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SUMMARY

We propose a class of dependent processes in which density shape is regressed on one or more
predictors through conditional tail-free probabilities by using transformed Gaussian processes.
A particular linear version of the process is developed in detail. The resulting process is flexible
and easy to fit using standard algorithms for generalized linear models. The method is applied
to growth curve analysis, evolving univariate random effects distributions in generalized linear
mixed models, and median survival modelling with censored data and covariate-dependent errors.
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1. INTRODUCTION

Consider regression data (xi , yi ) (i = 1, . . . , n), where xi ∈X ⊂ R
q is a set of predictors, and

yi is a response variable on the real-line R. Typically, parametric or semiparametric regression
models specify a location function m : R

q −→ R, such as the mean or median, and assume that
yi = m(xi ) + ei , where the errors, ei , are independent random variables with common distri-
bution G. However, for many data sets, it is not appropriate to assume that the error distribu-
tion is constant over the predictor space X . For example, this assumption is typically violated
in growth curve modelling (MacEachern, 1999; Kapitula & Bedrick, 2005). Although several
parametric and semiparametric generalizations indexing the error distribution by the covariates,
Gxi , have been proposed (Kapitula & Bedrick, 2005), they enable only a few aspects of Gx to
change with x . Therefore, these approaches do not enable a full investigation of changes in the
conditional distribution of the response given the covariates. For instance, as time continues,
heterogeneity in timing of biological processes can produce modal separation and changes in
skew of the error distribution, simultaneously. The key challenging aspect is to anticipate and
enable such distributional evolution without grossly overfitting the data. In the Bayesian non-
parametric literature, this problem has been faced through the construction of prior distributions
for the collection of related probability distributions {Gx : x ∈X }.

The problem of defining priors over related probability distributions has recently received
increasing attention. To date, much effort has focused on constructions that generalize the widely
used class of Dirichlet process priors (Ferguson, 1973, 1974). An exception is Tokdar et al.
(2010), who model conditional densities related by continuous predictors based on logistic
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Gaussian processes and subspace projection. MacEachern (1999) proposed the dependent
Dirichlet process to define a full joint model on the set {Gx : x ∈X }, where every Gx fol-
lows a Dirichlet process marginally. The dependent Dirichlet process generalizes the represen-
tation of Sethuraman (1994) of the Dirichlet process, G(·) = ∑∞

i=1 wiδηi (·), where the wi s are
weights following a stick-breaking construction, δη(·) denotes the Dirac measure at η, and the
ηi s are independent random support points with common distribution G0. In the basic version
of this approach, the random support points {ηi } are replaced by stochastic processes indexed
by x , ηi = {ηi (x) : x ∈X } (Gelfand et al., 2005), or linear regressions ηi = xTβi (De Iorio et al.,
2004, 2009; Jara et al., 2010). Alternatively, Griffin & Steel (2006) and Dunson et al. (2007)
developed models where the dependence is introduced by making also the weights dependent
on the covariates. An earlier approach that is related to the latter reference is Müller et al.
(1996). These authors fitted a standard Dirichlet process mixture of multivariate Gaussian dis-
tributions to observations D = {(xi , yi )}n

i=1 and looked at the conditional predictive density
p(yn+1 | xn+1,D). Although Müller et al. (1996) focused on the posterior predictive mean func-
tion {E(yn+1 | x,D) : x ∈X }, their method can easily be extended to provide inferences for the
conditional density at covariate level x , yielding a density regression model in the spirit of
Dunson et al. (2007). Both Müller et al. (1996) and Dunson et al. (2007) produce estimates of
m(x) that are essentially an infinite sum of linear regressions more highly weighted by covari-
ates {xi } near to x , similar to loess regression.

All of these approaches first induce dependence among aspects, weights and/or locations, of a
Dirichlet process, then convolve the process with a smooth kernel. In contrast to these approaches
we propose a natural, but remarkably effective, dependent nonparametric process {Gx : x ∈X }
obtained by simply modelling tail-free conditional probabilities with transformed Gaussian pro-
cesses. A particular specification of the process is developed in detail which enables a logistic
regression representation of the tail-free conditional probabilities and has the following desirable
properties: the prior yields a density with respect to Lebesgue measure at each x ∈X , the pro-
cess is continuous as a function of the predictors, the process has large support on the space of
all conditional density functions, the posterior computation is simple, relying on algorithms for
fitting generalized linear models, and the process closely matches a conventional Polya tree at
each value of the predictor. Polya trees have been studied extensively in the literature and have
desirable properties in terms of support and posterior consistency. The dependence of the pro-
cess on the partitions associated to the tail-free construction is avoided by considering mixtures
of the proposed process. The process can easily be constrained to have median zero, facilitat-
ing its use in median regression models, survival analysis and generalized mixed models with
evolving univariate random effect distributions.

