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Abstract. This paper is devoted to the study on the Lp-mapping properties for a class
of multilinear oscillatory singular integrals with polynomial phase and rough kernel. By means
of the method of block decomposition for the kernel function, the authors show that for any
non-trivial polynomial phase, the Lp(Rn) boundedness of the multilinear oscillatory singular
integral operators and that of the corresponding local multilinear singular integral operators are
equivalent; and for any real-valued polynomial phase, the Lp(Rn) boundedness of the multi-
linear oscillatory integral operators can be deduced from that of the corresponding multilinear
singular integral operators.

1. Introduction and main results. It is well known that the oscillatory singular in-
tegral with polynomial phase has arisen in the study of Hilbert transforms along curves,
singular integrals supported on lower-dimensional varieties and singular Radon transforms
etc. Since Ricci and Stein [19] established a celebrated result to the effect that a class of
oscillatory singular integrals with polynomial phase and smooth kernel is bounded on
Lp(Rn) (1 < p < ∞), there has been significant progress in the study of these operators
(see [7], [10], [16], [17] etc.). In particular, Lu and Zhang [17] extended the above result of
[19] to the rough kernel case and found out a simple criterion for Lp-boundedness of these
operators. Recently, the authors [16], by the method of block decomposition for the kernel
function, also gave an essential improvement of the result of [17]. Meanwhile, we obtained
a criterion for the weighted Lp-boundedness for higher order commutators of this kind of
oscillatory operators.

In this paper, we will consider the following multilinear oscillatory singular integral
operator T A defined by

T Af (x) = p.v.

∫
Rn

eiP (x,y) Ω(x − y)

|x − y|n+m
Rm+1(A; x, y)f (y)dy , n ≥ 2 ,

where P(x, y) is a real polynomial on Rn × Rn, Ω is homogeneous of degree zero on Rn,
Rm+1(A; x, y) denotes the (m + 1)-st (m ≥ 1) remainder of the Taylor series of A at x about
y, more precisely,

Rm+1(A; x, y) = A(x) −
∑

|γ |≤m

1

γ !D
γ A(y)(x − y)γ ;
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and DγA ∈ BMO(Rn) for all multi-indices |γ | = m.
In 1998, Chen, Hu and Lu [3] gave a criterion for the Lp(Rn) boundedness of T A for

any nontrivial real-valued polynomial P(x, y) and Ω ∈ ⋃
r>1 Lr(Sn−1). Afterwards, Ding

and Lu [8] extended the above result to the weighted case. Recently, Chu, Hu and Lu [4]
improved the result of [3] to the case Ω ∈ L(log+L)2(Sn−1).

On the other hand, for the block spaces B
0,v
q (Sn−1) (q > 1, v = 0, 1) introduced by

Jiang and Lu (see [15]), Keitoku and Sato [12] pointed out that⋃
r>1

Lr(Rn) ⊂ B0,1
q (Sn−1) ⊂ B0,0

q (Sn−1) ,

which are proper inclusions. It is easy to see from [12] that B
0,0
q (Sn−1) is not contained

in L(log+L)2(Sn−1) although the relationship between B
0,0
q (Sn−1) (or B

0,1
q (Sn−1)) and

L log+L(Sn−1) remains open. It is natural to ask whether the condition on Ω in [3] can
be weakened to the case of Ω ∈ B

0,0
q (Sn−1) or Ω ∈ B

0,1
q (Sn−1). The main purpose of this

paper is to give a positive answer to the above question. Before stating our results, let us first
review some concepts.

DEFINITION 1 (cf. [17]). (i) A real-valued polynomial P(x, y) is said to be non-trivial
if P(x, y) cannot be written as P0(x)+P1(y), where P0 and P1 are both polynomials defined
on Rn.

(ii) A non-trivial polynomial P(x, y) is said to have the property P , if P(x, y) satisfies

P(x, y) = P(x − h, y − h) + R0(x, h) + R1(y, h), h ∈ Rn ,

where R0 and R1 are both real polynomials defined on Rn × Rn.
(iii) A non-trivial polynomial P(x, y) is said to be non-degenerate, if for positive inte-

gers k and l,

P(x, y) =
∑

|α|≤k,|β|≤l

aαβxαyβ and
∑

|α|=k,|β|=l

|aαβ | > 0 .

