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Abstract. The purpose of this paper is to examine the kinematics and dynamics
of a class of motions with constant stretch history. A kinematical result is announced
to indicate the velocity field such a motion may have and two examples, viz. helical-
torsional flow and the helical flow combined with the axial motion of fanned planes,
are discussed in detail. The helical-torsional flow is found to be experimentally realizable,
albeit approximately, and it is shown how an apparatus may be built to measure the
material functions occurring in such flows. Two nonlinear differential equations are
derived to determine the velocity profile when the motion under study is treated as
a nearly viscometric flow. In addition, restrictions on the proper numbers of the first
Rivlin-Ericksen tensor are arrived at so that the motion with constant stretch history
is completely determined by the first two or first three Rivlin-Ericksen tensors. This
permits a reduction in the number of terms occurring in the full expansion of the con-
stitutive equation.

1. Introduction. This article is an examination of the kinematics and dynamics
of a class of motions with constant stretch history,1 delineated originally by Noll [1]. He
analyzed all the possible motions that occur under the classification of substantially
stagnant motions, a discovery of Coleman [2]. What are explored here are MWCSH of
type (ii), as defined in [1J and recollected below in Sec. 2.

The main results of the paper are:
(i) examination of the conditions under which the proper numbers of the first

Rivlin-Ericksen tensor Ax are all distinct or two of them are equal but distinct from
the third, when trace A, = 0.- This permits us to discover when the constitutive equation
is determined by Ai and A2 or by A, , A2 and A3, so that the relationship with the work
of Wang [3] is established (see Sec. 3);

(ii) in Sec. 4, we derive a sufficient condition under which a motion is a MWCSH.
This condition is broader than the homogeneous velocity fields used by Truesdell and
Noll [4, Sec. 118]; attempts are being made to see if this condition yields an intrinsically
unsteady MWCSH, thereby corroborating the conclusion of Yin and Pipkin [5].

(iii) in Sec. 5, a kinematical description of MWCSH of type (ii) is given and condi-
tions under which a (spatial) uniform steady velocity field may be added to an existing

* Received December 22, 1969.
1 In what follows, the phrase "motion(s) with constant stretch history" will be replaced by MWCSH.

The context makes it clear whether "motion" or "motions" is being implied.
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MWCSH of type (ii) so that the resulting motion is still a MWCSH of type (ii) are
explored. In doing so, we find a motion yielding a strain history with finite terms, but
this is not a MWCSH;

(iv) in Sec. 6, the dynamics of helical-torsional flow are explored since this velocity
field is approximately realizable in the laboratory so that the material functions occurring
in MWCSH of type (ii) may be measured;

(v) in Sec. 7, the material functions determined from treating the helical-torsional
flow as a nearly viscometric flow in the sense of Pipkin and Owen [6] are listed from
elsewhere [7] and two nonlinear differential equations are obtained to determine the
velocity field of the helical-torsional flow from the experimental observations;

(vi) in Sec. 8, the combined motion of helical flow with the axial motion of fanned
planes is shown to be a dynamically possible MWCSH of type (ii);

(vii) and finally in Sec. 9, certain reductions in the number of terms in the constitutive
equations (2.6) or (3.17) are made under appropriate conditions on the velocity field.

2. Collection of previous results. According to Noll [1], in all MWCSH the defor-
mation gradient F0(t) relative to a fixed reference configuration at time 0 is given by

Fo(r) = Q(tKk, Q(0) = 1, (2.1)
where Q(t) is an orthogonal tensor and M is a constant tensor. In a three-dimensional
vector space a linear transformation is either nilpotent of order two, or of order three
or not nilpotent. Thus M in (2.1) is either

(i) nilpotent of order two, i.e., M2 = 0—such flows are called viscometric [2]; or
(ii) nilpotent of order three, i.e., M2 5^ 0, M3 = 0; or

(iii) not nilpotent, i.e., M" ^ 0 for all n = 1, 2, 3, • • • .
In MWCSH, the right relative Cauchy-Green strain tensor has the form:

C,(< - s) = e~'LTe"L, 0 gs< «*», (2.2)

where
L = Q(t)MQr(t), (2.3)

L, = L + Q(t)Qr(t), (2.4)

where the superscript T denotes transposition, I,! is the velocity gradient at time t and L
the velocity gradient in a rotating frame of reference [1]. In MWCSH of type (ii), which
will be studied in this article,

C,(< - s) = 1 - sA1 + is2A2 - s3A3 + s4A4 , (2.5)

where A, (i = 1, • • • , 4) are the first four Rivlin-Ericksen tensors. According to
Theorem 2 of Noll [1], MWCSH of type (ii) are isochoric as well. Examples of such
motions are given below.