2. A GENERAL CLASS OF DEPENDENT TAIL-FREE PROCESSES

2·1. Tail-free processes

Tail-free processes are stochastic processes that can be defined to have trajectories on the
space of all probability distributions on a given space (Freedman, 1963; Fabius, 1964; Ferguson,
1974). A tail-free random probability measure G with support on R is defined by allocations of
random probabilities to increasingly refined partitions of R. Let E = {0, 1} and Em be the m-fold
Cartesian product E × · · · × E . Further, set E∗ = ⋃∞

m=1 Em . Consider the sequence of partitions
of R given by π0 = {R}, π1 = {B0, B1}, π2 = {B00, B01, B10, B11}, . . ., such that R = B0 ∪ B1
and B0 ∩ B1 = ∅, and for each m ∈ N and every ε = ε1 · · · εm ∈ Em , Bε = Bε0 ∪ Bε1 and Bε0 ∩
Bε1 = ∅. Assume that Bε0 lies below Bε1 and that for all ε ∈ E∗, Bε is a left-open right-closed
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interval unless ε is a string of ones only. Throughout the paper, we use the convention that ε =
ε1 · · · εm−10 = 0 and ε = ε1 · · · εm−11 = 1, if m = 1. Let � = ⋃∞

i=0 πi and further assume that
the partitions form a rich class in the sense that � is a generator of the Borel σ -field of R,
B ≡B(R).

DEFINITION 1. Let � be a sequence of binary partitions as before. A random probability
measure G on (R,B) is said to be a tail-free random probability measure with respect to the
set of partitions � if there exist a collection Y = {Yε : ε ∈ E∗} of [0, 1]-valued random variables
such that the following hold:

(i) the vectors (Y0, Y1), (Y00, Y01, Y10, Y11), . . ., are mutually independent;
(ii) for every ε = ε1 · · · εm ∈ E∗, Yε1···εm−10 + Yε1···εm−11 = 1 almost surely;

(iii) for every ε = ε1 · · · εm ∈ E∗, the random probability measure G is related to Y through the
relations

G(Bε) =
m∏

j=1

Yε1···ε j .

We consider partition sets in � such that their limits correspond to quantiles of a paramet-
ric distribution Gθ , θ ∈ �, defined on (R,B). Specifically, we consider sets in � of the form
Bθ

ε = (lθε , uθ
ε ], where lθε = G−1

θ (k/2m) and uθ
ε = G−1

θ {(k + 1)/2m}, with G−1
θ (·) being the quan-

tile function of Gθ , and k is the decimal representation of ε = ε1 · · · εm ∈ E∗. If needed, the
notation �θ will be used to make the dependence of � on the parameters of Gθ explicit. Without
loss of generality, for the rest of the paper we assume that the sets are constructed based on the
quantiles of the N (0, θ) distribution, which implies that the collection of right endpoints of Bθ

ε

is dense in R and that �θ is a generator of B.
The class of tail-free processes admits Polya trees and Dirichlet processes as important special

cases. Polya trees assign the elements in the collection {Yε0}ε∈E∗-independent beta distributions.
The Dirichlet process is tail-free with respect to any sequence of partitions and is the only pro-
cess in the class that has this property. Tail-free priors satisfy a zero-one law: the random measure
generated by a tail-free process is absolutely continuous with respect to a given finite measure
with probability zero or one (Ghosh & Ramamoorthi, 2003). Dubins & Freedman (1967), Kraft
(1964) and Metivier (1971) gave useful sufficient conditions for the almost sure continuity and
absolute continuity of a tail-free process. We discuss these conditions in the context of the depen-
dent tail-free process in the next sections.

2·2. Dependent tail-free processes

In order to introduce dependence in random probability measures, we consider transformed
Gaussian processes, indexed by predictors x ∈X ⊂ R

q , where X is a bounded subset of R
q , to

define the tail-free conditional probabilities.

DEFINITION 2. Let � be a sequence of binary partitions as before, let h : R −→ [0, 1] be
a strictly increasing continuous function, let A= {Vε0 : ε0 = ε1 · · · εm−10 ∈ E∗} be a set of
covariance functions, and let P(R) be the set of Borel probability measures on (R,B). Let
{G(x, ω) : x ∈X } be a P(R)-valued stochastic process on an appropriate probability space
(,F, P) such that:

(i) the sets {ηε0(x, ω) : x ∈X }, for every ε0 = ε1 · · · εm−10 ∈ E∗, are realizations of mutually
independent zero-mean Gaussian processes with covariance functions Vε0, respectively;
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(ii) for every x ∈X and every ε0 = ε1 · · · εm−10 ∈ E∗, Yε0(x, ω) = h{ηε0(x, ω)} and
Yε1(x, ω) = 1 − Yε0(x, ω);

(iii) for every x ∈X and every ε = ε1 · · · εm ∈ E∗,

G(x, ω)(Bε) =
m∏

j=1

Yε1···ε j (x, ω).