DEFINITION 2 (cf. [15]). A q-block on Sn−1 is an Lq(1 < q ≤ ∞) function b(·) that
satisfies

(i) supp(b) ⊆ Q, (ii) ‖b‖Lq(Sn−1) ≤ |Q|1/q−1 ,

where Q = Sn−1 ∩ {y ∈ Rn : |y − ς | < ρ for some ς ∈ Sn−1 and ρ ∈ (0, 1]}.
DEFINITION 3 (cf. [15]). For ν ≥ 0, the block spaces B

0, ν
q on Sn−1 are defined by

B0, ν
q (Sn−1) = {Ω ∈ L1(Sn−1) : Ω(y ′) =

∑
s

Csbs(y
′), M0, ν

q ({Cs}) < ∞} ,

where each Cs is a complex number, each bs is a q-block supported in Qs , and

M0, ν
q ({Cs}) =

∑
s

|Cs |
{

1 +
(

log+ 1

|Qs |
)ν+1}

.
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It should be pointed out that the method of block decomposition for functions was in-
vented by Taibleson and Weiss [22] in the study of the convergence of Fourier series. Later
on, many applications of the block decomposition to harmonic analysis were discovered (see
[1], [12], [13], [14], [16], [18], [20] etc.). For further background and information about the
theory of spaces generated by blocks and its applications to harmonic analysis, one can con-
sult the book [15]. We remark that some ideas in the proof of our main results are taken from
[9], [17] and our previous result [16], and our methods and techniques are more delicate and
complex than those in [9], [17]. Our main results can be formulated as follows.

THEOREM 1. Suppose that Ω is homogeneous of degree zero on Rn, and A has deriva-
tives of order m (|m| ≥ 1) in BMO(Rn). If Ω ∈ B

0,1
q (Sn−1) for some q > 1, then for

1 < p < ∞, the following two facts are equivalent:
(i) If P(x, y) is a non-degenerate polynomial having property P , then

‖T Af ‖p ≤ C(n, p, degP)
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p .

(ii) The truncated operator

SAf (x) = p.v.

∫
|x−y|<1

Ω(x − y)

|x − y|n+m
Rm+1(A; x, y)f (y)dy

satisfies

‖SAf ‖p ≤ C(n, p)
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p .

Here degP denotes the total degree of P(x, y).

For the general polynomial phase, we have the following result.

THEOREM 2. Under the same assumptions as in Theorem 1 about A, p and Ω , if the
multilinear singular integral operator

T̄ Af (x) = p.v.

∫
Rn

Ω(x − y)

|x − y|n+m
Rm+1(A; x, y)f (y)dy

is bounded on Lp(Rn) with bound C(n, p)
∑

|γ |=m ‖Dγ A‖BMO, then so is T A for any real-
valued polynomial P(x, y), with bound C(n, p, degP)

∑
|γ |=m ‖Dγ A‖BMO.

REMARK 1. If Ω ∈ B
0,0
q (Sn−1) for q > 1, we need to impose some restrictions on the

BMO functions. The corresponding results will be given in Section 5.

This paper is organized as follows. In Section 2, we will give some preliminary lemmas.
Next we will prove Theorem 2 in Section 3. The proof of Theorem 1 will be given in Section 4.
Finally, we will give some further results without proofs in Section 5. Throughout this paper,
we always use the letter C to denote a positive constant that may vary at each occurrence but
is independent of the essential variable.

The authors express their deep thanks to the referee for his many valuable comments
including the simplified proof of (3.11).
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2. Some Lemmas.

LEMMA 1 (cf. [5]). Let b(x) be a function on Rn with m-th order derivatives in Lt(Rn)

for some t , n < t ≤ ∞. Then

|Rm(b; x, y)| ≤ Cm,n|x − y|m
∑

|α|=m

(
1

|Iy
x |

∫
I

y
x

|Dαb(z)|tdz

)1/t

,

where I
y
x is the cube centered at x, with the sides parallel to the axes and with the diameter

5
√

n|x − y|.
LEMMA 2. Let Ω be homogeneous of degree of zero on Rn, A the same as that in

Theorem 1, and 1 < p < ∞. If Ω ∈ B
0,0
q (Sn−1) for some q > 1, then the maximal operator

MA
Ωf (x) = sup

r>0
r−(n+m)

∫
|x−y|<r

|Ω(x − y)Rm+1(A; x, y)f (y)|dy

is bounded on Lp(Rn) with bound C
∑

|γ |=m ‖Dγ A‖BMO.

PROOF. Obviously, it suffices to prove the lemma for M̃A
Ω , a variant of MA

Ω defined by

M̃A
Ωf (x) := sup

r>0
r−(n+m)

∫
r/2<|x−y|<r

|Ω(x − y)Rm+1(A; x, y)f (y)|dy .

For fixed x ∈ Rn, r > 0, let I (x, r) be the cube centered at x and having side length r . Set

Ã(y) = A(y) −
∑

|α|=m

1

α!mI(x,r)(D
αA)yα ,

where mI(x,r)(D
αA) denotes the mean value of DαA on I (x, r). Note that for each fixed α

with |α| = m, we have Dβyα = 0 if |β| ≥ m + 1. Thus

Rm+1((·)α; x, y) = xα −
∑

|β|≤m

1

β!D
β(yα)(x − y)β = 0 , |α| = m ,

which implies that

Rm+1(Ã; x, y) = Rm+1(A; x, y)−
∑

|α|=m

1

α!mI(x,r)(D
αA)Rm+1((·)α; x, y) = Rm+1(A; x, y) .

