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Abstract

We propose a class of multidimensional Item Response Theory models for polytomously-scored

items with ordinal response categories. This class extends an existing class of multidimensional

models for dichotomously-scored items in which the latent abilities are represented by a random

vector assumed to have a discrete distribution, with support points corresponding to different la-

tent classes in the population. In the proposed approach, we allow for different parameterizations

for the conditional distribution of the response variables given the latent traits, which depend

on the type of link function and the constraints imposed on the item parameters. Moreover, we

suggest a strategy for model selection that is based on a series of steps consisting of selecting

specific features, such as the dimension of the model (number of latent traits), the number of

latent classes, and the specific parametrization. In order to illustrate the proposed approach, we

analyze a dataset from a study on anxiety and depression on a sample of oncological patients.

Keywords: Graded Response Model; Hospital Anxiety and Depression Scale; Partial Credit

Model; Rating Scale Model; unidimensionality.

1 Introduction

Item Response Theory (IRT) models are commonly used to analyze data from the administration of

questionnaires made of items with dichotomously- or polytomously-scored responses. In this paper,

in particular, we focus on polytomously-scored items with ordered response categories. Items of

this type are used in several contexts, such as education, marketing, and psychology. For a review

see Hambleton and Swaminathan (1985), Van der Linden and Hambleton (1997), and Nering and

Ostini (2010).

It is well known that the most common IRT models are based on the unidimensionality assump-

tion; this means that a single latent trait is measured by the items of the adopted questionnaire.

Moreover, many formulations of such models rely on the assumption that this latent trait has a

normal distribution. Several extensions have been proposed in the literature to overcome these

restrictive assumptions and to make traditional IRT models more flexible and realistic. Firstly,

multidimensional IRT models have been proposed in the literature to account for more than one

latent trait at the same time; each single trait corresponds to a separate latent dimension. We

refer the reader to Reckase (2009) for a thorough overview on this topic and Duncan and Sten-
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beck (1987), Agresti (1993), Kelderman and Rijkes (1994), Kelderman (1996), and Adams et al.

(1997) for specific proposals. A second relevant proposal in the IRT literature is based on the

assumption that the random variable representing the latent trait has a discrete distribution. Each

support point of this distribution corresponds to a class of individuals that is homogeneous in terms

of ability; these groups are named latent classes (Lazarsfeld and Henry, 1968; Goodman, 1974).

Therefore, this is a convenient assumption when the model is used to group individuals in separate

clusters. Moreover, the resulting model is semi-parametric (Lindsay et al., 1991), in the sense that

no parametric assumptions are formulated on the distribution of the latent trait in the population.

We also have to consider that adopting a discrete distribution make easy the computation of the

maximum estimates via the Expectation-Maximization (EM) algorithm (Dempster et al., 1977) be-

cause the marginal distribution of the response variables may be obtained without the need to solve

an integral as with a continuous latent distribution. Comparison between these two formulations

(continuous and discrete) are provided by Masters (1985), Langheine and Rost (1988), and Heinen

(1996). For some examples of discretized variants of IRT models we refer the reader to Lindsay

et al. (1991), Formann (1992), Hoijtink and Molenaar (1997), Vermunt (2001), Smit et al. (2003),

Rost (1991), and von Davier and Rost (1995).

The two extensions described above have been combined by Bartolucci (2007), who proposed a

class of multidimensional latent class (LC) IRT models for binary items, based on: (i) between-item

multidimensionality of the latent traits (Adams et al., 1997; Zhang, 2004) and (ii) discreteness

of the latent traits. Moreover, either a Rasch (Rasch, 1960) or a two-parameter logistic (2PL)

parameterization (Birnbaum, 1968) may be adopted for the probability of a correct response to

each item. A similar proposal is due to von Davier (2008), who formulated the so-called diagnostic

model based on fixed rather than free abilities. See also Haberman et al. (2008), who proposed

an interesting comparison of multidimensional IRT models based on continuous and discrete latent

traits.

