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Abstract

We introduce a new family of latent class models for the analysis of capture-recapture

data where continuous covariates are available. The present approach exploits recent

advances in marginal parameterizations to model simultaneously, and conditionally on

individual covariates, the size of the latent classes, the marginal probabilities of being

captured by each list given the latent and possible higher order marginal interactions

among lists conditionally on the latent. An EM algorithm for maximum likelihood es-

timation is described and an expression for the expected information matrix is derived.

In addition, a new method for computing confidence intervals for the size of the popu-

lation having given covariate configurations is proposed and its asymptotic properties

are derived. Applications to data on HIV+ patients in the Region of Veneto (Italy)

and to new cases of cancer in Tuscany are discussed.

Key words: Conditional inference; Latent class model; Marginal parameterization;

Profile confidence intervals; Rasch model.
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1 Introduction

Statistical methods for the estimation of animal abundance from data collected by multiple

capture surveys have a long history: see Schwarz and Seber (1999) for an accurate review

of the literature and Pollock (2000) for a concise discussion of the main lines of approach.

Similar methods have found application in epidemiology, where multiple systems (usually

called lists) are often operating simultaneously, and sometimes independently, to keep records

of individuals who suffer from a certain disease. One can exploit the analogy between capture

occasions and lists, though the proportion of people appearing on a list is usually higher than

the proportion of animals captured in a single experiment. It is well known that even censuses

may suffer from undercount as described by Darroch et al. (1993).

The earliest approaches for the analysis of data collected within closed populations (i.e.

when migration, birth and death rates may be considered negligible) were based on simple

models for contingency tables (see for example Bishop et al. 1975), where each list is treated

as a binary variable and these variables are assumed to be independent; this is equivalent to

assuming that the probability of appearing on a given list is constant across the whole popu-

lation and that lists operate independently. More sophisticated models differ in the way they

deal with observed and unobserved heterogeneity within the population of interest. Observed

covariates may be discretized and used to define disjoint strata as, for example, in Darroch et

al. (1993) or Plante et al. (1998). Alternatively, one may model individual capture probabil-

ity as a function of continuous covariates: Alho (1990) applied a logistic model to a two-list

model under independence while Zwane and van der Hijden (2005) extended this approach

to multiple lists by allowing for possible dependence between lists. Unobserved heterogeneity

has been modelled by assuming that capture probabilities depend upon a continuous latent

trait having a given parametric distribution across the population; see for example Coull

and Agresti (1999) or Dorazio and Royle (2003), who propose a beta-binomial model which

they compare with a latent class approach. The use of latent class models are advocated by

Pledger (2000), among others; these models have the advantage that the distribution of the

latent is unconstrained; in addition, Lindsay et al. (1991) showed that a finite mixture with

only a few latent classes provides the same fit of a conditional Rasch model.
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A basic assumption of latent class models is that lists operate independently within ho-

mogeneous subjects, so that marginal association is due entirely to unobserved heterogeneity.

This assumption may be violated; for instance, if a case of cancer has been detected by a

pathology department, it is unlikely that the same case will also be detected at the hospital

level. Stanghellini and van der Hijden (2004) allowed bivariate log-linear interactions condi-

tionally on the latent. The same kind of bivariate dependence may be described by marginal

models as in Bartolucci and Forcina (2001); computationally this is more demanding but it

allows the univariate marginals and the bivariate associations to be modelled separately. A

more detailed discussion of the marginal approach versus the log-linear approach is given in

2.2.

In this paper we propose a new class of models for capture-recapture data allowing for

observed and unobserved heterogeneity. In particular, we extend the work of Bandeen-Roche

et al. (1997) and Huang and Bandeen-Roche (2004) on latent class models with continuous

covariates to the context of capture-recapture data, and in addition we allow for conditional

dependence among lists by exploiting recent developments on marginal modelling (Bergsma

and Rudas, 2002). When only discrete covariates are present, the models studied in this

paper are only slightly more flexible than those in Bartolucci and Forcina (2001); however, the

presence of continuous covariates poses new conceptual as well as computational challenges,

the solution of which constitutes one of the main merits of this work. We also extend Cormack

(1992)’s approach for computing confidence intervals for the true size of the population to

the case of subpopulations corresponding to selected covariate configurations and derive its

asymptotic properties. This extends an asymptotically equivalent procedure described by

Stanghellini and van der Hijden (2004) to the presence of continuous covariates.

After describing a dataset on new cases of HIV infection in the Region of Veneto, in

Section 2 we describe a family of marginal latent class models whose probability structure

may depend on continuous individual covariates as in a generalized linear model. An EM

algorithm for maximum likelihood estimation of the regression coefficients is described in

Section 3, where we also indicate how to compute the expected information and asymptotic

standard errors. Computation of confidence intervals for partial or overall undercounts is
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discussed in Section 3.3. A set of Matlab functions designed to perform all these tasks

is available from the website http://www.econ.uniurb.it/bartolucci/index.htm. Their

application to the HIV dataset is discussed in Section 4.