Since Ω ∈ B
0,0
q (Sn−1), we know by Definition 3 that Ω(x ′) = ∑

s Csbs(x
′), where each bs

is a q-block, supported in Qs and
∑

s

|Cs |
(

1 + log+ 1

|Qs |
)

< ∞ .

Thus

M̃A
Ωf (x) ≤

∑
s

|Cs | sup
r>0

r−n−m

∫
r/2<|x−y|<r

|bs(x − y)Rm+1(A; x, y)f (y)|dy

:=
∑

s

|Cs |M̃A
bs

f (x) .

(2.1)
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Now, we estimate M̃A
bs

. For any 1 < λ ≤ q , let λ′ = λ/(λ − 1). Applying Hölder’s inequality,
we have

M̃A
bs

f (x) ≤ sup
r>0

(
r−n

∫
|x−y|<r

|bs(x − y)|λ|f (y)|dy

)1/λ

× sup
r>0

(
r−n−mλ′

∫
r/2<|x−y|<r

|Rm+1(Ã; x, y)|λ′ |f (y)|dy

)1/λ′

:= I (f )(x)1/λII (f )(x)1/λ′
.

Observe that I (f )(x) = M|bs |λ(f )(x). By the method of rotation of Calderón and Zygmund
[2], we obtain

‖I (f )‖p ≤ C‖bs‖λ
Lλ(Sn−1)

‖f ‖p , 1 < p < ∞ .

On the other hand, by Lemma 1 and the same argument as that in the proof of Lemma 2 in
[4], we can deduce that for 1 < t < p,

‖II (f )‖p ≤ C1C
λ′
2 Γ (λ′t ′ + 1)1/t ′ ∑

|α|=m

‖DαA‖λ′
BMO‖f ‖p , 1 < p < ∞,

where Γ (u) = ∫ ∞
0 e−vvu−1dv, C1 and C2 are constants depending only on n. Here we use

the result (see [11]) that if a ∈ BMO(Rn), then for any cube Q there exist constants C1 and
C2 depending only on n such that

1

|Q|
∫

Q

|a(x) − aQ|λdx ≤ C1C
λ
2 Γ (λ + 1)‖a‖λ

BMO(Rn) .

Combining the estimates for the terms I and II, we obtain by another application of Hölder’s
inequality that

‖M̃A
bs

(f )‖p ≤ Cλ′‖bs‖Lλ(Sn−1)

∑
|γ |=m

‖Dγ A‖BMO‖f ‖p , 1 < p < ∞ ,(2.2)

where C is independent of λ.
Recalling that for each bs , supp(bs) ⊂ Qs and ‖bs‖Lq(Sn−1) ≤ |Qs |1/q−1, if |Qs | ≥

eq/(1−q), we take λ = q and obtain

‖M̃A
bs

f ‖p ≤ Cq ′‖bs‖Lq(Sn−1)

∑
|γ |=m

‖Dγ A‖BMO‖f ‖p

≤ C|Qs |1/q−1
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p

≤ C
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p ;
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if |Qs | < eq/1−q , we take λ = log|Qs |/(1 + log|Qs |), then 1 < λ < q , λ′ = log(1/|Qs |) and

‖M̃A
bs

f ‖p ≤ Cλ′‖bs‖Lλ(Sn−1)

∑
|γ |=m

‖Dγ A‖BMO‖f ‖p

≤ Clog
1

|Qs |‖bs‖Lq(Sn−1)|Qs |1/λ−1/q
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p

≤ Clog
1

|Qs | |Qs |1/λ−1
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p

= Clog
1

|Qs | |Qs |1/log|Qs | ∑
|γ |=m

‖Dγ A‖BMO‖f ‖p

≤ Clog
1

|Qs |
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p .

Consequently, for each bs , we get that

‖M̃A
bs

f ‖p ≤ C

(
1 + log

1

|Qs |
) ∑

|γ |=m

‖Dγ A‖BMO‖f ‖p .

By the last inequality and (2.1), we obtain

‖M̃A
Ωf ‖p ≤ C

∑
s

|Cs |
(

1 + log+ 1

|Qs |
) ∑

|γ |=m

‖Dγ A‖BMO‖f ‖p

≤ C
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p ,

which proves Lemma 2.

LEMMA 3. Suppose that K(x, y) is a distribution which agree with a function away
from the diagonal {x = y} satisfying

|K(x, y)| ≤ |Ω(x − y)|
|x − y|n+m

|Rm+1(A; x, y)| ,
with Ω , Rm+1(A; x, y) as in Lemma 2. If the operator

Tf (x) = p.v.

∫
Rn

K(x, y)f (y)dy

is bounded on Lp(Rn), then the truncated operator

T0f (x) = p.v.

∫
|x−y|<ε

K(x, y)f (y)dy

is also bounded on Lp(Rn) with bound C(‖T ‖ + ∑
|γ |=m ‖Dγ A‖BMO), where C is indepen-

dent of ε and T .