The main aim of the present article is to extend the class of models of Bartolucci (2007) to

the case of items with ordinal polytomous responses. The proposed extension is formulated so

that different parameterizations may be adopted for the conditional distribution of the response

variables, given the latent traits. In the present class of models, different types of link function may

be adopted. Using the terminology of Molenaar (1983), see also Agresti (2002) and Van der Ark

3



(2001), the following models result: (i) graded response models, based on global (or cumulative)

logits, (ii) partial credit models, which make use of local (or adjacent category) logits, and (iii)

sequential models, based on continuation ratio logits. For each of these link functions, we explicitly

consider the possible presence of constraints on the item discrimination parameters and/or on the

threshold difficulties. We show how all the possible parameterizations result in an extension of

traditional IRT models, by introducing assumptions of multidimensionality and discreteness of the

latent trait distribution.

Special attention is also devoted to model selection that, for a certain application, aims at

choosing the suitable number of latent classes, the type of link function, the multidimensional

structure of items, and the parameterization for the item discriminating and difficulty parameters.

The remainder of this paper is organized as follows. In Section 2 we describe some basic

parameterizations for IRT models for items with ordinal responses. In Section 3 we describe the

proposed class of multidimensional LC IRT models and briefly outline their maximum likelihood

estimation. In Section 4 we illustrate the suggested model selection procedure and, in Section 5,

the proposed class of models is illustrated through the analysis of a real dataset concerning the

measurement of anxiety and depression in oncological patients. Some final remarks are reported in

Section 6.

2 Models for polytomous item responses

Let Xj denote the response variable for the j-th item of the questionnaire, with j = 1, . . . , r. This

variable has lj categories, indexed from 0 to lj − 1. Moreover, in the unidimensional case, let

λjx(θ) = p(Xj = x|Θ = θ), x = 0, . . . , lj − 1,

denote the probability that a subject with latent trait (or ability) level θ responds with category x

to this item. Also let λj(θ) denote the probability vector (λj0(θ), . . . , λj,lj−1(θ))
′, the elements of

which sum up to 1.

The IRT models for polytomous responses that are of interest in the present article are expressed
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through the general formulation

gx[λj(θ)] = γj(θ − βjx), j = 1, . . . , r, x = 1, . . . , lj − 1, (1)

where gx(·) is a link function specific of category x and γj and βjx are item parameters which are

usually identified as discrimination indices and difficulty levels, respectively, and on which suitable

constraints may be assumed. The first type of constraint is that

γj = 1, j = 1, . . . , r, (2)

so that all items have the same discriminating power. Another interesting constraint consists in

expressing βjx as sum of two components, that is,

βjx = βj + τx, j = 1, . . . , r, x = 1, . . . , lj − 1, (3)

where βj may be interpreted as the general difficulty level of item j and τx is the specific difficulty

level referred to response category x, which is common to all items. This constraint makes sense

only when the all items have the same number of response categories, and this number is larger

than 2 (i.e., l1 = . . . = lr = l, l > 2). The underlying hypothesis is that the distance between two

consecutive response categories, in terms of difficulty, is the same for all items, even if the items

may have different general difficulty levels.

On the basis of the specification of the link function in (1) and on the basis of the constraints

adopted on the item parameters, different unidimensional IRT models for polytomous responses

result. In particular, the formulation of each of these models depends on:

1. Type of link function: We consider the link function based on: (i) global (or cumulative)

logits, (ii) local (or adjacent categories) logits, and (iii) continuation ratio logits. In the first

case we have that

gx[λj(θ)] = log
λjx(θ) + · · ·+ λj,lj−1(θ)

λj0(θ) + · · ·+ λj,x−1(θ)
= log

p(Xj ≥ x|Θ = θ)

p(Xj < x|Θ = θ)
, x = 1, . . . , lj − 1,

and the corresponding models are also known as graded response models. With local logits
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we define the partial credit models, which are based on

gx[λj(θ)] = log
λjx(θ)

λj,x−1(θ)
= log

p(Xj = x|Θ = θ)

p(Xj = x− 1|Θ = θ)
, x = 1, . . . , lj − 1.

Finally, sequential models result with continuation ratio logits, that is,

gx[λj(θ)] = log
λjx(θ) + · · ·+ λj,lj−1(θ)

λj,x−1(θ)
= log

p(Xj ≥ x|Θ = θ)

p(Xj = x− 1|Θ = θ)
, x = 1, . . . , lj − 1.

2. Constraints on the discrimination parameters: We consider: (i) a general situation in which

each item may discriminate differently from the others and (ii) a special case in which all the

items discriminate in the same way, as defined in (2).