1.1 The data

The data we are going to analyze in Section 4 are about n = 3079 new cases of HIV infection

detected among the residents in the Region of Veneto in the 1997-2003 period. The data

were produced by linking J = 3 lists as described in Pezzotti et al. (2003):

• HIV (H): this is a list of individuals voluntarily took an HIV test at a Local Health

Unit and were found to be positive.

• AIDS (A): this is a list of individuals diagnosed with AIDS; the list is managed by the

National AIDS Center.

• DRLH (D): lists individuals who appear HIV positive according to a discharge report

from a public hospital or from a private hospital when a reimbursement has been

requested from the Regional Health System.

The frequencies for the k = 7 possible capture configurations are shown in Table 1, which

indicates that there is not much overlapping between lists: only 21.3% of the subjects appear

simultaneously in more than one list.

r D A AD H HD HA HAD

yr 1459 54 152 909 397 18 90

Table 1: New cases of HIV infection in Veneto from 1997 to 2003 by capture configuration

The year of first appearance in one of the lists, the corresponding age and the sex are also

available. The marginal distribution of cases according to year is given in Table 2: the drop

in number of cases from 1999 to 2000 is due mainly to the introduction of a new therapy

which did not require hospitalization. The joint distribution by age and sex is summarized

in Table 3; females appear to be younger and their proportion is much smaller.
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year 1997 1998 1999 2000 2001 2002 2003

% 20.07 20.53 20.20 9.42 9.55 11.33 8.90

Table 2: Marginal distribution of cases according to the year of first detection

age

sex % Mean Variance 1st quartile Median 3rd quartile

Male 68.14 37.5 173.54 31.0 36.5 43.0

Female 31.86 33.1 179.98 27.0 32.0 38.0

Total 100.00 36.1 179.71 30.0 41.0 35.0

Table 3: Summary statistics for the joint distribution of age and sex

2 A class of latent marginal regression models

2.1 Data organization

Assume that data are available for n subjects which have been captured at least once. These

may be grouped into s distinct covariate configurations, each determined by a vector zi

common to ni subjects with
∑

i ni = n. A special case is when ni = 1, i = 1, . . . , s, i.e. there

is a single subject in each configuration. In any case, because empty configurations need not

be considered, s ≤ n. Assume that there are J different lists and order the k = 2J−1 possible

capture configurations, r = ( r1, . . . , rJ ), by letting each list go from 0 (not captured) to 1

(captured) in lexicographic order; let yi be the vector containing the corresponding capture

frequencies. When only one subject with a given covariate structure has been captured, yi

is a vector of zeros except for the entry corresponding to the observed capture configuration,

which is equal to 1. Let pi,r be the probability that a subject with covariate configuration

zi experiences the capture configuration r 6= 0; these probabilities may be arranged into the

vector pi with capture configurations ordered as in yi. Let also qi denote the probability of

being captured at least once, given zi, so that 1 − qi denotes the probability of being never

captured. On the basis of a latent regression model, which will be discussed later, both pi

and qi =
∑

r 6=0 pi,r will be assumed to depend on a common vector of regression coefficients

β. Finally let ti denote the total number of subjects with covariate zi in the population, i.e.

the sum of ni plus the number of those never captured, and N =
∑

i ti denote the unknown

population size.
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2.2 A class of marginal link functions

Unobserved heterogeneity will be modelled by assuming that each subject belongs to one

among c disjoint latent classes as in a finite mixture model. More precisely, let πi,h,r denote

the conditional probability that a subject having covariate zi belongs to latent class h and

experiences capture configuration r. With πi we denote the vector with entries πi,h,r, where,

within each latent class h, r varies in lexicographic order within the full set of 2J capture

configurations, including the event of being never captured.

The class of models that we are going to propose depends upon an invertible transfor-

mation that links the vector πi to a vector of marginal logits and higher order interaction

parameters of the form ηi = X iβ where X i is a matrix of known constants which depend

on zi and β is a vector of regression parameters. The vector ηi is defined by a marginal

and ordered decomposable parameterization (odp). The elements of an odp link function are

variation independent (Bergsma and Rudas, 2002, p. 144) so that, roughly speaking, the

values assigned to the parameters of different marginal distributions are always compatible.