This lemma can be proved by Lemma 2 and the same argument as that used in [9, p. 54].
We omit the details for brevity.
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3. Proof of Theorem 2. We shall carry out the argument by a double induction on
the degrees in x and y of the polynomial. By the Lp(Rn) boundedness of T̄ A, it is obvious
that Theorem 2 holds if the polynomial is trivial. Let k and l be two positive integers and let
the polynomial have degrees k in x and l in y. We assume that Theorem 2 is known for all
polynomials which are sums of monomials of degree less than or equal to k − 1 in x times
monomials of any degree in y, together with monomials which are of degree k in x times
monomials which are of degree less than or equal to l − 1 in y.

Now, we proceed to the proof of the inductive step. Write

P(x, y) =
∑

|α|=k,|β|=l

aαβxαyβ + R0(x, y) ,

where R0(x, y) satisfies the above inductive assumption. By dilation-invariance, we may
assume that

∑
|α|=k, |β|=l |aαβ | = 1. Decompose T A as

T Af (x) =
∫

|x−y|<1
eiP (x,y) Ω(x − y)

|x − y|n+m
Rm+1(A; x, y)f (y)dy

+
∫

|x−y|≥1
eiP (x,y) Ω(x − y)

|x − y|n+m
Rm+1(A; x, y)f (y)dy

:= T A
0 f (x) + T A∞f (x) .

For T A
0 , by Lemma 2, Lemma 3 and the same argument as that used in [9, p. 55–56], we

have

‖T A
0 f ‖p ≤ C

∑
|γ |=m

‖Dγ A‖BMO‖f ‖p .(3.1)

Now, we consider the operator T A∞. By Definition 2, we have

T A∞f (x) =
∞∑

j=0

∑
s

Cs

∫
2j ≤|x−y|<2j+1

eiP (x,y) bs(x − y)

|x − y|n+m
Rm+1(A; x, y)f (y)dy

:=
∑

s

Cs

∞∑
j=0

T A
j,sf (x) .

Thus for all 1 < p < ∞,

‖T A∞f ‖p ≤
∑

s

|Cs |
∞∑

j=0

‖T A
j,sf ‖p .(3.2)

We shall show that

∞∑
j=0

‖T A
j,sf ‖p ≤ C

{
1 +

(
log+ 1

|Qs |
)2} ∑

|γ |=m

‖Dγ A‖BMO‖f ‖p .(3.3)
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By (2.2), we have for 1 < λ ≤ q ,

‖T A
j,sf ‖p ≤ Cλ′‖bs‖Lλ(Sn−1)

∑
|γ |=m

‖Dγ A‖BMO‖f ‖p .(3.4)

To prove (3.3), it suffices to prove that, for each bs and any 1 < λ ≤ q ,

‖T A
j,sf ‖2 ≤ CBδ2−jθδλ′‖bs‖Lλ(Sn−1)

∑
|γ |=m

‖Dγ A‖BMO‖f ‖2(3.5)

holds uniformly in δ ∈ (0, 1] such that δ < min(k/2l, k/(k + l)λ′). Here 0 < θ < 1 and C,
B depend only on n and, in the latter, degP .

If we can do this, then interpolation between (3.4) and (3.5) shows that for 1 < p < ∞
‖T A

j,sf ‖p ≤ CBθ1δ2−jθ1θδλ′‖bs‖Lλ(Sn−1)

∑
|γ |=m

‖Dγ A‖BMO‖f ‖p ,(3.6)

where 0 < θ1 ≤ 1. Therefore, for each bs , we consider the following two cases, respectively:
Case 1. When |Qs | ≥ eq/(1−q), we take λ = q . Then

‖T A
j,sf ‖p ≤ C2−jθ1θδ‖bs‖Lq(Sn−1)

∑
|γ |=m

‖Dγ A‖BMO‖f ‖p

≤ C2−jθ1θδ|Qs |1/q−1
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p

≤ C2−jθ1θδ
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p .

So
∞∑

j=0

‖T A
j,sf ‖p ≤ C

∞∑
j=0

2−jθ1θδ
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p ≤ C
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p .

Case 2. When |Qs | < eq/(1−q), we take λ = log|Qs |/(1 + log|Qs |) and choose δ =
σ/λ′ < min(k/2l, k/(k + l)λ′), where σ is a positive constant depending only on k and l.
Then

‖T A
j,sf ‖p ≤ CBθ1σ/λ′

2−θ1θσj/λ′
λ′‖bs‖Lλ(Sn−1)

∑
|γ |=m

‖Dγ A‖BMO‖f ‖p

≤ CB−θ1σ/log|Qs |2θ1θσj/log|Qs ||Qs |1/log|Qs |
(

log
1

|Qs |
) ∑

|γ |=m

‖Dγ A‖BMO‖f ‖p

≤ CB−θ1σ/log|Qs |2θ1θσj/log|Qs |
(

log
1

|Qs |
) ∑

|γ |=m

‖Dγ A‖BMO‖f ‖p .