Now, Wang [3] has proved that in all MWCSH, the extra stress TB in an incompressible
simple fluid [8] is given by

Tb = T + pi = f(A, , A2 , A3), (2.6)

where T is the stress tensor determined up to an arbitrary hydrostatic pressure p and
f(•) is an isotropic function of its arguments. In fact, Wang [3] showed that there exist
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three separate cases under which a representation of the type (2.6) is valid, the three
cases depending on the proper numbers of At . This question will be discussed next.

If a material is incompressible, all motions possible in this material are subject to
the condition

tr A, = 0, (2.7)

where tr is the trace operator. Hence, if A, has three proper numbers which are all equal,
incompressibility demands that = 0, which implies a rigid motion. Thus for a non-
trivial motion to occur in incompressible materials, At must have either (i) three distinct
proper numbers or (ii) two proper numbers equal but different from the third. Not only
this, if the two proper numbers are equal but distinct from the third in a MWCSH, the
matrix of A2 , relative to the orthonormal basis for which the matrix of A1 is given by

[A,] =

a 0 0

0 a 0

0 0 b
a b, (2.8)

must be such that

[A2] 7*

a2 0 0

0 a2 0

0 0 b2

(2.9)

if the MWCSH is of type (ii). Otherwise, the MWCSH will be of type (iii), generated
by a non-nilpotent tensor, and will be equivalent to simple extension [3, 7, 9]. Thus
the next section examines the conditions under which the proper numbers of Aj, subject
to (2.7), are either distinct or two of them are equal.

3. Proper numbers of A,. Let the matrix of A, relative to an orthonormal basis
be given by

k > 0, (3.1)

a,. I m

[Aj] = k I a2n

m n a3

+ ^3 = 0, (3.2)

a\ + a\ + a2 + t + m2 + n2 = 1. (3.3)

Consider the characteristic equation of k_1A, . This reads:

Xs — (1 + a^a 2 — a23)\ + a3l2 + a2m2 + c^n3 — a,a2a3 — 2 Imn = 0. (3.4)

If the three roots of (3.4) are \i , X2 , and X3 , then they obey

Xi + X2 + X3 = 0, (3.5)

^1^2 X2X3 I X3X1 = CX3 d\o*2 1, (3.6)

XxXjXs = 2 Imn + — a3l2 — Onir? — aj?. (3.7)
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Without loss of generality, take Xi = X2 ¥> X3 . Then we obtain

X3 —2X, , 3Xi = 1 -f- did? — a3 , (3.8)

2Xj = a3l2 + a2m2 + a,n2 — a,a2a 3 — 2lmn. (3.9)

Thus Xj = X2 whenever

27 (a3f + a2m2 + a^2 — a,a2a3 — 2lmn)2 = 4(1 + a,a2 — a|)3, (3.10)

where the numbers , a2 , ■ • • ,n obey (3.2) and (3.3).
Suppose there is an orthonormal basis such that the matrix of A, has the form (3.1)

with
d\ ~~ @2 ~ = 0. (3.11)

I2 + m2 + n2 = 1, (3.12)

Thus (3.3) now reads

while (3.10) now becomes

27 l2m2n2 = 1. (3.13)

Together, (3.12) and (3.13) imply that

¥f + m2 + n2) = i (l2m2n2)1/3 = |, (3.14)

must be satisfied simultaneously if A1 has two equal proper numbers. Since the arith-
metic mean is greater than the geometric mean, (3.14)i and (3.14)2 are not consistent
unless [10, p. 17]

I2 = m2 = n2 = |. (3.15)