To keep the model parsimonious, we assume that all the interactions which are not defined

within a suitable marginal distribution are assumed to be identically 0 and thus are not

included into ηi. As we describe in the Appendix, a linear predictor having these features

may be expressed as

ηi = C log(Mπi) = X iβ (1)

where the matrices C and M are determined by the specific marginal model adopted; in

particular C is a matrix of row contrasts required to compute the corresponding parameters

and M is a matrix of 0’s and 1’s that produces the required marginal distributions. Let

v denote the size of any ηi; Bergsma and Rudas (2002, Theorems 1 and 2) show that (1)

defines a transformation which is invertible and twice differentiable between the vector of

the marginal parameters ηi and the probability vectors πi, within the set of probability

distributions which satisfy the restriction that all log-linear interactions of a higher order

than those included in ηi are equal to 0. Note that there must be k− v linearly independent

restrictions.

Bartolucci and Forcina (2001) also used a marginal link function whose elements, however,
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are not odp, so that there exist values of ηi which do not correspond to any joint distribution,

a feature which may cause numerical difficulties in the estimation algorithms. The log-

linear link function used by Stanghellini and van der Hijden (2004) is a valid alternative.

The present approach aims at modelling the marginal distribution of the latent given the

covariates directly, and then the marginal distribution of each list given the covariates and

the latent. With the log-linear link instead, the distribution of the latent can be modelled

conditionally on the lists being fixed to a reference category. It may be shown that the two

approaches are equivalent when lists are assumed to be conditionally independent given the

latent and a saturated model is assumed for the distribution of the latent. Instead, when the

regression model for the marginal logits of the latent is not saturated (for instance, because

continuous covariates are available) or if bivariate and higher order interactions are allowed

for the conditional distribution of the lists given the latent, the marginal link function may

differ substantially from the log-linear one where, for instance, the main effect of a list is also

conditional to the other lists being fixed to a reference category. When bivariate interactions

are allowed, models like Rasch’s can be formulated only if the univariate marginals of each

list can be accessed directly.

Typically ηi consists of the following elements:

1. c− 1 logits of type local which determine the marginal distribution of the latent;

2. cJ logits describing the probability of being captured in list j conditionally on being

in latent class h, with j running faster than h; note that these logits are marginal with

respect to other lists;

3. for each of at most J − 1 selected pairs of lists, the c log-odds ratios conditionally on

the latent but marginally with respect to other lists;

4. when the number of lists is, say, greater than 5, c three-way interactions for some

specific triplet of lists conditionally on the latent.

The following examples may clarify the common features of an odp. Let 0 denote the

variable indexing latent classes and 1, . . . , 4 denote 4 different lists. To construct an odp

which produces the model of conditional independence we need to consider the following
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sequence of marginals: {0}, {0, 1}, {0, 2}, {0, 3}, {0, 4}; all the interactions which cannot be

defined within these marginals are constrained to 0. Now suppose instead that the capture

mechanism is such that lists follow a natural order, so that the probability of being captured

by a list (given the latent) depends on whether the same subject has been captured by

the previous list; in this case we should add to the previous sequence the three marginals:

{0, 1, 2}, {0, 2, 3}, {0, 3, 4} within which the set of interactions for specifying the bivariate

association between adjacent lists may be defined. When there is a specific list, e.g. the

first, such that the event of being captured by this list may affect the probability of being

captured by other lists, we should consider, in addition to the set of marginals required for

the model of conditional independence, the set of marginals {0, 1, 2}, {0, 1, 3}, {0, 1, 4} where

the bivariate interaction between each list and the first (conditionally on the latent) may be

defined.

2.3 The linear model

The matrix X i, which determines the linear model, will usually be block diagonal with a

block for each component of the linear predictor: latent distribution, univariate marginals

given the latent, bivariate interactions given the latent and so on. The specific structure

of each component may vary depending on certain basic assumptions concerning the nature

and interpretation of the latent classes. If we believe that the latent classes are well-defined

populations to which each subject may or may not belong depending on individual covariates,

these covariates may enter only in the univariate logits for the probability that an individ-

ual with given covariates belongs to the different latent populations. Thus the conditional

probabilities of being captured would depend only on the latent. In this context it makes

sense to consider an additive model for the marginal logits of each list given the latent, like

in the Rasch (1961) model, so that the corresponding elements of β could be interpreted as

the capture effectiveness of each list (difficulty parameters, using the terminology of the Item

Response Theory) and receptiveness of each latent class (ability parameters).

If instead we believe that individual behavior is not entirely explained by the fact of

belonging to a given latent class, we would allow individual covariates to affect also the

8



capture probabilities of each list. Thus a more general class of models may be constructed

by relating either or both the first two components of the linear predictor to individual

covariates. In doing so, it seems reasonable to require that the regression coefficients of

the marginal logits of each list given the latent do not depend on the latent, which can

affect only the intercept. This is one of the sufficient conditions of Theorem 1 of Huang and

Bandeen-Roche (2004) for the local identifiability of the corresponding latent class model;

additional comments on identifiability are at the end of section 3.3. The third component,

containing bivariate interactions conditionally on the latent, will usually be introduced to

capture residual unexplained association, and it is unlikely that this will have to depend on

covariates, although in principle this is possible.