Such a process {Gx = G(x, ω) : x ∈X } will be referred to as a dependent tail-free process with
parameters (h, �,A), and denoted DTFP(h, �,A).

The definition of the dependent tail-free process implies that if h is taken to be the cumulative
distribution function of any absolutely continuous random variable with distribution symmetric
around 0 and the limits of the partition sets are taken such that they coincide with quantiles of
Gθ , then the collection {Gx : x ∈X } is centred around Gθ , that is, E(Gx ) = Gθ , for all x ∈X .
We refer the reader to Appendix A of the Supplementary Material for a proof. Choices for h
that achieve this goal are the standard logistic or normal cumulative distribution functions. Other
links can be considered. The logistic link

Yε0(x, ω) = exp{ηε0(x, ω)}
1 + exp{ηε0(x, ω)} ,

for every ε0 = ε1 · · · εm−10 ∈ E∗, is used throughout the paper primarily to simplify and speed
up computations in model fitting.

From the definition of the dependent tail-free process, it is easy to see that regardless of the link
function h, G(x, ·) is a tail-free process for all x ∈X . Furthermore, for every ε0 = ε1 · · · εm−10 ∈
E∗ and ε1 = ε1 · · · εm−11 ∈ E∗, the vectors {Yε0(x, ·), Yε1(x, ·)} are mutually independent. This
allows us to specify the process in such a way that marginally, G(x, ·) closely match Polya tree
priors in § 3·2. Similarly to tail-free processes for single probability measures, the dependent tail-
free process can easily be constrained in order to have trajectories on the space of the probability
distributions on (R,B) with median zero almost surely, that is, such that all elements in {Gx :
x ∈X } have median zero with probability one, facilitating the use in location models. This can
easily be done by letting η0(x, ·) = 0 almost surely, for every x ∈X .

The form of the covariance functions in A completely defines the process and determines
important properties. Its specification determines whether the trajectories of the process have
a density with respect to Lebesgue measure. Furthermore, under certain specifications of the
covariance functions, the process is stochastically continuous at every x ∈X and can be almost
surely a continuous function on X . The following proposition is proved in Appendix B of the
Supplementary Material.

PROPOSITION 1. Let {Gx : x ∈X } | h, �,A∼ DTFP(h, �,A), and let c and C be positive
constants. If every covariance function V ∈A is specified and satisfies the Lipschitz condition,
that is, V (x1, x1) + V (x2, x2) − 2V (x1, x2) � C ||x1 − x2||c, x1, x2 ∈X , then for all {x j }∞1 , with
x j ∈X such that lim j→+∞ x j = x, and for all B ∈ �, G(x j , ·)(B) converges in probability to
G(x, ·)(B) when j → +∞, for all x ∈X . If, in addition to the Lipschitz condition, the associated
Gaussian processes are almost surely separable, then G(·, ω)(B) is almost surely a continuous
function on X , for all B ∈ �.

The specification of the covariance functions in A also determines the support properties of
the process. The following proposition is proved in Appendix C of the Supplementary Material.
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PROPOSITION 2. Let {Gx : x ∈X } | h, �,A∼ DTFP(h, �,A), where h is the logistic
transformation and the partition sets in �, created as before, are based on the probability dis-
tribution Gθ defined on (R,B). Assume that the dependent tail-free process is specified such
that for every ε0 = ε1 · · · ε j−10 ∈ E∗, {ηε0(x, ·) : x ∈X } is a Gaussian process with continuous
sample paths and continuous covariance kernel such that Vε0(x, x) = 2/ρ( j), for all x ∈X ,
where ρ : N −→ R

+ is an increasing function such that
∑∞

j=1 ρ( j)−1 < ∞. Let {G0
x : x ∈X } be

a set of probability distributions defined on (R,B) and such that, for every x ∈X , G0
x  Gθ

and has a density with respect to Lebesgue measure. If for every ε0 ∈ E∗, the composition of
functions η0

ε0 = (h−1 o y0
ε0) : X → R is in the reproducing kernel Hilbert space of Vε0, where

{y0
ε0(x) = G0

x (Bε0 | Bε) : x ∈X } is the corresponding conditional probability function, then

pr

[
ω ∈  : sup

x∈X
DKL{G0

x , G(x, ω)} < α

]
> 0,

for all α > 0, where DKL denotes the Kulback–Leibler divergence.