Hence, in particular, we may read off the results:
(i) if Ai has the form (3.1), a,- = 0 (i = 1, 2, 3) and I, m, n obey (3.12), then it has

three unequal proper numbers if and only if (3.15) is not satisfied; otherwise two of its
proper numbers are equal, but distinct from the third;

(ii) in particular, from the results of Noll [1], one has that the matrix of L, has the
form

[L] =

0 0 0
I 0 0

m n 0

12 -f- m2 -f- tl — 1, (3.16)

with respect to an orthonormal basis, if the motion be a MWCSH of type (ii). Thus in
these flows, the matrix of Ax obeys (3.1), (3.11) and (3.12). Hence if the flow be a MWCSH
of type (ii) and (3.15) is not satisfied, the constitutive equation (2.6) reads

T* = T + pi = f(Aj , A2); (3.17)

otherwise (2.6) is the correct form.
Wang [3] stated that in MWCSH of type (ii), Aj has three distinct proper numbers

or two of them are equal, but the restriction on A1 given here delineates the conditions
under which (2.6) or (3.17) is the correct form. This result was derived by the author
in [7],
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4. A sufficient condition for a given motion to be a MWCSH. It is a well-known
result in continuum mechanics [11] that with respect to a fixed reference configuration
at time 0:

(d/dr) FoW = L.MFoM, (4.1)
where Li is the velocity gradient at time t. Suppose that the material derivative of
Lx(t) is zero, i.e.,

(d/d^L^r) = (d/d^Li + v-grad Lt = 0, (4.2)
where v is the velocity at time r and position x in space. Now, if (4.2) holds, (4.1) can be
integrated to give

F0(r) = erL' (4.3)

since F0(0) = 1. Now, if (4.3) is compared with (2.1) it is obvious that (4.3) represents
the deformation gradient of a MWCSH with Q(r) = 1 always. Thus we have established
a sufficient condition for a flow to generate MWCSH as follows: if the velocity gradient
has a vanishing material derivative, the motion is one with constant stretch history.

The above result is more general than the homogeneous velocity fields considered
by Truesdell and Noll [4, Sec. 118]. Moreover, the condition that = 0 is satisfied
by velocity fields of the type

v = i(t) + g(x), v-grad grad g = 0. (4.4)

It must be noted that (4.4) j is not necessarily a steady velocity field in a non-inertial
frame of reference. On using the concept of equivalent motions [8, Sec. 11], the reader
can verify that

x = ky, y = 0, i = f(t) (4.5)
is steady in a non-inertial frame, while

i = /(0 + exp x, y = z = 0, /(«) ^ 0 (4.6)
is not steady anywhere, i.e., intrinsically unsteady. The above discussion is not irrelevant
to MWCSH because recently Yin and Pipkin [5, Sec. 7] constructed an intrinsically
unsteady viscometric flow, possible over a finite time interval, thereby showing that
Pipkin's assumption to the contrary [12, p. 89] was not correct. It would, therefore, be
of interest to find if there exists an intrinsically unsteady motion such that ti = 0,
for then this flow would yield a MWCSH that is intrinsically unsteady over an indefinite
interval.

Incidentally, (4.4)! represents the superposition of a uniform velocity field onto an
existing velocity field. It may be erroneously assumed that, since the uniform velocity
field f(<) gives rise to a rigid motion by itself, the addition of f(<) should have no effect
on the strain history. That such an assumption is false will be demonstrated by a counter-
example in Sec. 5.

5. MWCSH of type (ii). It is well known through the work of Noll [1] that the
following velocity field

x1 = 0, x = vfa1), x3 = wix1), (5.1)

(where v(-) and w(-) are smooth functions of x1) in a curvilinear orthogonal coordinate
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system Jx*}? is a viscometric flow if the components of the metric tensor g{{ (i = 1, 2, 3;
no sum) do not vary along the path line of the particle. It was established by
the author [13] that under the above restrictions on the coordinate system and the
components of the metric tensor, the following velocity field

x1 = 0,

x2 = —cx2 + ex3, c2 + ej = 0, (5.2)

xz = fx2 + cx2,

where c, e and j are constants, is a viscometric flow. For the path lines corresponding
to (5.2) are obtained by integrating the equations

d?/ds = 0, df/ds = c? - e?, df/ds = -f? - cf, (5.3)
under the initial conditions = xi (i = 1, 2, 3). The path lines are:

t = x\

(5.4)£* = x2 + c f t? da — el £* du,
J o •'o

$? = x3 — f f £2 da — c [ i? da.
J o Jo

On adding (5.4)2 and (5.4)3, and using c2 + ej = 0, we get

j£ + cst3 = fx2 + cx*. (5.5)