3. Formulation of item difficulty parameters: We consider: (i) a general situation in which

the parameters βjx are unconstrained and (ii) a special case in which these parameters are

constrained so that the distance between difficulty levels from category to category is the

same for each item (rating scale parameterization), as defined in (3).

By combining the above constraints, we obtain four different item parametrizations, which are

based on free or constrained discrimination parameters and on rating scale or free parameterization

for difficulties. Therefore, also according to the type of link function, twelve different types of

unidimensional IRT models for ordinal responses result. These models are listed in Table 1.

TABLE 1 HERE

Abbreviations used for the models specified in Table 1 refer to the way these models are known

in the literature. Thus, it is possible to identify: the Graded Response Model (GRM; Samejima,

1969), the Partial Credit model (PCM; Masters, 1982), the Rating Scale model (RSM; Andrich,

1978), the Generalized Partial Credit Model (GPCM; Muraki, 1992), and the Sequential Model

(SM) obtained as special case of the acceleration model of Samejima (1995). Moreover, RS-GRM

denotes the rating scale version of the GRM (Muraki, 1990); RS-GPCM and RS-SM denote the

rating scale versions of GPCM (Muraki, 1997) and SM, respectively; 1P-GRM (Van der Ark,
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2001), 1P-RS-GRM (Van der Ark, 2001), and SRM (Sequential Rasch Model; Tutz, 1990) refer to

versions with constant discrimination index corresponding to the GRM, RS-GRM, and SM models,

respectively. Finally, by SRSM we indicate the Sequential Rating Scale Model of Tutz (1990).

3 The proposed class of models

In the following, we describe the multidimensional extension of the unidimensional IRT models for

ordinal responses outlined in the previous section, which is based on latent traits with a discrete

distribution. We recall that the proposed class of models represents a generalization of the class of

multidimensional models proposed by Bartolucci (2007) for dichotomously-scored items.

Let s be the number of dimensions, that is, different latent traits measured by the items, let

Θ = (Θ1, . . . ,Θs)
′ be a vector of latent variables corresponding to these latent traits, and let

θ = (θ1, . . . , θs)
′ denote one of its possible realizations. The random vector Θ is assumed to have a

discrete distribution with k support points, denoted by ξ1, . . . , ξk, and mass probabilities π1, . . . , πk,

with πc = p(Θ = ξc). Moreover, let δjd be a dummy variable equal to 1 if item j measures latent

trait of type d and to 0 otherwise, with j = 1, . . . , r and d = 1, . . . , s.

It is important to note that assuming that the random vector Θ has a discrete distribution

is equivalent to assume that the population from which the sample comes is divided into a finite

number of latent classes, so that subjects in the same class have the same ability level. For the

subjects in latent class c, c = 1, . . . , k, the level of each ability corresponds to a specific element of

the vector ξc defined above.

In this multidimensional setting, we redefine the conditional response probabilities as

λjx(θ) = p(Xj = x|Θ = θ), x = 0, . . . , lj − 1,

and we let λj(θ) = (λj0(θ), . . . , λj,lj−1(θ))′. Then, assumption (1) is generalized as follows

gx[λj(θ)] = γj(
s∑

d=1

δjdθd − βjx), j = 1, . . . , r, x = 1, . . . , lj − 1, (4)

where the item parameters γj and βjx may be subjected to the same constraints detailed in Section

2. More precisely, on the basis of the constraints assumed on these parameters, we obtain different
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specifications of equation (1) that are reported in Table 2, where we distinguish the unidimensional

case (s = 1) from the multidimensional case (s > 1).

TABLE 2 HERE

Each of the item parameterizations reported in Table 2 may be independently combined with

global, local, and continuation ratio logit link functions to obtain different types of multidimensional

LC IRT models for ordinal responses, representing as many generalizations of models as in Table

1. For instance, we may define a multidimensional LC version of GRM as

log
p(Xj ≥ x|Θ = θ)

p(Xj < x|Θ = θ)
= γj(

s∑
d=1

δjdθd − βjx), x = 1, . . . , lj − 1, (5)

and a multidimensional LC version of RSM as

log
p(Xj = x|Θ = θ)

p(Xj = x− 1|Θ = θ)
=

s∑
d=1

δjdθd − (βj + τx), x = 1, . . . , l − 1. (6)

Note that when lj = 2, j = 1, . . . , r, so that item responses are binary, equations (5) and (6)

specialize, respectively, in the multidimensional LC 2PL model and in the multidimensional LC

Rasch model, both of which are described by Bartolucci (2007).