Since |Qs | < eq/(1−q), we have log|Qs | < q/(1 − q), i.e., −log|Qs | > q/(q − 1) > 1. Con-
sequently, if B ≤ 1, then B−θ1σ/log|Qs | ≤ 1; if B > 1, then B−θ1σ/log|Qs | < Bθ1σ(q−1)/q = C.
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Hence

‖T A
j,sf ‖p ≤ C2θ1θσj/log|Qs |log

1

|Qs |
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p .

So
∞∑

j=0

‖T A
j,sf ‖p ≤ C

∞∑
j=0

2θ1θσj/log|Qs |log
1

|Qs |
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p

≤ C

(
log

1

|Qs |
)2 ∑

|γ |=m

‖Dγ A‖BMO‖f ‖p .

This shows that (3.3) hold. Consequently, by (3.2), we obtain

‖T A∞f ‖p ≤ C
∑

s

|Cs |
{

1 +
(

log+ 1

|Qs |
)2} ∑

|γ |=m

‖Dγ A‖BMO‖f ‖p

≤ C
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p .

(3.7)

Summarizing (3.1) and (3.7), we conclude the proof of Theorem 2.
Now we return to the proof of (3.5). To do this, we turn our attention to the operator

T̃ A
j,sf (x) =

∫
1<|x−y|≤2

eiP (2j x,2j y) bs(x − y)

|x − y|n+m
Rm+1(A; x, y)f (y)dy .

By dilation-invariance, it is easy to see that the proof of (3.5) can be reduced to showing that

‖T̃ A
j,sf ‖2 ≤ CBδ2−jθδλ′‖bs‖Lλ(Sn−1)

∑
|γ |=m

‖Dγ A‖BMO‖f ‖2 ,(3.8)

where C and B are as those in (3.5).
Decompose Rn into Rn = ⋃

d Id , where Id is a cube with side length 1 and the cubes
have disjoint interiors. Set fd = f χId . Since the support of T̃ A

j,sfd is contained in a fixed

multiple of Id , the supports of the various terms T̃ A
j,sfd have bounded overlaps. Thus

‖T̃ A
j,sf ‖2

2 ≤ C
∑
d

‖T̃ A
j,sfd‖2

2 .

For each fixed d , denote Ĩd = 10nId . Let Ψd(x) ∈ C∞
0 (Rn) such that 0 ≤ Ψd ≤ 1, Ψd is

identically one on 4
√

nId and vanishes outsides of 6
√

nId , ‖DαΨd‖∞ ≤ Cα for all multi-
index α. Let x0 be a point on the boundary of 8

√
nId . Denote

AΨd (y) = Rm

(
A(·) −

∑
|β|=m

1

β!mĨd
(DβA)(·)β; y, x0

)
Ψd(y)

and for multi-index α, define

T̃ α
j,sh(x) =

∫
1<|x−y|≤2

eiP (2j x,2j y) bs(x − y)

|x − y|n+m
(x − y)αh(y)dy .
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It is easy to see that

T̃ A
j,sfd(x) = T̃ AΨd

j,s fd(x) = AΨd (x)T̃ 0
j,sfd(x)

−
∑

|α|<m

1

α! T̃
α
j,s (D

αAΨd fd)(x) −
∑

|α|=m

1

α! T̃
α
j,s (D

αAΨd fd)(x)

:= G1 + G2 + G3 .

To estimate these terms, we shall use the following lemma.

LEMMA 4. For any multi-index α and λ > 1,

‖T̃ α
j,sh‖p ≤ CBδ2−θδj‖bs‖Lλ(Sn−1)‖h‖p, 1 < p < ∞(3.9)

holds uniformly for δ ∈ (0, 1] such that δ < min(k/2l, k/(k + l)λ′). Here, C, B and θ are as
those in (3.5).

PROOF. Let b(r) = r |α|−m and b̃s(x) = bs(x)(x/|x|)α . It is obvious that b̃s(x) is
homogeneous of degree zero and |b̃s(x)| = |bs(x)|. Note that∫

2j<|x−y|≤2j+1
eiP (x,y) bs(x − y)

|x − y|n+m
(x − y)αh(y)dy

=
∫

2j<|x−y|≤2j+1
eiP (x,y) b̃s(x − y)

|x − y|n b(|x − y|)h(y)dy .

Using Proposition 2 and Proposition 3 in [16], by the same argument as that used in [17,
p. 209–213], we can find that, for any 1 < λ ≤ ∞,∥∥∥∥

∫
2j <|·−y|≤2j+1

eiP (·,y) b̃s(· − y)

| · −y|n b(| · −y|)h(y)dy

∥∥∥∥
p

≤ C‖b‖∞,[2j ,2j+1]Bδ2−θδj‖b̃s‖Lλ(Sn−1)‖h‖p

≤ CBδ2−(θδ+m−|α|)j‖bs‖Lλ(Sn−1)‖h‖p .