Using (5.5) in (5.4)2.nd3 for £2 and £3 respectively, we get

J2 = x2 — s(ex3 — cx2), (5.6)

£ = x3 — s(jx2 + cx3). (5.7)

It is easily verified that (5.4), and (5.6)-(5.7) are the path lines of a viscometric flow.
It will now be proved that the superposition of (5.1) on (5.4), viz.

x1 = 0,

x = t;(x') — cx2 + ex3, (5.8)

x3 — w(xl) + fx2 + cx3,

is a MWCSH of type (ii) provided
(a) the coordinate system {xk\ is a curvilinear orthogonal system; and
(b) the components of the metric tensor gti (i = 1, 2, 3; no sum) do not vary along

the path line of each particle.
It is easily demonstrated that if the velocity field (5.8) is integrated, using the earlier

notation of ? and x, one obtains [13]:

f1 = x\

f + x2 — sKx1) — cx2 + ex"] + |s'[ew (x1) — ctffc1)], (5.9)

f = x3 — s[w(x1) + fx2 + cx3] + ^s2[/f(x1) + cto.(x1)].
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It is a simple calculation to show that the matrix form of F, (t — s) is given by

[F,(< - s)] = [1] - s[L] + ML2], (5.10)

where L has the matrix form

0 0 0
(fc2ff»,)1/V ~c (g^l)U2e

(,9339ll)1/ W' (?339221)I/ / C

[L] = (5.11)

and

v' = dv/dx1' w' = dw/dx\

Also, the motion (5.8) is isochoric and in view of (5.10) and (5.11), it meets all the
conditions of Theorem 2 of Noll [1] and is thus a MWCSH of type (ii), provided

ew' cv', or jv' cw'. (5.12)

If one were to examine the matrix of L2, one finds that if (5.12) holds, then L2 = 0 or the
motion (5.8) becomes viscometric. But as will be seen below, in the examples considered
c = 0 and thus the above condition is not met, and so the flows considered below are
truly MWCSH of type (ii).

Now, the simplest case of a MWCSH of type (ii) occurs whenever conditions (a)
and (b) are met and the velocity field is such that x depends linearly on x, while x3 is
an arbitrary, smooth junction of x1. Such an example was constructed by Oldroyd [14].
This is the Poiseuille-torsional flow, viz., r = 0, d — cz, z = u(r) in a cylindrical polar
coordinate system. Of course, the Poiseuille-torsional flow as well as the example of
Noll [1, Sec. 3] are special cases of (5.8). It is apparent that out of the few kinematically
possible combinations existing in (5.8), the helical-torsional flow, viz.

r — 0, 6 = w(r) + cz, z = w(r), (5.13)

in a cylindrical polar coordinate system with w(-) and u(-) being smooth functions of r,
and c being a constant, provides an approximate, experimentally realizable situation
to measure the material functions occurring in MWCSH of type (ii).

As Oldroyd [14] remarked, the flow (5.13) with a>(r) = 0 can be generated, in principle,
"in a limited region by rotating two porous disks, at different speeds, about a common
axis placed along the axis of a circular pipe of approximately the same radius as the
disks, so as to impose a torsional motion on the liquid flowing down the pipe." Thus the
helical-torsional flow can be generated in between two concentric cylinders by rotating
two porous rings at different speeds in the annular space between the two cylinders,
provided the width of each porous ring is almost equal to the annular space between
the two cylinders (see Fig. 1). It is obvious that the two motions discussed here are
approximately realizable because the boundary conditions are not met on the cylinders.

In the next section, the dynamical equations connected with (5.13) are solved and it
is demonstrated that the material functions occurring in the flow (5.13) can be measured
by the helical-torsional rheometer described above.