Regarding the manifest distribution of X = (X1, . . . , Xr)
′, that is the marginal distribution of

this random vector, the discreteness assumption for the random vector Θ implies that

p(x) = p(X = x) =
k∑

c=1

p(X = x|Θ = ξc)πc,

where, due to the classical assumption of local independence, we have

p(x|c) = p(X = x|Θ = ξc) =
r∏

j=1

p(Xj = xj |Θ = ξc) =

=
s∏

d=1

∏
j∈J d

p(Xj = xj |Θd = ξcd).

In the above expression, J d denotes the subset of J = {1, . . . , r} containing the indices of the
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items measuring the d-th latent trait, with d = 1, . . . , s and ξcd denoting the d-th elements of ξc.

In order to ensure the identifiability of the proposed models, suitable constraints on the param-

eters are required. For this aim, in equation (4) we constrain one discriminant index to be equal to

1 and one difficulty parameter is equal to 0 for each dimension. More precisely, let jd be a specific

element of J d, say the first. When the discrimination indices are not constrained to be constant,

we assume that γjd = 1 (d = 1, . . . , s). Moreover, with free item difficulties we assume that βjd1 = 0

(d = 1, . . . , s), whereas with a rating scale parameterization we assume βjd = 0 (d = 1, . . . , s) and

τ1 = 0.

In summary, a multidimensional LC IRT model with ordinal responses is based on a number

of free parameters obtained by summing the number of free probabilities πc, the number of ability

parameters ξcd, the number of free item difficulty parameters βjx, and that of free item discrimi-

nation parameters γj . As shown in Table 3, it is clear that the number of free parameters does not

depend on the type of logit, but only on the adopted item parametrization.

TABLE 3 HERE

The proposed models may be efficiently estimated by maximizing the model log-likelihood

through an EM algorithm (Dempster et al., 1977) that may be implemented in a similar way as

described in Bartolucci (2007), to which we refer the reader for details. As usual, this algorithm is

based on alternating two steps, named E-step and M-step, until convergence. The E-step consists

in computing the posterior probability of every latent class and sample unit. This is the conditional

probability that the individual belongs to a certain latent class given the response configuration

he/she provided. The M-step consists in maximizing the expected value of the complete data

log-likelihood. This is the log-likelihood that could be computed knowing the latent class from

which every sample unit comes. Its expected value is computed on the basis of the posterior

probabilities obtained at the E-step. An implementation in R is available in the MultiLCIRT package

by Bartolucci et al. (2013).
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4 Model selection

In order to select a particular model in the proposed class of multidimensional LC IRT models

for ordinal responses, we need to specify the following features: (i) number of latent classes (k),

(ii) link function (gx(·)), (iii) constraints on the item parameters γj and βjx, and (iv) number

of latent dimensions (s) and the corresponding allocation of items within each dimension (δjd,

j = 1, . . . , r, d = 1, . . . , s). Therefore, we need to make a number of choices for each mentioned

aspect, relying on a suitable criterion. In particular, we adopt the Bayesian Information Criterion

(BIC; Schwarz, 1978) that, differently from the criterion based on the likelihood ratio (LR) statistic,

can be also used to compare non-nested models. Note that, in the multidimensional approach of

Bartolucci (2007) for dichotomously-scored items, model selection is mainly based on the Akaike

Information Criterion (AIC; Akaike, 1973). However, we prefer BIC in the present approach so

that more parsimonious models tend to be selected, even if with moderate sample sizes the two

criteria typically lead to the selection of the same model.

We propose to base model selection on the following sequence of steps:

1. Selection of the number of latent classes. To select the number of latent classes (k), it is useful

to proceed by comparing models that differ only in this characteristic. We suggest to select k

with reference to the standard LC model (Goodman, 1974). In this way, it is not necessary to

choose any specific link function or item parameterization. Moreover, restrictive assumptions

on the dimension of the model (number of latent traits) are not necessary, since the LC model

may be also seen as an IRT model in which a specific dimension is associated to each item.

