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A CLASS OF MULTISAMPLE DISTRIBUTION-FREE TESTS!

By JAYANT V. DESHPANDE

Case Western Reserve University and the University of Sheffield
1. Summary and introduction. Let x;,, X;5," ", x;,, be a random sample of real
observations from the ith population with cumulative distribution function (cdf)
Fyx), i=1,2,--,c. Let the ¢ samples be independent and the F’s continuous. In
this paper we shall consider tests for the null hypothesis

Hy:Fi(x) = Fy(x) == F(x) = F(x), say.

The statistics and tests, proposed in this paper, are based upon c-plets of observa-
tions which are formed by selecting one observation from each of the ¢ samples.
The total number of distinct c-plets that can be formed in this way is [ [{=; n;. In each
c-plet we compare and rank observations appearing therein. Let v;; be the number of
c-plets in which the observation selected from the ith sample is larger than exactly
(j—1) observations and smaller than the other (c—j) observations. Since the
distributions are assumed to be continuous the probability of the existence of tiesis
zero. Let us define u;; = v;;/[ [{=1 n;; it is the proportion of c-plets which give rank
Jj to the observation from the ith sample.

Let us have N=Y7_,n;, p;=n/N, L;= Y ¢-ya;u;;, where the a’s are real
cuustants such that they are not all equal and

(wy e Zia (5:{)7:} 1
‘ W e DED TS

Jj= Jj+ti=2

'Then we define a class of statistics & as

—1)2 c c 2
(1.2) $=M[Z PiLiZ"(Z piLi>:|'
Ac i=1

i=1

A particular member of the class is found by specifying the real constants a’s.

With each member of this class we associate a test of H,: Reject H, at a significance
level a if £ exceeds some predetermined constant .#,. We, later in this paper, show
that under H,, % is distributed as a y? variate with c—1 degrees of freedom, in the
limit as N — c0. Hence for sufficiently large N, &%, may be approximated by the
corresponding significance point of the y? dlstrlbutlon with requisite degrees of
freedom.

Tests proposed by Bhapkar [2], [3], Sugiura [13], and the author [5], [6] may be
seen to belong to this class. In this paper it is attempted to provide a unified treat-
ment of statistics and tests based on c-plets—particularly those based on linear
combinations of the ’s. The detailed properties of statistics belonging to this class
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are discussed under the null hypothesis and the following two alternative hypo-
theses. (I) the alternative of different locations or shift, the distributions being equal
in all other respects and, (II) the alternative of different scales, the distributions
again being equal in all other respects. Haller [7] has discussed the use and the
properties of some statistics belonging to this class for testing H,, against an alterna-
tive of stochastically ordered variables and for selection and ranking procedures.

In the fourth section we give a condition on the distributions under which these
tests are consistent against specified alternatives. In the fifth section % is shown to
have a limiting noncentral y? distribution with ¢—1 degrees of freedom under the
pertinent alternative hypotheses. The noncentrality parameter is seen to be a
quadratic form in the constants a’s, involving F.

The earlier test statistics, mentioned above, were constructed taking into account
the relative magnitudes of the #’s under the null and under the alternative hypo-
theses. The idea was to emphasize the difference between the two magnitudes. This
“difference” is, in some sense, maximized if we are able to obtain the statistics,
from the class, which has the largest noncentrality parameter under the alternative
hypothesis of interest. This statistic would then be recommended to test H, when-
ever the particular alternative is suspected as likely. Also, for this particular
alternative hypothesis, this test shall have maximum asymptotic relative efficiency
(in the Pitman sense) among the class of statistics proposed.

In the sixth section we show how to obtain the statistics with the above property
and do so for certain specified alternatives. In the same section we compute the
ARE of these tests with respect to certain of their competitors.