Before proceeding further, it is essential to note that (5.8) remains a MWCSH of
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type (ii) if it is replaced by

x1 = Wo ,

x2 = v0 + v{x') — cx2 + ex3, (5.14)

x3 — w0 + w(xl) + fx2 + cx3,

provided

(a) the conditions on the coordinate system and the metric tensor are met; and either
(b) Ua = 0 and apart from the restriction (5.12) no other restrictions on v(xly) and

w{xl) are imposed; or
(c) «o 7* 0 and v(x') = ax1, w(x1) = /3a:1, where a and /S are constants, i.e., v(x1) and

w(zi) are linear in x1, and /Se ca or aj —fie [cf. (5.12)].

What is being stated is that one cannot add an arbitrary uniform velocity field to
an existing velocity field (in the spatial description), and expect the character of the
flow to remain substantially the same. That one of the conditions (b) or (c) is essential
is demonstrated by the following example in Cartesian coordinates:

x = u0, y = x2, i = y, (5.15)

which is a MWCSH of type (ii) if u0 = 0 and not otherwise. Further if Wo = 0, note
that L, = 0, thereby providing an example to the discussion in Sec. 4; and, in addition
if u0 7^ 0, (5.15) is a nonviscometric flow which is not a MWCSH but which has a strain
history with a finite number oj terms in its expansion, viz.:

C,(t ~s) = 1+ Z ((-DVA./n!) (5.16)
* — 1

as can be verified easily by direct calculation. It is believed to be the first example of
this kind available in the literature.

Moreover, as may be anticipated, (5.8) does not exhaust the kinematical possibility
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of MWCSH of type (ii). For example, the following homogeneous motion in Cartesian
coordinates, viz.

x = ay + bz,

y = —cy + ez, c2 + ej = 0 (5.17)

z = jy + C2,

is also a MWCSH of type (ii). For the velocity gradient Li is such that Lj ^ 0, Lj = 0.

6. Helical-torsional flow. Let the matrix of L relative to an orthonormal basis
for a MWCSH of type (ii) be given by (cf. (5.11)):

0 0 0

[L]=K I 0 0, K > 0, (6.1)
m n 0

I2 + m2 —J— 7i2 = 1. (6.2)

Let the material functions occurring in this flow be denoted by [13]:

2i = Te(22) - r,(ll>, s2 = TE(33) - Te( 11), (6

ra = r«<12>, r2 = Te(1S), r3 = T B{ 23),

where TE (ij) represents the physical component of T* in the ijth direction and the
2( (i = 1, 2) and r,- (j = 1, 2, 3) are all functions of k, I, m and n. If L has the matrix
form (6.1), then Ax has the matrix form (3.1) with a, = 0 (i = 1, 2, 3).

For the helical-torsional flow (5.13), it is easy to show that [13]

2, = Tb(zz) - Te(tt), 22 = Ts{86) - TB(rr),

r, = TE{rz), t 2 = TB(rO), r3 = TE(6z).

For, if one were to integrate the velocity field (5.13) and obtain the path lines and find
the strain history C, (t — s), it will turn out that relative to the orthonormal basis of
cylindrical polar coordinate system, L has the matrix form [13]

[L] =

0 0 0
rco' 0 cr

u' 0 0

, do} , du
" =Tr> U =Tr' (6'5)

Thus a rotation of the axes is needed so that the matrix form of the rotated tensor has
the form given by (6.1). It is easy to show that the orthogonal tensor Q with components

1 0 0

[Q] = 0 0 1 (6.6)
0 1 0

will transform L in (6.5), through QLQr, to take the matrix form (6.1) with

d = u', Km = rw', nn = cr. (6.7)
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Now, from Truesdell and Noll [4, Sec. 109], it is known that in MWCSH

T* = g(L) (6.8)

where g is an isotropic function of L, i.e.,
Qg(L)Qr = g(QLQr) (6.9)

for all constant orthogonal tensors Q. Hence, applying (6.9) and retracing the steps,
(6.4) is obtained from (6.3).