3 Likelihood inference

3.1 The likelihood function

Under the assumption of multinomial sampling, following Sanathanan (1972), the log-likelihood

describing the overall population may be factorized as follows. Let t = ( t1, . . . , ts ); then we

have

LU(t,β) = LB(t,β) + LC(β) (2)

where LB(t,β) =
∑

i

[
log

ti!

(ti − ni)! ni!
+ (ti − ni) log(1− qi) + ni log(qi)

]
(3)

and LC(β) =
∑

i


log

ni!∏
r 6=0 yi,r!

+
∑

r 6=0
yi,r log

(
pi,r

qi

)
 . (4)

Under the assumption that the latent regression model is such that the so-called manifest

probabilities pi are identified by β, model selection will be based on the conditional log-

likelihood LC(β) because it is relatively simpler to maximize. Once a proper model has been

selected, the binomial component of the unconditional log-likelihood will be used to obtain

a point estimate of t.
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3.2 Maximizing the conditional likelihood

This may be seen as a problem of incomplete data, where a number of subjects are never

captured and the latent class of those captured cannot be observed. The complete data would

contain the number of subjects with capture configuration r who belong to latent class h and

have covariate configuration zi. These frequencies may be arranged into the c × 2J vector

mi, having entries corresponding to those of πi. Then the log-likelihood may be maximized

by the following EM algorithm (Dempster et al., 1977, Baker, 1990):

E-step: on the basis of the available estimate of the vector of regression coefficients β̇,

first compute η̇i and then reconstruct π̇i,h,r, the estimated underlying multinomial

probabilities; on this basis the estimate of the underlying frequencies conditionally on

yi has the form

ṁi,h,r =





(ṫi − ni)
π̇i,h,0∑
h π̇i,h,0

if r = 0

yi,r
π̇i,h,r∑
h π̇i,h,r

otherwise

where ṫi = ni/q̇i;

M-step: maximize the multinomial likelihood L̃(β) =
∑

i m
′
i log(πi) + constant, having

replaced mi with ṁi.

The M-step may be performed by a Fisher-scoring algorithm as follows. Let θi be the vector

of canonical parameters for the multinomial distribution in exponential family form, having

removed the elements which are constrained to 0, so that this vector has the same dimension

v of the linear predictor ηi. As described in the Appendix, a design matrix G̃ of full rank v

may be easily constructed so that we may write

log(πi) = G̃θi − 1 log[1′ exp(G̃θi)].

Using this parameterization, the score vector and the average information matrix have the

simple form

s̃ =
∑

i

X ′
iR

′
iG̃

′
(mi − tiπi) and F̃ =

1

N

∑

i

tiX
′
iR

′
iG̃

′
Ω̃iG̃RiX i,

where

Ω̃i = diag(πi)− πiπ
′
i and Ri = [Cdiag(Mπi)

−1Mdiag(πi)G̃]−1
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are, respectively, the kernel of the multinomial variance and the derivative of ηi with respect

to θ′i. From the results in Bergsma and Rudas (2002) it follows that this matrix of derivatives

is of full rank v.

A direct Fisher scoring algorithm which maximizes the likelihood of the incomplete data

could also be used. An expression for the expected information matrix is derived in the

next section and the corresponding score vector is computed in the Appendix. However, in

our experience, such an algorithm would be much more unstable, though a little faster near

convergence.

3.3 Covariance matrix of the estimator of the regression coeffi-

cients and local identifiability

The covariance matrix of the conditional estimator β̂ of β may be obtained from the expected

information matrix of LC(β) written as an exponential family density. To this purpose let

γi = H log(ρi), with ρi = pi/qi, denote a vector of canonical parameters for the saturated

model of the manifest multinomial distribution with parameters (ni,ρi). Note that H may

be any (k − 1) × k matrix whose rows are linearly independent contrasts. Notice also that

we can write pi = Aπi and qi = a′πi, where A = 1′c ⊗ Ī, a′ = 1′kA, Ī is an identity matrix

of size k + 1 without the first row and ⊗ denotes the Kronecker product. It follows that the

conditional log-likelihood may be written as

LC(β) =
∑

i

{y′iGγi − ni log[1′ exp(Gγi)]}+ constant,

where G is the right inverse of H . By applying the chain rule and after a few simplifications

described in the Appendix, the average expected information matrix may be written as

F =
1

n
X ′B′OBX, (5)

where X is obtained by stacking the design matrices X i one below the other, B is block

diagonal with the ith block equal to U iRi, where

U i =
{
1′c ⊗

[
diag(ρi)

−1 − 1k1
′
k

]
Ī

}
Ω̃iG̃/qi,
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and O is block diagonal with the ith block given by the conditional covariance matrix of yi,

given ni, which is equal to niΩi, with Ωi = diag(ρi)− ρiρ
′
i. On the basis of the information

matrix above we can approximate the covariance matrix of β̂ with (nF )−1.