For many choices of covariance kernels in A, the associated reproducing kernel Hilbert space
is dense in the space of the continuous functions on X , in which case the corresponding Gaus-
sian process assigns positive probability to the uniform neighbourhoods of every continuous
function and, therefore, every continuous set of conditional densities will be in the Kulback–
Leibler support of the dependent tail-free process. Natural choices for longitudinal and/or spatial
modelling, which induce continuous dependent tail-free processes with large support, are the
Ornstein–Uhlenbeck process, or an integrated version thereof (Wang & Taylor, 2001). Although
flexible, priors such as these require the sampling of an entire tree of conditional probabilities
at each distinct covariate value. Inference can take on the order of days to obtain and in many
cases is not practically possible. In the next section, we develop an approach that achieves the
continuity property, has large support and enables straightforward Markov chain Monte Carlo
implementations. The construction is a particular case of a dependent tail-free process and is
based on a connection between Gaussian processes and linear models.

3. A TRACTABLE MIXTURE OF DEPENDENT TAIL-FREE PROCESSES

3·1. Linear dependent tail-free processes

We now examine a special case of the general model where for all ε0 = ε1 · · · εm−10 ∈ E∗,
the {ηε0(x) : x ∈X } are Gaussian processes such that for any finite sequence of distinct elements
x1, . . . , xl of X , the processes have finite-dimensional multivariate normal distributions given by

{ηε0(x1), . . . , ηε0(xl)}T ∼ Nl{0, �(x1, . . . , xl, Wε0)},
where �(x1, . . . , xl, Wε0) = D(x1, . . . , xl)Wε0 D(x1, . . . , xl)

T, with D(x1, . . . , xl) being a full-
rank l × r design matrix, whose rows are given by r -dimensional vectors d(xi )

T based on the
continuous predictors xi , and Wε0 is a r × r -dimensional covariance matrix. Clearly, these pro-
cesses can be induced by the linear, in the coefficients, model given by

ηε0(x, βε0) = d(x)Tβε0, βε0 ∼ Nr (0, Wε0).

It is important to stress that the linear specification can be interpreted as an approximation to
any general function, which can be very flexible by including standard nonlinear transforma-
tions of the original continuous predictors, such as additive models based on B-splines or series
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expansions, as well as linear forms in the continuous predictors themselves and other discrete
predictors. From Proposition 2, the greater the flexibility of the linear specification, the larger
the support of the dependent tail-free process, which is determined by the reproducing kernel
Hilbert space of the covariance functions. As discussed in § 5, the complexity needed by the
model can be evaluated using standard model determination techniques.

DEFINITION 3. Let � be a sequence of binary partitions as before, let h : R −→ [0, 1] be a
strictly increasing continuous function, let d : R

q → R
r be a design-vector generating one-to-one

mapping, let A= {Wε0 : ε0 = ε1 · · · εm−10 ∈ E∗} be a set of r × r covariance matrices, and let
P(R) be the set of Borel probability measures on (R,B). Let {G(x, ω) : x ∈X } be aP(R)-valued
stochastic process on an appropriate probability space (,F, P) such that:

(i) the r-dimensional vectors βε0(ω), for every ε0 = ε1 · · · εm−10 ∈ E∗, are realisations
of mutually independent and normally distributed random vectors with zero-mean and
covariance matrix Wε0, respectively;

(ii) for every x ∈X and every ε0 = ε1 · · · εm−10 ∈ E∗, Yε0(x, ω) = h{d(x)Tβε0(ω)} and
Yε1(x, ω) = 1 − Yε0(x, ω);

(iii) for every ε = ε1 · · · εm ∈ E∗,

G(x, ω)(Bε) =
m∏

j=1

Yε1...ε j (x, ω).

Such a process {Gx = G(x, ω) : x ∈X } will be referred to as a linear dependent tail-free process
with parameters (h, �,A), and denoted LDTFP(h, �,A).

3·2. Prior specification

If the dimension of the design vectors is smaller than the sample size, the linear dependent
tail-free process represents a reduction of the dimensionality of the inferential problem. In fact,
the problem is reduced to updating independent binary regression coefficients βε0, for all ε0 =
ε1 · · · εm−10 ∈ E∗, instead of the finite dimensional realisations of the Gaussian processes in each
distinct predictor value. However, there are still countably many parameters {Wε0} that need to be
specified. A default prior specification is clearly needed. A reasonable linear dependent tail-free
process specification would take the scale, location and correlation among the predictor variables
into account in an effort to standardize and bound prior variability across representative predictor
values. In the context of binary regression models, Gelman et al. (2008) suggest standardizing
the data and then placing independent Cauchy prior distributions on the regression coefficients.
This is reasonable, and produces good results, but does not take into account correlation among
the predictor variables. A prior that is location-scale invariant in terms of the predictors is a
suitably modified version of Zellner’s g-prior (Zellner, 1983), originally developed as a reference
informative prior for Gaussian linear models. The basic idea extends to the linear dependent
tail-free setting by noting that, as shown below, beta(a, a) ≈ logit N (0, 2/a) and taking βε0 ∼
Nr (0, gε0�

−1), where � = DT D, ε0 = ε1 · · · εm−10 ∈ E∗ and the gε0s are positive constants,
that is, Wε0 = gε0(DT D)−1. Thus the logit tail-free probabilities at the observed design points
satisfy

Dβε0 ∼ Nn(0, gε0 D�−1 DT).
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This specification implies positive correlation among probabilities for design points that are near
each other. The minimal variance occurs at d̄, and is var(d̄Tβε0) = gε0/n.

Christensen (2002) points out that the perpendicular projection matrix M = D(DT D)−1 DT

has diagonal leverage elements mii = n−1 + �̂2
i /(n − 1), where �̂2

i = (d∗
i − d̄∗)TS−1(d∗

i − d̄∗)
is the sample Mahalanobis distance of the predictors without the intercept, that is, di = (1, d∗

i )

and (n − 1)S−1 = ∑n
i=1(d

∗
i − d̄∗)(d∗

i − d̄∗
i )′. Also note

∑n
i=1 mii = r and n−1 � mii � 1. If the

logistic transformation is considered, the further d∗
i is from d̄∗, the greater the variability of

Yε0(xi , ·) around 0·5 under the prior. Zellner (1983) suggests taking gε0 = f (n) to grow with n,
inducing prior precision to grow with n, that is, learning by doing. We suggest choosing gε0 =
2n/cρ(lε0), where lε0 is the length of ε0, that is, ε0 ∈ Elε0 , and ρ : N −→ R

+ is an increasing
function. This has the effect of standardizing the prior variability at x̄ , that is, var{Yε0(x̄, ·)}, to
be approximately that of traditional Polya tree priors with precision parameter c.

The similarity between the marginal realizations of the linear-dependent tail-free process under
this specification and Polya trees is explained by the similarity of the symmetric logistic normal
and symmetric beta distributions. In fact, although the logistic normal distribution, introduced
by Johnson (1949) as his type SB class, and beta distributions can look very similar, a stronger
statement can be made. The following proposition is proved in Appendix D of the Supplementary
Material.

PROPOSITION 3. Let ya = eηa/(1 + eηa ), ηa ∼ N (0, 2/a) and ba ∼ beta(a, a). Then ya and
ba are asymptotically equivalent as a → ∞.

For a given value of c, the function ρ(·) determines the type of trajectories of the process. In
fact, for certain functions ρ(·), the linear dependent tail-free process has a density with respect
to Lebesgue measure. The following proposition is proved in Appendix E of the Supplementary
Material.

PROPOSITION 4. Let {Gx : x ∈X } ∼ LDTFP(h, �,Ac,ρ), where h is the logistic transforma-
tion and the set Ac,ρ is specified using the g-prior as before with

∑∞
l=1 ρ(l)−1 < ∞. Then the

process has trajectories on the space of the absolutely continuous probability distributions almost
surely, that is, Gx has a density with respect to Lebesgue measure for all x ∈X .

3·3. Partially specified linear-dependent tail-free process

Exact calculations cannot be performed with a fully specified linear-dependent tail-free
process, since the predictive distribution at each value of the predictor x does not have a closed
form. This justifies the use of a partially specified or finite version we consider here, where the
tail-free process is terminated at level J , which we denote {Gx : x ∈X } ∼ LDTFPJ (h, �,Ac,ρ).
We typically consider J ≈ log2(n/N ), where n is the sample size and N is 5–10 (Hanson, 2006).
This rule of thumb is even more conservative for the linear-dependent tail-free process than
for regular Polya trees. If the true data generating mechanism is similar to a member of the
centering family, then on average two observations will determine the coefficients βε0, ε0 =
ε1 · · · εJ−10 ∈ E J , beyond the intercept at level J when N = 1. This amount of data is essen-
tially negligible relative to information in the logit[N {0, 2/(cJ 2)}] ≈ beta(cJ 2, cJ 2) prior at
this level.