The dynamical equations, under the assumption that the body force b per unit mass
is derivable from a potential ^ through b = — grad and by using a modified pressure
function <j> defined through

4> = V + pt> (6-11)
where p is the density of the fluid, take the following form in cylindrical polar coordinates
for the flow (5.13):

— (d<t>/dr) + (3/dr)Tb (rr) + (l/r)(TE (rr) - T E (69)) = 0,

- (1 /r)(d<t>/dd) + (d/dr)TE (r6) + (2/r)Ts (rd) = 0, (6.12)

— (<50/dz) + (d/dr)Tb (rz) + 0-/r)TE (rz) = 0.

Note that the inertia terms have been neglected in (6.12), for otherwise the torsional
flow term crz makes the equations incompatible. Further, since all quantities *, I, m
and n are dependent on r, so are the extra stresses TE and this fact has been used in (6.12).

The solutions are:

4> = —az + h(r), t2 = TE (rd) — M/2irr2,

ti = Te (rz) — —\ar + br~l, h'(r) = (d/dr)TE (rr) — (l/r)23. (6.13)

In (6.13), a is the modified pressure drop per unit length and M is the torque per unit
height needed to maintain the rotation of the cylinders in relative motion. The torque
needed to maintain the upper (or lower) porous ring in rotation yields TB (6z) or the
material function r3 .

Now, from (6.4), we have that

(d/dr)T (zz) = (d/dr)T (rr) + (d/dr)2. . (6.14)

If the body force is assumed to act along the z axis only, we get, on noting that
d/dr = d/dr:

T(zz) = az+ J (i 2, + ^ 2,) df, a > 0. (6.15)

Thus

T(zz)(r) - T(zz)(R1) = f J 2, + 2,(r) - 2,(80, 8t g r g 8, . (6.16)
•>r, z

Hence the thrust on one of the porous rings would yield a combination of 2t and 23 .
Next, using the assumption that the body force acts along the z-axis only, we have
from (6.12)t :

(d/dr)T (rr) = (1 /r)(Ts (69) - TE (rr)) = (l/r)2, , (6.17)
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T(rr)(R2) - T{rr){Rx) = f*' - S2 dr. (6.18)
•Irx r

Thus, (6.16) and (6.17) determine 2X and S2, while (6.13)2 yields r3 ; the torque on the
porous ring, which is

T = 211 f ' t/ dr, (6.19)
J R z

gives r3 . However, before ti can be determined completely, the constant b must be
found. Note that b = 0 in Poiseuille-torsional flow and thus

Ti(ic, u/k, 0, ct/k) = —\ar, k = u'2 + cV. (6.20)

However, for the helical-torsional flow, b cannot be determined from theoretical con-
siderations alone, as will become apparent below.

To appreciate the difficulty, we turn to the helical flow analysis of Coleman and
Noll [15] and note that their procedure uses the following steps:

(i) the constant b is determined from a knowledge of the viscometric shear stress
function t(k) and the rate of shear k;

(ii) since the functions co(r) and u(r) satisfy certain boundary conditions in helical
flow, they are found next.

It is clear that this procedure is not applicable here, for the helical-torsional flow
is the first known experimental situation to measure ri and r2 ; also the torsional flow
term introduces inertial effects which are not balanced in the equations of motion and
the boundary conditions are not exactly satisfied. Thus it does not seem that b, «(r)
and u{r) can be determined from theoretical considerations alone. Hence in Sec. 7, a
pair of nonlinear differential equations are derived to determine w(r) and u(r) by assuming
the helical-torsional flow to be a nearly viscometric flow in the sense of Pipkin and
Owen [6] and that b can be measured experimentally.

For the convenience of the reader, we list below, in physical components form, the
first four Rivlin-Ericksen tensors of the helical-torsional flow:

[A,]

[Aa] =

0 rco' u'

0 cr [A2] =

• • 0

6cr u'u' 0 3cV2m'

0 0

2(r2w'2 + u'2) cru' 2crV

0 0

• 2cY
6cW2 0 0

[A,] =

(6.21)

(6.22)
0

Also, a repeated application of the isotropy condition (6.9) shows that [13]:

2<(k, I, to, n) = Si(ic, —I, —m, n) = Si(/c, —I, to, —n)

= 2{(k, I, —m, —n), i = 1, 2; (6.23)

ti(k, I, m, n) = — ti(k, —I, —m, n) = — n(jc, —I, to, —n) = ti(k, I, —to, — n), (6.24)
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t2(k, I, m, n) — — t2(k, —I, —m, n) = t2(k, —I, m, —n)