The fact that BX is the Jacobian of the transformation from the manifest distribution

to the model parameters β may be used for a heuristic assessment of local identifiability.

Because the block diagonal matrix O is of full column rank s(k − 1), which is usually much

bigger than the dimension of β, full rank of F is at least a sufficient condition of local

identifiability. Notice also that, unless there are cells of the conditional multinomials which

have true probability equal to 0, a sufficient condition for local identifiability at the true value

of the parameters is simply that s(k − 1) is bigger than the dimension of β. This indicates

that the presence of individual covariates may allow to fit a number of latent classes much

larger than what would be possible with a single stratum.

3.4 Inference on the population size

The vector t̂ which maximizes the binomial likelihood LB(t, β̂) has elements

t̂i =
ni

q̂i

, i = 1, . . . , s, (6)

so that the overall population size is estimated on the basis of β̂ by N̂ =
∑

i t̂i. The properties

of these estimators have been analyzed by Alho (1990), among others.

We now introduce a new statistic which extends the discrepancy measure studied by

Cormack (1992) in the context of a single stratum to the context of continuous covariates;

we also provide a formal argument for using the resulting confidence interval by deriving the

asymptotic distribution of the statistic. When continuous covariates are present, it is unlikely

that we are interested in the undercount for a given covariate configuration; most of the times

it is the overall undercount to be of interest. However, if discrete covariates are also available,

the size of the population with a given value of certain covariates might be of interest. The

approach we are going to describe is very general, in the sense that we derive a confidence

interval for the size of the population belonging to a chosen subset of strata as determined

by an s×1 binary vector u whose entries are equal to 1 if the corresponding stratum is to be

considered and are equal to 0 otherwise; we also denote with Nu the size of the corresponding
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population. The approach proposed by Stanghellini and van der Heijden (2004) may be seen

as a special case of the one we are going to describe when u has just one element different

from 0 and an asymptotically equivalent statistics based on the unconditional estimator is

used. Now let

G2(Nu) = min
t′u=Nu

D(t,β)− D̂, (7)

where

D(t,β) = 2
∑

i

[
(ti − ni) log

(
ti − ni

tipi,0

)
+

∑

r 6=0
yi,r log

(
yi,r

tipi,r

)]
(8)

is the hypothetical deviance of the assumed model under the assumption that ti, the popu-

lation size in any stratum i, is known and D̂ = D(t̂, β̂).

To compute the constrained minimum in (7) we use an algorithm that, starting from

β = β̂, alternates the following steps until convergence:

• update t, with β held fixed, by minimizing D(t,β) under the constraint t′u = Nu

together with ti − ni ≥ 0, ∀i. It may be shown that an algorithm that at each step

minimizes a quadratic approximation of D(t,β) under the constraints at issue is equiv-

alent to the following algorithm: (i) compute qi, ∀i, from the available estimate of β;

(ii) solve with respect to φ the nonlinear equation

∑

i

uini
1− qi

qi[1− φ(1− qi)]
= Nu

by a simple Newton algorithm and (iii) update the estimate of t by letting ti = ni(1−
qi)/[qi − φ̇qi(1 − qi)] if ui = 1 and ti = ni/qi otherwise, where φ̇ is the solution of the

equation above;

• update β, with t held fixed, by maximizing the full multinomial likelihood on the

complete table; this may be performed by an EM algorithm similar to the one described

in Section 3.2; the only difference is that the E-step is slightly simpler because ti is

assumed to be known for any i.

In the special case where Nu = N̂u, the algorithm above stops after the first step, because,

when we start from β = β̂, the conditional estimate t̂ satisfies the constraint t̂
′
u = N̂u by

construction and so G2(N̂u) = 0.
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Though the plot of G2(Nu) (or its asymptotic variants) as a function of Nu is commonly

referred to as a profile likelihood, G2(Nu) is not a proper likelihood ratio because it is neither

based on the unconditional nor on the conditional likelihood. To understand its nature let,

N0 denote the true value of the overall population size N , Nu0 that of Nu, α = t/N0 and

λ′ = (α′, β′); let also λ̂ denote the value of λ obtained by replacing α and β with their

conditional estimates and λ0 denote the true value of λ. Finally define

F (λ, λ̂) = [D(t, β)− D̂]/N0.