This leads to the conclusion of Lemma 4.
We now return to the estimates of G1, G2, G3. Noticing that for multi-index α and

|α| ≤ m, we have (see [5, p. 452])

DαAΨd (y) =
∑

α=u+v

Cu,vRm−|u|
(

Du

(
A(·) −

∑
|β|=m

1

β!mĨd
(DβA)(·)β

)
; y, x0

)
DvΨd(y) .

(3.10)

Since suppΨd ⊆ 6
√

nId , by Lemma 1, we have

|DαAΨd (y)| ≤ C
∑

|β|=m

(
1

|Ĩ y
x0 |

∫
Ĩ

y
x0

|DβA(z) − mĨd
(DβA)|tdz

)1/t

≤ C
∑

|γ |=m

‖Dγ A‖BMO ,

where n < t < ∞. So by Lemma 4,

‖G1‖2 ≤ ‖AΨd ‖∞‖T̃ 0
j,sfd‖2 ≤ C

∑
|γ |=m

‖Dγ A‖BMOBδ2−θδj‖bs‖Lλ(Sn−1)‖fd‖2 .
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Similarly,

‖G2‖2 ≤ C
∑

|α|<m

‖T̃ α
j,s (D

αAΨd fd)‖2

≤ CBδ2−θδj‖bs‖Lλ(Sn−1)

∑
|α|<m

‖DαAΨd ‖∞‖fd‖2

≤ CBδ2−θδj‖bs‖Lλ(Sn−1)

∑
|γ |=m

‖Dγ A‖BMO‖fd‖2 .

It remains to deal with the term G3. Let λ′ < p < ∞, 0 < ρ < ∞ and χ(x, y) be the
characteristic function of the set {(x, y) ∈ Rn × Rn : 1 < |x − y| ≤ 2}. Then

|T̃ α
j,sh(x)| ≤ C

∫
1<|x−y|≤2

|bs(x − y)h(y)|dy

≤ C‖bs‖Lλ(Sn−1)

( ∫
1<|x−y|≤2

|h(y)|λ′
dy

)1/λ′

≤ C‖bs‖Lλ(Sn−1)

( ∫
Rn

|χ(x, y)h(y)|pdy

)1/p

.

Hence

‖T̃ α
j,sh‖p+ρ ≤ C‖bs‖Lλ(Sn−1)

( ∫
Rn

‖χ(·, y)h(y)‖p
p+ρdy

)1/p

≤ C‖bs‖Lλ(Sn−1)‖h‖p .

(3.11)

Consequently,

‖T̃ α
j,sh‖2λ′+2 ≤ C‖bs‖Lλ(Sn−1)‖h‖λ′+2 .(3.12)

Invoking Lemma 4, we have

‖T̃ α
j,sh‖3/2 ≤ CBδ2−θδj‖bs‖Lλ(Sn−1)‖h‖3/2 .(3.13)

Interpolating between (3.12) and (3.13) gives

‖T̃ α
j,sh‖2 ≤ CBθ2δ2−θ2θδj‖bs‖Lλ(Sn−1)‖h‖2−ρ ,(3.14)

where θ2 = 3λ′/(4λ′ + 1), ρ = λ′/(2λ′2 + 5λ′ + 1).
On the other hand, (3.10) and Lemma 1 show that if |α| = m, then

|DαAΨd (y)|

≤
∑

α=u+v, |u|<m

Cu,v

∣∣∣∣Rm−|u|
(

DuA(·) −
∑

|β|=m

1

β!mĨd
(DβA)(·)β; y, x0

)
DvΨd(y)

∣∣∣∣
+

∑
|u|=m

|(DuA(y) − m
Ĩd

(DuA))Ψd(y)|

≤ C

( ∑
|γ |=m

‖Dγ A‖BMO +
∑

|γ |=m

|Dγ A(y) − mĨd
(Dγ A)|

)
.
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Thus, for any 1 < t < ∞,

‖DαAΨd ‖t ≤ Ct
∑

|γ |=m

‖Dγ A‖BMO .

For ρ in (3.14), choose t = 8λ′ + 18 + 4/λ′ ≤ 30λ′ such that 1/2 + 1/t = 1/(2 − ρ), it
follows from (3.14) that

‖G3‖2 ≤ C
∑

|α|=m

‖T̃ α
j,s (D

αAΨd fd)‖2 ≤ CBθ2δ2−θ2θδj‖bs‖Lλ(Sn−1)

∑
|α|=m

‖DαAΨd fd‖2−ρ

≤ CBθ2δ2−θ2θδj‖bs‖Lλ(Sn−1)

∑
|α|=m

‖DαAΨd ‖t‖fd‖2

≤ CBθ2δ2−θ2θδj‖bs‖Lλ(Sn−1)t
∑

|α|=m

‖DαA‖BMO‖fd‖2

≤ CBδ2−θδj λ′‖bs‖Lλ(Sn−1)

∑
|γ |=m

‖Dγ A‖BMO‖fd‖2 .

This finishes the proof of Theorem 2.