= — t2(k, I, —m, —n); (6.25)

t3(k, I, m, n) = t3(k, —I, —m, n) = —tz(k, —I, m, —n) — —t3(k, I, —m, — »). (6.26)

For example, one can prove from (6.24) that

ti(k, 0, 0, 1) = 0, (6.27)

with similar results for other shear stress functions.
7. A procedure to determine u(r) and u(r). Let us assume that the torsional flow

term crz is so small that the helical-torsional flow is nearly viscometric [6]. Then the
author has shown that [7]:

ti = t)u' -}-(</> — v)cr2o)' -)- (It — 2<j>)

. cr w u n . | 2-i cr 03 u r f .
n t— 002323LK I s J t— j(k, s), {< .1;

, ( v\ , V cru'3 . , cr"w'"u= vru + \4> - 2Jcru - ^ + 2(v - 4>) 2
K

cru'3 . „ r I 2n cr3w'2u' ,, , /- „s
2 SjS2323[k s ] 3 /(k, s), (7.2)

K K

, , , , 3cr3a'2u'2
r3 = jjcr + <j>ru u — i? j 

K

, cru'2(rW — u'2) „0 r i 2-, cr3w'2u'2 . N 2cr3w'2u'2 7, N ^
-I —-3 z 5S1323[k | s2] ^— ff(«, s) ^ A(*c, s), (7.3)

where tj = i)(k), <f> = <£(k), v = k = r2c/3 + it'2,

/(k, s) = 5S,2ii[k | s] + 5Si222[k I s] + k2{5/S1222[k | s"] + 2 S5121i[k | s3]}, (7.4)

^(k, s) = 5 fiS22u[* I s] + 6iS2222[k | s] + k2{2 5S2jh[k | s3] + 5S2222[k | s3]}, (7.5)

fc(K, s) = 5 SSnnfr | s] + 5*S1122[k | s] + *2{2 5<Sain[/c | s3] + 651122[ic [ s3]}. (7.6)

The function 17 is the viscometric viscosity, <j> and v are the normal stress functions and
the 5(S,,u[ •] are linear functionals whose nature has been explored by Pipkin and Owen [6].

Now, we turn to the determination of «(r) and u(r) by examining two cases.

(i) Poiseuille-torsional flow. Note that ti as given by (7.1) is simply W and thus
it follows that the velicity profile u(r) is the same as in the viscometric, Poiseuille flow.

(ii) Helical-torsional flow. If the outer tube is suspended, then the axial force acting
on it can be measured. This gives b, since the axial force per unit length is given by (6.13):

2vR2Q)/R2 — iaR2), (7.7)

where R2 is the outer radius of the cylindrical tube.
Elsewhere [7] the author has conjectured on the basis of reasonable physical grounds

that the value of the linear functional

S-S.323 [* | s2] = -§». (7.8)
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If one neglects the contributions to 1-1 and r2 from /(«, s) in (7.1) and (7.2) and used
(7.8), one obtains:

, (<t> — v)cr2u , 2 ,2 ,2n & or , .
Tt — rfU + 2 /2 , 12 (r u U ) — o ' (7-9)r co -+■ w r z

,,(<£ — v)cru' , ,2 2 ,2n , v , M /„
rs = ijro> + 2 /2 , >2 (M — rco ) + „cru = jr-r-j- (7.10)ru + u z zlir

Thus (7.9) and (7.10) lead to two highly nonlinear differential equations for determining
oj(r) and u(r). These will have to be solved numerically, subject to the conditions

u(R<) = 0(i = 1, 2); «(fl2) = G2 , «(JBi) = 0, . (7.11)

The reader's attention is drawn to the fact that even under drastic simplifications,
the material functions r, and r2 are not related as in the helical flow.

Finally, if a simpler constitutive equation such as the BKZ fluid [15] is used, one
would have obtained [7]

t 1 = r]U' + {<t> — i>)cr2co', (7.12)

r2 = vru' + {<t> — T^Jcru'. (7.13)

While the differential equations (7.9) and (7.10) are somewhat simplified by using
(7.12) and (7.13), the solution is still to be sought numerically.