Lemma 1 Let V 0 denote the matrix of the second derivatives of F (λ, λ̂)/2 at λ0 and τ =

Nu0/N0; then

min
(α′u=τ)

F (λ, λ̂) = min
(α′u=τ)

(λ− λ̂)′V 0(λ− λ̂) + o(‖λ0 − λ̂‖2),

Proof. F (λ, λ̂) satisfies the conditions given by Shapiro (1985, p.135) for a discrepancy

function: (i) is non-negative; (ii) is equal to 0 only when λ = λ̂; (iii) is twice continuously

differentiable and (iv) for any a such that ‖λ− λ̂‖ ≥ a, exists b > 0 such that F (λ, λ̂) > b.

Then the result follows from Lemma 2.1 in Shapiro (1985).

Theorem 1 Provided that

lim
N0→∞

α0i = ci > 0,∀i, (9)

G2(Nu) has asymptotic χ2(1) distribution.

Proof. Sanathanan (1972, Theorem 4) has shown that λ̂ is a consistent estimator of λ0

and that
√

N0(λ̂ − λ0) has an asymptotic N(0,Σ0) distribution, where Σ0, as we show in

the Appendix, is such that V 0 →p Σ−1
0 and thus G2(τN0) = N0 min(α′u=τ) F (λ, λ̂), because

of Lemma 1, has asymptotic χ2(1) distribution (see also Shapiro, 1985, Lemma 2.2 for a

detailed derivation).

Theorem 1 implies that, if a given Nu was equal to the true value Nu0, the probability

that the corresponding statistic G2(Nu) exceeds the critical value χ2
α(1) is approximately

equal to α, where χ2
α(1) denotes the 100(1 − α)-th percentile of the χ2 distribution with

1 degree of freedom. Because of this, a confidence interval for Nu, (N̂u,1, N̂u,2), may be
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constructed as follows: (i) compute the value of G2(Nu) for a grid of values of Nu around

N̂u so that a reasonable approximation of this function may be constructed and, possibly,

plotted; (ii) compute N̂u,1 as the largest Nu such that Nu ≤ N̂u and G2(Nu) ≥ χ2
α(1) and

N̂u,2 as the smallest Nu such that Nu ≥ N̂u and G2(Nu) ≥ χ2
α(1).

4 An application

In order to choose the appropriate number of latent classes, we fitted a preliminary model

whose regression component was, in the light of prior information possibly over parameterized.

Because the covariate year should affect the functioning of the lists and not that of the latent

classes, we assumed that:

(i) the marginal logits of the latent have the form

ηi0 = β0 + xiaβ0a + xisβ0s + xiaxisβ0as, (10)

where xia is the age of the i-th subject and xis equals -1 for male and 1 for female;

(ii) the logits of the capture probabilities given the latent are defined as follows:

ηi1 = β1 + xiy(1c ⊗ β1y) + xia(1c ⊗ β1a) + xis(1c ⊗ β1s)+

+xiyxia(1c ⊗ β1ya) + xiyxis(1c ⊗ β1ys) + xiaxis(1c ⊗ β1as),
(11)

where xiy is equal to -1 or 1 depending on whether the year of first detection was before

2000 or not; note that regression coefficients are constant across latent classes;

notice that all bivariate and higher order interactions (given the latent) are, for the moment,

constrained to 0.

The maximum log-likelihood (L̂C(c)) as a function of the number c of latent classes and

the BIC(c) = −2L̂C(c) + log(n)d(c), where d(c) denotes the number of parameters, are given

in Table 3 below for values of c between 1 and 4.

These results seem to indicate that three latent classes should be adequate to represent

unobserved heterogeneity; we denote this model by M0. Certain meaningful restrictions

were tested in an attempt to simplify M0. Taken as a whole, the hypothesis that covariates

do not affect the marginal distribution of the latent weights and the effectiveness of the
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c d(c) L̂C(c) δ(c) BIC(c)

1 21 -3918.3 - 8005.2

2 28 -3794.8 17.6 7814.6

3 35 -3762.6 4.6 7806.2

4 42 -3749.0 1.9 7835.3

Table 4: Fit of the preliminary model as a function of the number of latent classes: d(c) =

number of parameters, δ(c) = [L̂C(c)− L̂C(c− 1)]/[d(c)− d(c− 1)]

lists can be easily rejected as well as the more specific assumption of no interaction between

covariates in the two components of the linear predictor. However, inspection of the estimates

and the corresponding standard errors under M0 suggested the following list of possible

simplifications:

(i) there is no interaction between age and sex on the marginal logits of the latent: β0as1

= β0as2 = 0;

(ii) there is no interaction between year and age and between year and sex on the effective-

ness of list HIV: β1ya1 = β1ys1 = 0;

(iii) the effectiveness of list AIDS does not depend on covariates: β1y2 = β1a2 = β1s2 = β1ya2

= β1ys2 = β1as2 = 0;

(iv) the effectiveness of list DRLH does not depend on sex: β1s3 = β1ys3 = βas3 = 0.