As is usually done for partially specified Polya tree priors, on sets in the finest partition πθ
J

the random Gx follows the parametric distribution Gθ (Hanson, 2006). It follows that, under
the logistic transformation, the conditional density sample path of a partially specified linear



560 A. JARA AND T. E. HANSON

dependent tail-free process is given by

g(·, ω)(e) = 2J φθ(e)
J∏

j=1

Yεθ (e, j)(·, ω),

= 2J φθ(e)
J∏

j=1

exp{d(·)Tβεθ (e, j−1)0(ω)}I {e∈Bθ
εθ (e, j−1)0}

1 + exp{d(·)Tβεθ (e, j−1)0(ω)} , (1)

where e ∈ R, I {A} is the indicator function for A, εθ (e, j) = ε1ε2 · · · ε j is the set in π
j
θ that e is in,

and φθ(·) is the density of a N (0, θ2) variate. Since expression (1) is a continuous function of x ,
the following continuity property of the process can be proved. We refer the reader to Appendix
F of the Supplementary Material for a proof.

PROPOSITION 5. Let {Gx : x ∈X } ∼ LDTFPJ (h, �θ ,Ac,ρ), where h is the logistic transfor-
mation. Then for all {x j }∞1 , with x j ∈X , such that lim j→+∞ x j = x ∈ R

q ,

lim
j→+∞

sup
B∈B(R)

|G(x j , ·)(B) − G(x, ·)(B)| = 0,

for all x ∈X , that is, G(x j , ·) converges in total variation norm to G(x, ·) when x j −→ x.

3·4. Mixtures of linear-dependent tail-free process

In practice, it may be difficult to specify a single centring N (0, θ2) distribution with which
to centre the linear-dependent tail-free process; and once specified, a single centring distribution
may affect inference unduly. One way to mitigate the dependence of the process on the parti-
tioning sets is to specify a mixture of prior distributions. A mixture of linear-dependent tail-free
processes is induced for {Gx : x ∈X } by allowing parameters of the centring distribution Gθ

and/or the precision parameters c to be random, that is,

{Gx : x ∈X } ∼ LDTFPJ (h, �θ ,Ac,ρ), (θ, c) ∼ Q,

where Q refers to the joint prior for θ and c. Smoothness properties in terms of continuity and
differentiability of the densities for Gx at a fixed x under the mixture of partially specified linear-
dependent tail-free process carry over from Hanson (2006). One important property is posterior
propriety under improper priors on the mixing parameter θ , following a simple application of
Tonelli’s theorem.

3·5. Posterior inference

In this section we present results useful for the computation of posterior distributions involving
related random distributions modelled using partially specified linear-dependent tail-free pro-
cesses or mixtures of them. Under independent sampling, the joint density for an n-dimensional
vector of errors is given by

p(e1, . . . , en|θ, β) =
{

n∏
i=1

2J φθ(ei )

} ∏
ε0∈E J

n∏
i=1

exp{d(xi )
Tβε0}I {ei ∈Bθ (ε0)}

[1 + exp{d(xi )Tβε0}]I {ei ∈Bθ (ε)} .

This expression has the form of 2J − 1 logistic regression kernels, one for each ε0, times
the likelihood for θ obtained from fitting the standard parametric family N (0, θ2) to data
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e = (e1, . . . , en). This forms the basis of an efficient Markov chain Monte Carlo scheme for
obtaining posterior inference. In fact, conditionally on θ , any algorithm for fitting binary regres-
sion models can be used to update the βε0 parameters (Gamerman, 1997; Holmes & Held, 2006).
Metropolis–Hastings steps with normal proposals based on one step of the Newton–Raphson
algorithm (Gamerman, 1997) are used here.

Placing a prior on c increases flexibility, essentially allowing data to estimate gε0, and the
g-prior provides a conjugate update. Let S = 0·25n−1 ∑

ε0∈E J ρ(lε0)||Dβε0||2. If c ∼ �(ac, bc),
then the full conditional distribution for c is also a gamma distribution c ∼ �{ac + p(2J−1 −
t), bc + S}, where t = 1 for median a median zero specification and t = 0·5 otherwise. The
parameter θ can be updated via a random walk Metropolis–Hastings step. Assume, for instance,
the noninformative prior p(θ) ∝ 1/θ and say log(θ∗) ∼ N {log(θ), v} for some v. Alternatively,
a slice sampler can be used to update the centring parameter θ .

For assessing normal ranges in growth chart applications, the quantile function is needed.
Generalizing Hanson (2006), given � = {βε0 : ε0 = ε1 · · · εm−10 ∈ E∗, m � J }, let

px (k | �, θ) = Gx {Bθ (ε)} =
J∏

j=1

Yε1···ε j (x, βε1,...,ε j−10),

where ε = ε1, . . . , εJ is the decimal representation of k − 1, k = 1, . . . , 2J . For median zero
specification, Y0(x, β0) = Y1(x, β0) = 0.5, that is, β0 = 0. The lth quantile, 0 < l < 1, associated
with Gx is given by

G−1
x (l | �, θ) = G−1

θ

{
l − ∑N

k=1 px (k | �, θ) + N px (N | �, θ)

2J px (N | �, θ)

}
, (2)

where N is such that
∑N−1

k=1 px (k | �, θ) < l �
∑N

k=1 px (k | �, θ). Obtaining probability inter-
vals for posterior quantiles from Markov chain Monte Carlo output is straightforward based on
this formula. For the median regression model discussed in the next section, covariates x add the
term m(x) to (2).