8. The helical flow combined with axial motion of fanned planes. Turning to (5.8),
one can see that the following velocity field

f = 0, 8 — &>(r), z = u(r) + c6, (8.1)

is a MWCSH of type (ii), occurring in a cylindrical polar coordinate system.2 The
physical components of the acceleration field associated with (8.1) are:

a(r) = —o>2r, a(6) = 0, a(z) = ao, (8.2)

and it is easy to see that the equations of motion (5.12) are solved, by inserting the
inertia terms pa(r), pa(6) and pa(z) in (6.12), , (6.12)2 and (6.13)3 respectively and by
choosing

cf> = — az + h(r),

T E(rz) = —jar + br~l + r_1 [ pcRu'fi) dR, A > 0, (8.3)
Ja

h'(r) = pro)2 + (d/dr)TE(rr) - (1 /r)2, .

Note that Si appears in (8.3)3 because the tensor L has a matrix form (6.1) with td = ru',
tern = u' and icn = cr. Thus, from (6.3)i it follows that for the flow (8.1),

2, = TE{66) - TE(rr),

22 = Te(zz) - TE(rr), (8.4)

rx = TE{r9), t2 = TE(rz), t3 = TE(8z).

a The axial motion of fanned planes, described by r = 0 = 0, i = cB, is a discovery of Pipkin [12].



14 R. R. HUILGOL

Hence we have demonstrated that the helical flow superposed on the axial motion of
fanned planes is dynamically possible in an incompressible simple fluid, and further no
inertia terms have been neglected.

9. A simplified form of the constitutive equation for MWCSH of type (ii). It was
established earlier that if the motion be a MWCSH of type (ii) and (3.15) is not satisfied,
then the constitutive equation is

T + pi = Te = f(Aa , A2). (9.1)

Now, a full of expansion of (9.1) contains eight terms if the term involving 1 is absorbed
into the pressure function p.

For the Poiseuille-torsional flow, (3.15) can never be satisfied because m = tw'/k is
zero. Thus (9.1) holds always for this flow. In addition, for this motion the number of
terms in the expansion of (9.1) can be reduced to six [7] and thus we obtain:

Ts = cxjA, + a2Ai + a3A2 + a4A2 + ^(A^Aa -f- A2At) + a6( A*A2 + A|Ai), (9.2)

where the (i = 1, • • • , 6) are analytic functions of the invariants of A! and A2 ,
which were given originally by Rivlin [17], The interesting feature of (9.2) is that it can
be shown to hold for the flow in the Maxwell rheometer as well [7], [18], [19] and [20].

Similarly, it can be shown that when (3.15) holds, the constitutive equation is
given by [7]:

Te = fSjAj -f- /32Ai + &A2 + (34A2 + /S5A3 + /?SA| , (9.3)

where the /3, (j = 1, • • • , 6) depend on the appropriate invariants of Ai, A2 and A3 [7, 21].
The general method of proving (9.2) (or (9.3)) consists in showing that the combina-

tions of kinematical tensors appearing in (9.2) (or (9.3)) are such that the operator
£ defined by:

[£] [M] = [A] (9.4)
is nonsingular. In (9.4), M is the "column vector" consisting of the following six sym-
metric tensors:

[Mi] =

[MJ =

1 0 0

0 0 0
0 0 0

0 1 0

1 0 0

0 0 0

[MJ =

[M6] =

0 0 0

0 1 0
0 0 0
0 0 1

0 0 0

1 0 0

[M3] =

[Me] =

0 0 0

0 0 0
0 0 1
0 0 0

0 0 1

0 1 0

(9-5)

(9.6)

and A is the "column vector" consisting of Ai , • • • , (AiA* + AjAj), (A* A* + A2Aj)
(orAj, ••• , AI;).

10. Concluding remarks. This paper has explored the kinematics of a class of
MWCSH and suggested approximately realizable experiments to measure the material
functions occurring in such flows. It is clear that one way of estimating these non-
viscometric material functions is to treat the flows discussed here as nearly viscometric
flows in the sense of Pipkin and Owen [6]. Such an attempt has been made and described
elsewhere [7] in full detail, while a selected list of results was presented in Sec. 7 here.
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