Model M4, obtained by imposing the above restrictions upon M0, has a deviance of 19.07

with 13 degrees of freedom and a p-value of 0.121. We finally tried to relax the assumption

of conditional independence given the latent; however, no pair of lists seems to exhibit a

significant association given the latent and the covariates and so M4 is our final model. The

analysis of the deviance leading to the selection of this model is displayed in Table 5 below.

Model Description Deviance d.f. p-value

M0: c = 3 with ηi0 as in (10) and ηi1 as in (11) - - -

M1: M0 with β0a = β0s = β0as = 0 78.94 6 < 10−4

M2: M0 with β1y = β1a = β1s = β1ya = β1ys = β1as = 0 488.36 18 < 10−4

M3: M0 with β0as = 0, β1ya = β1ys = β1as = 0 55.00 11 < 10−4

M4: M0 with restrictions (i), (ii), (iii) and (iv) 19.07 13 0.121

Table 5: List of marginal regression models fitted on the HIV dataset
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Table 6 gives the estimates of the weights of the latent classes and the capture probability

of each list (given the latent) for a ”reference subject” with xiy = xis = 0 and xia = 36.1

(average age in the sample).

Latent class

1 2 3

Class weight 0.8414 0.0146 0.1440

Conditional prob. HIV 0.2419 0.0031 0.5203

Conditional prob. AIDS 0.0111 0.0254 0.2231

Conditional prob. DRLH 0.0415 0.7707 0.9964

Table 6: Estimates of class weights and conditional probability of appearing in the lists based

on M4, for a subject with covariate values equal to the sample average

Parameter Estimate Standard error p-value

Effect of sex on ηi01 (β0s1) 3.7473 0.8513 < 10−4

Effect of sex on ηi02 (β0s2) -3.7188 0.8516 < 10−4

Effect of age on ηi01 (β0a1) 0.1697 0.0203 < 10−4

Effect of age on ηi02 (β0a2) -0.1186 0.0214 < 10−4

Table 7: Estimates of the regression coefficients for the marginal logits of the latent class

weights

Parameter Estimate Standard error p-value

Effect of year on H (β1y1) 0.2845 0.0646 < 10−4

Effect of sex on H (β1s1) 0.6608 0.1940 0.0007

Effect of age on H (β1a1) 0.0129 0.0095 0.1740

Interaction age.sex on H (β1as1) 0.0282 0.0080 0.0005

Effect of year on D (β1y3) -1.7776 0.3438 < 10−4

Effect of age on D (β1a3) -0.0579 0.0109 < 10−4

Interaction year.age on D (β1ya3) -0.0351 0.0101 0.0005

Table 8: Estimates of the regression coefficients for the conditional univariate logits of the

lists

Table 6 indicates that latent class 1 is the most common and contains subjects with the

smallest chance of being detected by AIDS and DRLH. Latent class 2 is very small (but its

size increases with age) and contains subjects for whom the probability of being detected by

DRLH is quite high, while that of being detected by HIV or AIDS is rather small. Latent

class 3 corresponds to cases with the highest probability of being detected by HIV, AIDS
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and DRLH. Table 7 indicates that the probability of being in class 2 increases with age and

is larger for females than for males. Finally, Table 8 indicates that the effectiveness of list

HIV is larger in the second period (2000-2003) for females (compared to males) and increases

with age. The probability of being detected by DRLH, instead, is much smaller in the second

period than in the first period and decreases with age.

The estimate of N based on M4 equals 7495.9, with the number of missing subjects being

4416.9 (58.92%). As illustrated in Figure 1, the 95% confidence interval for N computed on

the basis of the statistic G2(N) described in Section 3.4 is (6126.1, 9660.3), so that undercount

should be between 49.7% and 68.1%. We also computed a 95% confidence interval for the

number of males in the population, Nm, and for the number of females, Nf (see Figure 2). The

interval for Nm is (4442.9, 7374.7), which obviously contains the point estimate N̂m = 5581.5,

while that for Nf is (1582.7, 2466.2) around the point estimate N̂f = 1914.3.
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3.841

6126.1 9660.3
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Figure 1: Confidence interval for the population size based on model M4

4.1 Discussion

The size of the population estimated by Pezzotti et al. (2003) based on the same 3 lists and

a saturated log-linear model equals 12682. There are two possible explanations for obtaining

substantially different results. One is that their lists refer to periods of different length, with

the list AIDS starting from 1983, HIV from 1988 and DRLH from 1997. In addition, we note

that, when the same log-linear model is fitted to our data, an estimate of 9013 is obtained.
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Figure 2: Confidence intervals for the size of the population of males (Nm) and of females

(Nf) based on model M4

This seems to suggest that, because of the structure of the data, ignoring observed and latent

heterogeneity may lead to a substantial over-estimation of the population size.