4. APPLICATION

We illustrate the potential use of the dependent tail-free process by means of the analysis of
simulated and real-life data sets. In order to save space, the analysis of a growth curve estimation
problem is presented in this section only. The analyses of simulated and other real-life data analy-
ses are given in the Supplementary Material. Specifically, the results of the analyses of simulated
data are given in Appendix G in the Supplementary Material. Examples of the use of the depen-
dent tail-free process in accelerated failure time models and generalized linear mixed models are
given in Appendices H and I in the Supplementary Material, respectively. User-friendly functions
implementing Markov chain Monte Carlo algorithms to fit the models considered were written
in compiled language and incorporated into the R library DPpackage (Jara, 2007).

Isaacs et al. (1983) considered serum immunoglobulin G concentrations from n = 298 chil-
dren aged 6 months to 6 years old. These data were further analysed by Royston & Wright (1998)
and Kapitula & Bedrick (2005) using the parametric exponential normal family, which includes
parameters for skew and kurtosis that can be functions of covariates. Like these authors we con-
sider the log-transformation of the data yi . The data are plotted in Fig. 1.
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Fig. 1. Serum immunoglobulin G data. The posterior mean (solid) and 95% pointwise cred-
ibility interval (dots) of the conditional density of the logarithm of the concentration of
serum immunoglobulin G at 11, 25, 38, 52 and 65 months are shown in panels (a), (b), (c),
(d) and (e), respectively. Panel (f): the posterior means of the 3rd, 50th and 97th percentiles,

with the corresponding 95% pointwise credibility intervals and the data.
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The density for an observation with age x , in years, from the model fitted by Kapitula &
Bedrick (2005), is given by

fx (y | γ, ξ, τ ) = (2π)−1/2

�(|τ |−1)σ (x)
exp

{
−(eτ z − 1)2

2τ 2
− τ z

}
,

where z = {y − μ(x)}/σ(x), μ(x) = γ0 + γ1x2 + γ2x−2, and σ(x) = ξ0 + ξ1x−2. For
comparison, this model was fitted in WinBUGS assuming independent N (0, 103) priors
on all six regression effects (γ0, γ1, γ2, ξ0, ξ1, τ ). We obtained posterior estimates for model
parameters consistent with Kapitula & Bedrick (2005).

We fitted the linear-dependent tail-free regression model to the log-transformed immunoglob-
ulin G values, by considering

yi = γ0 + γ1x2
i + γ2x−2

i + ei , (3)

ei | Gxi

ind.∼ Gxi ,

and

{Gx : x ∈X } | h, θ, c, ρ ∼ LDTFPJ (h, �θ ,Ac,ρ). (4)

In order to avoid the identification problem associated with the confounding between the loca-
tion of the error distributions and γ0, the median-zero linear-dependent tail-free specification
was considered. The tail-free conditional probabilities were modelled using the same specifica-
tion as for the median function in (3) and a logistic link. The linear-dependent tail-free regres-
sion parameters were assigned g-priors, parameterized by the precision parameter c, and J = 4.
As for the parametric model, the median function parameters γ0 and γ1 were given indepen-
dent N (0, 103) priors. Finally, the following priors were considered for the centring variance
and the precision parameter of the linear-dependent tail-free process: θ−2 ∼ �(10−4, 10−4) and
c ∼ �(5, 1). A conservative Markov chain Monte Carlo specification was considered for making
posterior inferences. A burn-in of 20 000 iterates was followed by a run of 800 000 thinned down
to 20 000 iterates. Time series plots of the stored output, not shown, suggest a good mixing of
the chain, even with shorter runs.

The linear-dependent tail-free model was also compared with the Dirichlet process mixture of
normals approach of Müller et al. (1996) and to the linear-dependent Dirichlet process approach
of De Iorio et al. (2004, 2009). The competing models were compared in terms of the log pseudo
marginal likelihood (Geisser & Eddy, 1979). For the approach of Müller et al. (1996), we con-
sider the multivariate extension of the univariate Dirichlet process mixture of normals model of
Escobar & West (1995) to fit the complete data wi = (yi , xi )

T, and focus on the mean function,
as in Müller et al. (1996), and conditional densities f (y|x) arising from the model. The Dirichlet
process mixture model is given by

wi | μi , �i
ind.∼ N2(μi , �i ), (μi , �i ) | G

iid∼ G, G | α, G0 ∼ D P(MG0),

where the baseline distribution G0 is the conjugate normal-inverted-Wishart distribution
G0 ≡ N2(μ | m1, κ