4. Proof of Theorem 1. (i) implies (ii): Suppose that P(x, y) has the property P .
Decompose

T Af (x) =
∫

|x−y|<1
eiP (x,y) Ω(x − y)

|x − y|n+m
Rm+1(A; x, y)f (y)dy

+
∫

|x−y|≥1
eiP (x,y) Ω(x − y)

|x − y|n+m
Rm+1(A; x, y)f (y)dy

:= T A
0 f (x) + T A∞f (x) .

By Lemma 3, we know that T A
0 is bounded on Lp(Rn). Taking an h ∈ Rn, for |x − h| < 1,

we have

T A
0 f (x) = T A

0 [f (·)χB(h,2)(·)](x) ,

where B(h, 2) = {y : |y − h| < 2}. Thus

(∫
|x−h|<1

|T A
0 f (x)|pdx

)1/p

≤ C
∑

|γ |=m

‖Dγ A‖BMO

( ∫
|y−h|<2

|f (y)|pdy

)1/p

.(4.1)

Since P(x, y) has the property P , we write

SAf (x) =
∫

|x−y|<1

Ω(x − y)

|x − y|n+m
Rm+1(A; x, y)f (y)dy

= eiR0(x,h)

∫
|x−y|<1

eiP (x,y) Ω(x − y)

|x − y|n+m
Rm+1(A; x, y)e−iP (x−h,y−h)e−iR1(y,h)f (y)dy .
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Observe that Taylor’s expression of e−iP (x−h,y−h) is

e−iP (x−h,y−h) =
∞∑

k=0

(−i)k

k!
[∑

α,β

aαβ(x − h)α(y − h)β
]k

=
∞∑

k=0

(−i)k

k!
∑
u,v

a′
uv(x − h)u(y − h)v .

Hence
( ∫

|x−h|<1
|SAf (x)|pdx

)1/p

≤
∞∑

k=0

1

k!
∑
u,v

|a′
uv|

( ∫
|x−h|<1

|(x − h)u|

×
∣∣∣∣
∫

|x−y|<1
eiP (x,y) Ω(x − y)

|x − y|n+m
e−iR1(y,h)(y − h)vf (y)dy

∣∣∣∣
p

dx

)1/p

≤
∞∑

k=0

1

k!
∑
u,v

|a′
uv||ξu|

( ∫
|x−h|<1

|T A
0 [e−iR1(·,h)(· − h)vf (·)](x)|pdx

)1/p

,

where ξ = (1, 1, . . . , 1). By (4.1), we have

( ∫
|x−h|<1

|SAf (x)|pdx

)1/p

≤ C

∞∑
k=0

1

k!
∑
u,v

|a′
uv||ξu|

∑
|γ |=m

‖Dγ A‖BMO

( ∫
|y−h|<2

|f (y)(y − h)v |pdx

)1/p

≤ C

∞∑
k=0

1

k!
∑
u,v

|a′
uv||ξuηv|

∑
|γ |=m

‖Dγ A‖BMO

( ∫
|y−h|<2

|f (y)|pdx

)1/p

≤ C

∞∑
k=0

1

k!
( ∑

α,β

|aα,β ||ξαηβ |
)k ∑

|γ |=m

‖Dγ A‖BMO

( ∫
|y−h|<2

|f (y)|pdx

)1/p

,

where η = (2, 2, . . . , 2). Note that

∞∑
k=0

1

k!
(∑

α,β

|aαβ ||ξαηβ |
)k

= exp

( ∑
α,β

|aα,β ||ξαηβ |
)

≤ C ,

we get

( ∫
|x−h|<1

|SAf (x)|pdx

)1/p

≤ C
∑

|γ |=m

‖Dγ A‖BMO

( ∫
|y−h|<2

|f (y)|pdy

)1/p

.
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Therefore, integrating the last inequality with respect to h, we obtain

‖SAf ‖p ≤ C
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p ,

which is (ii).
(ii) implies (i): Let k and l be two positive integers and P(x, y) a non-degenerate real-

valued polynomial with degree k in x and l in y. Write

P(x, y) =
∑

|α|≤k,|β|≤l

aαβxαyβ .

By the dilation invariance, we may assume that
∑

|α|=m,|β|=l |aαβ | = 1. Split T A = T A
0 +T A∞

as before. For T A∞, since P(x, y) is non-trivial, by the methods similar to those in the proof
of (3.7), we can prove that

‖T A∞f ‖p ≤ C
∑

|γ |=m

‖Dγ A‖BMO‖f ‖p .