The period of first appearance clearly poses a substantial problem. We could use all the

available cases since 1983; there were however several reasons for not doing so. One is that,

with such a long period, the assumption of closed population is untenable and it becomes

less clear what population size we are really talking about. For instance, from the data

provided by Pezzotti et al. (2003), the estimated number of deaths within the population of

interest from 1983 to 2003 may be set at over 2500. In addition, because in certain periods

some lists were not active, their capture probability during the same period would have to

be constrained to 0 and this would have introduced technical difficulties.

A similar modelling approach was applied also to a dataset provided by the Tuscany Can-

cer Registry and concerning 7253 new cases of cancer detected during the year 2000. The

data were produced by linking discharge reports from local hospitals, reports from the patho-

logic anatomy units in Tuscany and death certificates issued from 2000 to 2002 concerning

new cases of cancer detected during the year 2000 by one of the previous lists or by a private

doctor; see Crocetti et al. (2001) for a description of the sources and the criteria used for data

collection. Although for brevity detailed results will not be described here in detail, there

are two features which are worth mentioning. One is the very high coverage of this registry,

which is over 99.8%. We also found a significant violation of conditional independence with
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a significantly negative association between hospitals and pathology unit reports.
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Appendix

Construction of the C, M and G̃ matrices

The matrix C is block diagonal with blocks of the form (−1 1 ) for univariate logits, (1−1−
1 1) for log-odds ratios and so on. Let ch denote the hth row of Ic; then the matrix M may

be obtained by stacking one below the other blocks of rows of the form MI =
⊗J+1

i=1 MI,i

where I may be:

• the hth marginal logit of the latent, then MI,i is equal to ( c′h−1 c′h )′ if i = 1 and to

1′2 otherwise;

• the univariate logit of list j given the latent equal to h, then MI,i is equal to ch for

i = 1, to I2 for i = j + 1 and to 1′2 otherwise;

• the log-odds ratio between lists j1, j2 given the latent equal to h, then MI,i is equal to

ch for i = 1, to I2 for i = j1 + 1 or i = j2 + 1 and to 1′2 otherwise.

The matrix G̃ has a block of columns for each effect; the block corresponding to the marginal

logits of the latent is a Kroneker product of Ic without the first column and 1k+1; the set
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of univariate logits for list j correspond to the Kroneker product between Ic and
⊗J

l=1 G̃l

where G̃l is equal to I2 if l = j and to 12 otherwise.

The covariance matrix of β̂

Use the following chain rule to differentiate LC :

s′ =
∂LC

∂β′
=

∑

i

∂LC

∂γ ′i

∂γi

∂θ′i

∂θi

∂η′i

∂ηi

∂β′
=

∑

i

[(yi − niρi)
′G](HU i)RiX i,

where

U i =
∂ log(ρi)

∂θ′i
= diag(ρi)

−1 qiA− pia
′

q2
i

Ω̃iG̃ =

= diag(ρi)
−1(A− pia

′/qi)Ω̃iG̃/qi =

= {1′c ⊗ [diag(ρi)
−1 − 1k1

′
k]Ī}Ω̃iG̃/qi.

The information matrix F may be obtained as the expected value of ss′/n by noting that

E[(yi − niρi)(yi − niρi)
′] = niΩi. This simplifies to (5) because, irrespective of the specific

form of H , GH = Ik − 1k1
′
k/k and so H ′G′ΩiGH = Ωi.

The covariance matrix Σ0

The second derivative matrix of F (λ), V (λ), has elements

∂2F (λ)

∂αi∂αj

=
δijfi

αi(αi − fi)
,

∂2F (λ)

∂αi∂βj

= − 1

pi,0
p

(j)

i,0,

∂2F (λ)

∂βj∂βl

= −∑

i

[
αi − fi

pi,0

(
p

(jl)

i,0 −
p

(j)

i,0p
(l)

i,0
pi,0

)
+

∑

r 6=0

fi,r

pi,r

(
p

(jl)
i,r −

p
(j)
i,rp

(l)
i,r

pi,r

)]

where δij = 1 if i = j and 0 otherwise, p
(j)
i,r denotes the first derivative pi,r with respect to βj

and p
(jl)
i,r denotes the second derivative with respect to βj and βl. Now consider the matrix

V 0 = V (λ0); condition (9) implies that, as N0 → ∞, fi →p ci(1 − pi,0) and fi,r →p cipi,r

i = 1, . . . , k. It follows that V 0 →p Σ−1
0 the information matrix given by Sanathanan (1972),

which has elements

s0(αi, αj) =
δij(1− pi,0)

cipi,0
, s0(αi, βj) = − 1

pi,0
p

(j)

i,0, s0(βj, βl) =
∑

i

ci

∑
r

p
(j)
i,rp

(l)
i,r

pi,r
.
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