2, Distribution of u;; under H,. In this section we prove

THEOREM 2.1. Let X;; be independent random variables with continuous cdf
F(x),i=1,2,-,¢;j=1,2,-",n;. Then if F{(x) = -+ = F(x) = F(x), the distribu-
tion of w;; = N*(u;;— 1/c), in the limit as N — oo in such a way as p; (i = 1,2, *,¢)
remain fixed, is normal with mean zero and the elements of the covariance matrix ),
given by a;; y = Cov(w,;, w,,) where

1 E RN (VR
2. se o = 2 T D
@D ot (c-1>2[(f:;_22)(2c—1) c][ P *E,.p,]

and
1 cIDGC1 IMT&lr ¢ ¢
Gijkt = ] 2[ 70-3 e 1) o2 2 —————|.
iz (c=1) (j+l—-2)(c ) ¢ r=1Pr Pi Di

u;;, N and p; being the same as defined in Section 1.

PrOOF. Let us define
@if(X11> X200 "5 Xer,) = 1 if x;,, is larger than
exactly (j—1) other x’s,

=0 otherwise.
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Then it is seen that

(2.2) :j—(nn.) IZzl 12.0=1" Zz"f=1 Q’ij(xn.,xzm"‘»xac)

Obviously u;; are U-statistics generalized to the c-sample case (see [9], [14)).
They, therefore, under H, have asymptotically, as N — co in such a way that p;
remain constant, a multivariate normal distribution with

g(“ij) = 5(¢ij) =n;; say, and
(2.3) limy_ o N Cov (uju) = Yy p, " 1ED, where
ff;r)kl = £’[(p,J(X1,X2, X XD X (XY, XY, X, Xcl)]—r’ij”kl'
We evaluate these quantities.
Nij = g[ﬁoij(Xn.a Xt Xctc)]
=Pr[X,, islargerthan (j—1)X’s andsmaller than (c—j)X ’s]

=1

=c
fﬁ'{n = C"’a[%j(Xls"'»Xi,”‘aXc) X (oiI(Xl,"”’Xi’”.’Xc/)]—'lijnil
(2.4) = Pr[X; is larger than (j—1) X’s and (/—1) X”’s and smaller than
(c—j)X’sand (c—1) X"s]—c~2
G=DG1 1

RGN RV
(2 5) éu kl,r#ik = éﬂ[(oij(Xl’”"Xr" ”aXc) X gokl(XlI"”aXn o "Xc’)]_c—z

_ Gh o2, 1
T e=D?(FHe-1) ¢ c’
And lastly

(2.6) f?}?w,,—# = C"’a[(oij(Xl"",Xi»"'aXc) X ¢kz(X1/,‘"aXi"",Xe/)]_C_z

11 ¢zhest 1
(c Dfe (szz 2)Q2c—1) ] *°
Itis seen that &7, = &), .

Using the above results the expressions in (2.1) are easily obtained. Hence we
conclude that w;; is, in the limit, distributed normally with zero means and the
elements of covariance matrix given by (2.1).

3. The statistic £ and the class of tests. Let us consider linear forms L; of U,
fori=1,2,: -, c. We define

(3.1) Li=ayuy+ayu,+--+a.u,.
, Itis assumed that g; are not all equal and are real constants. Then we have

(3.2) éo(L,)=Z;=lajéa(u,j)=c_125=laj=a Say.
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Let Ay = limy_, , NCov(L;, L)) fori,k =1,2,---,¢. Then
(B.3)  Ay=5=12i=1a;a,04

L [e=1?, ][ d { GZDGZH 1}]
AN 30 |-
(c—l)z[ p; ,g,p, ,Zuzl (¥ 5)Q2e=1) ¢
And
B4 Apizx= Zj’=1 2i=10;4,0;j

D] PR e
(C_l)2 r=1Pr DPi DPrllLj=11 I(Jz+cl 22 (2c—1) c? '

(3.3) and (3.4) can be rewritten using the definition of 4 given in (1.1) as

A [(c—-1)? 1:'-
35 dy=— |y 2 and
( ) (C_ 1)2[ Di r;i P:

A 1 ¢ ¢
l.’ T e .
ke (c—l)z[rzlpr p; pk]