−1
0 �)I W2(� | ν1, �1). To complete the model specification, the follow-

ing hyper-priors were assumed: M | a0, b0 ∼ �(a0, b0), m1 | m2, S2 ∼ N2(m2, S2), κ0 | τ1, τ2 ∼
�(τ1/2, τ2/2), and �1 | ν2, �2 ∼ I W2(ν2, �2). The linear-dependent Dirichlet process model



564 A. JARA AND T. E. HANSON

can be represented as Dirichlet process mixture of linear, in the coefficients, regression models

yi | βi , σ
2
i

ind.∼ N (zT
i βi , σ

2
i ), (βi , σ

2
i ) | G

iid∼ G, G | α, G0 ∼ D P(MG0),

where G0 ≡ Np(β | μβ, �β)�(σ−2 | s1/2, s2/2). The linear-dependent Dirichlet process was fit-
ted using the same regression functions as considered for the linear-dependent tail-free model,
that is, p = 3 and zT

i = (1, x2
i , x−2

i ). The model specification was completed with the following
hyper-priors: M | a0, b0 ∼ �(a0, b0), s2 | τs1, τs2 ∼ �(τs1/2, τs2/2), μβ | a, A ∼ N3(a, A), and
�β | νβ, �β ∼ I Wp(νβ, �β).

We fitted marginalized versions of Dirichlet process-based models where G is integrated
out and standard algorithms to fit these models. To obtain credible intervals for the condi-
tional densities and mean function, we used the ε-Dirichlet process approach proposed by
Muliere & Tardella (1998), with ε = 0·01 and based on the Markov chain Monte Carlo sam-
ples, similar to Gelfand & Kottas (2002). The inferences were obtained using the Markov chain
Monte Carlo specification described above for linear-dependent tail-free models and the fol-
lowing hyper-parameters, a0 = 5, b0 = 1, ν1 = ν2 = 4, m2 = (0, 0)T, S2 = diag(103, 103), �2 =
diag(1, 1), τ1 = 2·01, τ2 = 0·01, s1 = 6, τs1 = 6, τs2 = 2, a = (0, 0, 0)T, A = diag(103, 103, 103),
νβ = 5, and �β = diag(1, 1, 1).

Figure 1 shows plots of the estimated 3rd, 50th, and 97th percentiles along with 95% credible
intervals. These estimates are similar to those obtained by Royston & Wright (1998). The rest of
Fig. 1 shows the evolution of the estimated conditional densities over time. There seems to be a
more or less static clump of mass with mode around 1·5 in all panels, and an additional mode that
continuously increases from 11 to 65 months; this mass shifting is necessarily absent from the
Royston & Wright (1998) fit. The log pseudo-marginal likelihood under the linear-dependent
tail-free model was −121, significantly better than one obtained from fitting a normal errors
model on the log-scale, −143, the exponential normal model of Kapitula & Bedrick (2005),
−136, the Dirichlet process mixture model, −143, and the linear-dependent Dirichlet process
model, −139.

5. DISCUSSION

Recently two approaches to variable selection in density regression models have been pro-
posed for finite mixture models. Villani et al. (2009), favouring a few components with complex
structure approach, tailor Smith & Kohn’s (1996) method for use within Gamerman’s (1997) pos-
terior updating scheme in a hierarchical mixture of experts model where component locations,
precisions and weights all vary smoothly with predictors according to a spline representation.
Alternatively, Chung & Dunson (2009) consider a many-but-simple approach to the hierarchical
mixture of experts model, using a modification of Smith & Kohn’s (1996) idea to encourage pre-
dictors to be included or removed from all components simultaneously. These approaches can be
readily incorporated into the current proposal. A simpler, similar approach due to Kuo & Mallick
(1998) uses Bernoulli predictor inclusion variables, but does not use a hierarchical prior on the
βε0 as do the other approaches.

Another extension of our approach is the analysis of dependent multivariate distributions.
Although multivariate outcomes can be handled in theory, the number of parameters needed
grows exponentially with the dimension. Conditional density approaches that accommodate both
continuous and categorical predictors based on dependent mixtures of Gaussians (De Iorio et al.,
2004, 2009; Chung & Dunson, 2009; Villani et al., 2009) have a clear advantage here. We have
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developed a marginalized tail-free process that enables multidimensional outcomes, but neces-
sarily has a quite different structure from the dependent tail-free processes proposed here. Our
experience with the linear-dependent tail-free prior for univariate conditional densities is that it is
considerably faster in providing similar inferences than convolutions of dependent stick-breaking
processes (Müller et al., 1996; Dunson et al., 2007; Griffin & Steel, 2010).
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