In fact, the distribution of the response variables given the latent class is completely free. In

practice, in order to select the number of latent classes we fit the LC model with increasing

values k; we stop to increase k when we observe an increase of the BIC index with respect

to the previous value of k. Then, the value just before the first increase of the BIC index is

taken as the optimal number of latent classes because it corresponds to the minimum of this

index among all the fitted models. To avoid the problem of multimodality of the likelihood

function, which is typical with LC models, we suggest to repeat the estimation process for

each k by randomly choosing the starting values of the model parameters.

2. Selection of the logit link function. In selecting the type of logits (global, local, or continuation
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ratio) we still use BIC, while retaining the value of k selected at the previous step. Moreover,

we adopt the same multidimensional latent structure as above, that is, with one dimension

for each item, so that the latent vector Θ has dimension r. Since it may happen that no

relevant differences in the goodness of fit of the competing models are observed (i.e., the BIC

index assumes very similar values for different link functions), the choice of the type of logit

should also take into account the different interpretations behind the types of logit; see also

Maydeu-Olivares et al. (1994) and Samejima (1996).

3. Selection of the number of dimensions. This aspect is of main interest when estimating

multidimensional IRT models and is connected to testing for a certain number of dimensions.

In particular, several authors (Martin-Löf, 1973; Christensen et al., 2002) have dealt with

testing unidimensionality in connection with Rasch type models using LR test statistics. On

the basis of this principle, Bartolucci (2007) proposed a model-based hierarchical clustering

procedure that can also be applied for the extended models proposed in the present article,

and then with ordinal items, and that allows us to detect groups of items that measure the

same latent trait. Coherently with the general principle outlined at the beginning of this

section, we select the number of dimensions on the basis of BIC. Therefore, we fit a series

of models corresponding to different dimensional structures, retaining the number of classes

and the type of logit selected above. The dimensional structure corresponding to the smallest

BIC index is then selected.

4. Selection of the item discriminating and difficulty parameterization. This step consists in

choosing possible constraints on the discriminating and difficulty parameters. Four different

types of nested models may be defined by combining free or constrained γj parameters with

free or constrained βjx parameters. Once the other elements of the model have been defined

through the previous steps, we perform the comparison among the four specification by BIC.

5 Application to measurement of anxiety and depression

The data used to illustrate the proposed class of polytomous LC IRT models consist of a sample

of 201 oncological Italian patients, who were asked to fill in the “Hospital Anxiety and Depression
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Scale” (HADS; Zigmond and Snaith, 1983), concerning the measurement of these pathologies. The

questionnaire is composed of 14 polytomous items equally divided between the two dimensions. All

items of the HADS questionnaire have four response categories: from 0 corresponding to the lowest

level of anxiety or depression to 3 corresponding to the highest level of anxiety or depression. Table

4 shows the distribution of the item responses among the four categories, distinguishing between

the two dimensions.

TABLE 4 HERE

Altogether, responses are mainly concentrated in categories 0 and 1 both for anxiety and depres-

sion, whereas category 3, corresponding to the highest level of psycho-pathological disturbances,

is selected less than 10% of the times for each item. By summing item responses, it is possible to

obtain, for each patient, a score indicating a raw measure of anxiety and depression: the closer the

raw score is to the minimum value of 0, the lower the level of anxiety or depression. The mean

raw score observed for the entire sample is very similar through the two dimensions, being 7.1

for anxiety and 7.2 for depression (standard deviation is equal to 4.2 in both cases). Correlation

between scores on anxiety and scores on depression is very high; it is equal to 0.98.

In the present context, the assumption of unidimensionality might be not realistic. Thus,

the adoption of one model in the proposed class of models, rather than a strictly unidimensional

IRT model, appears more suitable and significantly more convenient, as it allows us to detect

homogeneous classes of individuals who have similar latent characteristics, so that patients in the

same class will receive the same clinical treatment.

