illustrate the occurrence of non-principal ir-
reducible representations, consider the semigroup S which consists of the real interval [0, 1]
with multiplication defined by

xy = min {x, y).
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This is a semilattice in which the ordering is the natural ordering of real numbers. Every
proper ideal of S is prime and if K = D or is a proper ideal then Gs \V is the group consisting
of one element. It is easy to verify that the principal irreducible representations of S over O
are the representations r a of degree 1 given by

ra(x) = fi * x = a' (0<«<i).
aV ' [0 otherwise, v — — •»

On the other hand the non-principal irreducible representations are the representations Aa of
degree 1 given by

fl if x > a, , - 4.
ft .. . (0 < a < 1).
0 otherwise, v - '
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