In what follows, we shall prove that

‖T A
0 f ‖p ≤ C(n, degP)

∑
|γ |=m

‖Dγ A‖BMO‖f ‖p .(4.2)

Let us begin with a double induction on the degrees in x and y of the polynomial. If P(x, y)

depends only on x or only on y, it is obvious that the condition (ii) implies (4.2). We assume
that (4.2) holds for all polynomials which are sum of monomials of degree less than k in x

times monomials of any degree in y, together with monomials which are of degree k in x

times monomials which are of degree less than l in y. Rewrite

P(x, y) =
∑

|α|=k,|β|=l

aαβ(xαyβ − yα+β) + P0(x, y) ,

where P0(x, y) satisfies the inductive assumption. We split T A
0 into

T A
0 f (x) =

∫
|x−y|<1

eiP0(x,y) Ω(x − y)

|x − y|n+m
Rm+1(A; x, y)f (y)dy

+
∫

|x−y|<1
(eiP (x,y) − eiP0(x,y))

Ω(x − y)

|x − y|n+m
Rm+1(A; x, y)f (y)dy

:= T A
0,1f (x) + T A

0,2f (x) .

Now by our induction assumption we have

‖T A
0,1f ‖p ≤ C

∑
|γ |=m

‖Dγ A‖BMO‖f ‖p .(4.3)

On the other hand, if |x| < 1 and |x − y| ≤ 1, then it is easy to see that

|eiP (x,y) − eiP0(x,y)| ≤ C
∑

|α|=k,|β|=l

|aαβ ||x − y| = C|x − y| .
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Denote f0(y) = f (y)χ{|y|≤2}(y). Then T A
0,2f (x) = T A

0,2f0(x), if |x| < 1. Thus,

|T A
0,2f (x)| ≤ C

∫
|x−y|<1

∣∣∣∣ Ω(x − y)

|x − y|n+m−1
Rm+1(A; x, y)f0(y)

∣∣∣∣dy

≤ CMA
Ωf0(x) .

By Lemma 2, we have∫
|x|<1

|T A
0,2f (x)|pdx ≤ C

( ∑
|γ |=m

‖Dγ A‖BMO

)p ∫
|y|<2

|f (y)|pdy .

Using the same argument as that used in [19, p. 189], we can get that∫
|x−h|<1

|T A
0,2f (x)|pdx ≤ C

( ∑
|γ |=m

‖Dγ A‖BMO

)p ∫
|y−h|<2

|f (y)|pdy .

Integrating the above inequality with respect to h, we obtain

‖T A
0,2f ‖p ≤ C

∑
|γ |=m

‖Dγ A‖BMO‖f ‖p .(4.4)

Therefore, (4.2) follows from (4.3) and (4.4). This finishes the proof of Theorem 1.

5. Further Results. Consider the multilinear oscillatory singular integral operator
defined by

T A1,...,Akf (x) = p.v.

∫
Rn

eiP (x,y) Ω(x − y)

|x − y|n+M

k∏
j=1

Rmj +1(Aj ; x, y)f (y)dy ,(5.1)

where n ≥ 2, k ≥ 2, mj ≥ 1, j = 1, 2, . . . , k, M = ∑k
j=1 mj and DαjAj ∈ BMO for |αj | =

mj, j = 1, 2, . . . , k. For Ω ∈ B
0,k
q (Sn−1), repeating the arguments of the theorems, we can

obtain the same conclusions as the theorems with bounds
∏k

j=1
∑

γj=mj
‖DγjAj‖BMO. Here

we omit the details.
In addition, if some restrictive conditions are imposed on the BMO functions Aj , we can

obtain some more delicate results. First, we review a notion as follows.

DEFINITION 4 (cf. [6]). A local integrable function a(x) will be said to belong to
BLO(Rn) if there is a constant C such that for any cube Q

mQ(a) − inf
x∈Q

a(x) ≤ C ,

where mQ(a) = |Q|−1
∫
Q a(x)dx.

If a ∈ BLO(Rn), then we denote ‖a‖BLO(Rn) = supQ{mQ(a) − infx∈Q a(x)}.
Obviously, L∞(Rn) ⊂ BLO(Rn) ⊂ BMO(Rn) and if a ∈ BLO(Rn), then

‖a‖BMO(Rn) ≤ 2‖a‖BLO(Rn) .(5.2)

Similarly to Theorems 1 and 2, we have the following results.
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THEOREM 3. Suppose that Ω is homogeneous of degree zero on Rn, k ≥ 1, and Aj has
derivatives of order mj (mj ≥ 1) in BMO(Rn), j = 1, 2, . . . , k. If Dαj Aj (x) ∈ BLO(Rn)

and DαjAj (x) is subharmonic for |αj | = mj , j = 1, 2, . . . , k, Ω ∈ B
0,0
q (Sn−1) for q > 1,

then for the operator T A1,...,Ak defined by (5.1), the corresponding conclusions of Theorems
1 and 2 with bound C

∏k
j=1

∑
|γj |=mj

‖Dγj Aj‖BLO also hold.

REMARK 2. It is worth pointing out that a BMO function a(x) satisfying the restrictive
conditions in Theorem 3 exists. A typical example is log|x|.

Note that for any cube Q, (|Q|−1
∫
Q |a(x) − aQ|t dx)1/t ≤ ‖a‖BLO (t ≥ 1) if a ∈

BLO(Rn) and a(x) is subharmonic. Then the same arguments as those used in proving The-
orems 1 and 2, we can prove Theorem 3. We omit the details.
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