To proceed with model selection, the four steps suggested in Section 4 are sequentially per-

formed. We recall that the first step consists in detecting the optimal number of latent classes. For

this aim, a comparison among LC models with different number of latent classes is performed; in

particular, we consider k = 1, . . . , 4. The results of this preliminary fitting are reported in Table 5,

where, to avoid the problem of the likelihood multidimodality, results are obtained by both deter-

ministic and random starting values.
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TABLE 5 HERE

On the basis of the adopted selection criterion, we choose k = 3 as optimal number of la-

tent classes, which corresponds to the smallest BIC value with both deterministic and random

initializations of the EM estimation algorithm.

Regarding the second step and the choice of the suitable logit link function, a comparison be-

tween a graded response type model and a partial credit type model is carried out with k = 3

latent classes, free item discriminating and difficulties parameters, and a completely general multi-

dimensional structure for the data (i.e., one dimension for each item). Note that the continuation

ratio logit link function is not suitable in this context, because the item response process does not

consist of a sequence of successive steps. Table 6 shows that a global logit link is preferable to a

local logit link. It can be also observed that a graded response type model has a better fit than the

standard LC model, as the BIC value observed for the former is smaller than that detected for the

latter (see Table 5).

TABLE 6 HERE

Once we have chosen the global logit as the best link function, we carry on with the choice of

the dimensionality structure. BIC is again used to compare models which differ in terms of this

structure, all other elements being equal (i.e., free item discriminating and difficulty parameters),

that is (i) a graded response model with r-dimensional structure, (ii) a graded response model

with bidimensional structure (i.e., anxiety and depression), and (iii) a graded response model

with unidimensional structure (i.e., all the items belong to the same dimension). For the sake of

completeness, log-likelihood and BIC values are also provided for each model. According to these

results, the hypothesis of unidimensionality is included in the model (see Table 7). Note that the

same choice would be adopted by the LR test.

TABLE 7 HERE
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As previously outlined, the number of free parameters per item depends on the adopted con-

straints on the discriminating indices (γj) and on the difficulty parameters (βjx). In our application,

this implies a comparison between four models, according to the classification adopted in Table 1.

The results of this comparison are reported in Table 8 that shows that the preferred model among

the four considered is the unidimensional 1P-GRM model, that is, the graded response type model

with free βjx parameters and constant γj parameters. Such a result is achieved on the basis of

either the BIC criterion or the LR test.

TABLE 8 HERE

As the sequence of the previously described steps may be considered partly arguable, we re-

peated the analysis by changing the ordering of the model selection steps. It is worth noting that

the unidimensional 1P-GRM is selected also through this procedure.

The main results obtained under the selected unidimensional 1P-GRM model are shown in

Table 9. On the basis of the estimates of support points ξ̂c and probabilities π̂c, we identify a class

of patients (class 1) characterized by the least severe psycho-pathological disturbances and another

class (class 3) which represent patients with the worst conditions. The last class represents the

16.7% of all patients.

TABLE 9 HERE

6 Concluding remarks

In this article, we extend the class of multidimensional latent class (LC) Item Response Theory

(IRT) models (Bartolucci, 2007) for dichotomously-scored items to the case of ordinal polytomously-

scored items. At the same time, the proposed class of models allows for (i) ordinal polytomous

responses of different nature, (ii) multidimensionality, and (iii) discreteness of latent traits. Within

the proposed approach, different link functions may be adopted. These are based on global, local, or
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continuation ratio logits. Moreover, different constraints on the item discriminating and difficulty

parameters may be included in the model.

It is worth noting that assuming that the latent traits have a discrete distribution is equivalent to

assume that the population from which the observed sample comes is divided into a certain number

of latent classes. The proposed formulation allows for estimating the abilities and probabilities of

these classes. Moreover, a semi-parametric approach results which simplifies the maximization of

log-likelihood function in the estimation process.

Since the specific model adopted in a certain application depends on several features, we pay

particular attention to the model selection procedure which is based on a sequence of steps starting

from the choice of the number of latent classes and ending with the choice of the constraints on the

item parameters. In this way, we provide a unifying framework in which several aspects connected

with IRT analyses are considered at the same time.
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discrimination difficulty resulting resulting model (depending on the type of logit)
indices levels parameterization global local continuation

free free γj(θ − βjx) GRM GPCM SM
free constrained γj [θ − (βj + τx)] RS-GRM RS-RSM RS-SM

constrained free θ − βjx 1P-GRM PCM SRM
constrained constrained θ − (βj + τx) 1P-RS-GRM RSM SRSM

Table 1: List of unidimensional IRT models for ordinal polytomous responses which result from the
different choices of the link function, constraints on the discrimination indices, and constraints on
the difficulty levels.

discrimination difficulty Number of latent traits
indices levels s = 1 s > 1

free free γj(θ − βjx) γj(
∑

d δjdθd − βjx)
free constrained γj [θ − (βj + τx)] γj [

∑
d δjdθd − (βj + τx)]

constrained free θ − βjx
∑

d δjdθd − βjx
constrained constrained θ − (βj + τx)

∑
d δjdθd − (βj + τx)

Table 2: Item parameterizations for unidimensional (s = 1) and multidimensional (s > 1) IRT
model for ordinal polytomous responses.

discrimination difficulty Number of free parameters
indices levels (#par)

free free (k − 1) + sk +
[∑r

j=1(lj − 1)− s
]

+ (r − s)
free constrained (k − 1) + sk + [(r − s) + (l − 2)] + (r − s)

constrained free (k − 1) + sk +
[∑r

j=1(lj − 1)− s
]

constrained constrained (k − 1) + sk + [(r − s) + (l − 2)]

Table 3: Number of free parameters for different constraints on the item discrimination and diffi-
culty parameters.

19



Response category
Item 0 1 2 3
2 35.3 52.7 8.0 4.0
6 39.8 46.3 10.0 4.0
7 46.3 22.4 21.9 9.5
8 19.4 49.3 24.9 6.5
10 7.0 40.8 44.3 8.0
11 30.8 49.8 11.4 8.0
12 34.3 46.3 14.9 4.5
Anxiety 30.4 43.9 19.3 6.3

1 43.8 32.8 16.4 7.0
3 56.7 29.9 9.0 4.5
4 31.8 54.7 11.9 1.5
5 46.3 38.8 13.4 1.5
9 9.0 27.9 55.2 8.0
13 42.3 42.3 11.4 4.0
14 30.8 37.3 28.9 3.0
Depression 37.2 37.7 20.9 4.2

Table 4: Distribution of HADS item responses (row percentage frequencies).

Deterministic start Random start

k ˆ̀ #par BIC ˆ̀(max) #par BIC(min)
1 -3153.151 42 6529.040 -3153.151 42 6529.040
2 -2814.635 85 6080.051 -2814.635 85 6080.051
3 -2677.822 128 6034.468 -2674.484 128 6027.791
4 -2645.435 171 6197.736 -2608.570 171 6104.805

Table 5: Standard LC models: log-likelihood (ˆ̀), number of parameters, and BIC values for k =
1, . . . , 4 latent classes (the smallest BIC value, selected with deterministic and random starts, is in
boldface).

Global logit Local logit
ˆ̀ -2726.348 -2741.321
#par 72 72
BIC 5834.534 5864.479

Table 6: Graded response and partial credit type models with k = 3: log-likelihood (ˆ̀), number of
parameters, and BIC values (the smallest BIC value is in boldface).
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Model ˆ̀ #par BIC Deviance p-value
r-dimensional -2726.348 72 5834.534 – –
bidimensional -2731.249 60 5780.696 9.802 0.633
unidimensional -2731.894 59 5776.682 1.290 0.256

Table 7: r-dimensional, bidimensional, and unidimensional graded response models with k = 3:
log-likelihood, number of parameters, BIC value, and LR test results (deviance and p-value); (the
smallest BIC value is in boldface).

Model ˆ̀ #par BIC Deviance p-value
GRM -2731.894 59 5776.682 – –
RS-GRM -2795.570 33 5766.149 127.353 (vs GRM) 0.000
1P-GRM -2741.285 46 5726.521 18.782 (vs GRM) 0.130
1P-RS-GRM -2844.518 20 5795.102 206.467 (vs 1P-GRM) 0.000

Table 8: Item parameters selection: log-likelihood, number of parameters, BIC values, and LR test
results (deviance and p-value) between nested graded response models with k = 3 and s = 1 (the
smallest BIC value is in boldface).

Latent class c
Dimension 1 2 3
Psycho-pathological disturbances -0.776 1.183 3.418
Probability 0.342 0.491 0.167

Table 9: Estimated support points ξ̂c and probabilities π̂c of latent classes for the unidimensional
1P-GRM.

21