Hence we conclude that N*(L—aJ) has, in the limit as N — co, a multivariate
normal distribution with mean vector 0 and covariance matrix A. Here L' =
(LI?LZ’ T Lc)1 X ¢? J = (la l’ D 1)1 X ¢? 0 = (0:0,' : ',0)1 Xc and A = ('lik)cxr l’k =
1,2,-+,¢

The multivariate distribution is singular since Y L; = Y a; = K. In fact it may,
trivially, be observed that AJ = 0. We consider the distribution of N*(L,—aJ,).
It is nonsingular with 0, mean and A, as covariance matrix. Here L, =
(Lys Lo Dine=1s Jo' =1L Dixeoys 0 =(0,"":,0) 5.~y and A, =
(Aide—1xe—13bk=1,2,-+-,c—1.

Therefore & = N(Ly—aJd,)'Ay~ '(Lo—ad,) is distributed under the null hypo-
thesis as N — o0, as a y? variate with c—1 degrees of freedom. Following Bhapkar
[2], we simplify and obtain

(36) (C I)ZN(CZA) I[Zx lpl 1 {Zx lplL} ]
We have proved the following theorem:

THEOREM 3.1. If F; = F, = -+ = F_ and n; = Np; where the p; are fixed numbers
such that Y 5_,p; = 1, then the statistic %, as defined in (3.6) above, for any real a;
such that they are not all equal, has a limiting y* distribution with c—1 degrees of
freedom.

4. Consistency of tests based on Z. In this section we give a condition for the
consistency of tests based on . Using Lemma 4.2 of Bhapkar [2], it may be con-
cluded that tests of the type which reject H: F, =F, =---=F, if ¥ > %, are
consistent for all F;, i =1,2,---, ¢, such that ¥ is different from a for at least one
I, where

rl(i) = 25= 1 aj {j-(f)w Z* H(j— 1) terms Fr(x)n(c—j)!erms[l —Fs(x)] dF‘(x)}
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Here ) * indicates summation over all possible choices of (j—1) F’s out of (c—1)
F’s (all except F;). It may be noted that % is a nonnegative function of L; and equal
to zero only when L; = a for each i.

5. Distribution of u;; and . under alternative hypotheses. In this section we derive
the limiting distribution of u;; and % under the following two sequences of alterna-
tive hypotheses.

(5.1) HL,,: Fi(x) = F(X-—n_*e,-) and
(5.2 Hg : F{(x) = F(x(1+n"%5)).

n

Here n is given by the relation n; = ns; where s; are fixed integers, all  are not
equal, 6; > 0 for each i and all §; are not equal

THEOREM 35.1. () wy;, as defined in Theorem 2.1, have jointly in the limit as n — o,
under H; multivariate normal distribution, with means
M5 = iz 1) 2= 1 (0, =0 {2 [ o S OF()T ™ [1 - F(x)]* ™/t dx
—GIDIZPIF)Y 2 [1=F(x)]* ™7 dx}
and elements of the covariance matrix given by (2.1) under the following two con-
ditions.

(i) Fis absolutely continuous with derivative f and
(ii) There exists a function g such that

ILf+m)—f(M]/h| < g(y) forsmall h and [=,g(y)f(y)dy < 0.

(b) Under H; and the above two conditions & has, in the limit as n — oo, non-
central y* distribution with c—1 degrees of freedom and noncentrality parameter
given by

(5.4) u,

(5.3)

- (a'b)z i Si(eg_9)2 where
i=1
a/=(al’a2a'”,ac), bl=(bl’b2,“'9bc),
by=(GID{c—N[Zuf*F)Y [1-F()] " dx
—( =D 2 fPOLFX)Y ™ [1-F(x)]* 7 dx};
A as definedin (1.1) and 0 = Y 5_, 5,60,/3 &= s;.
PROOF.
(a) éa(uij | HL,.) = Z",“—woo H(j— 1) terms F(x—n'*B,) l—[(c—j) terms [1 _F(x_n_%ek)]
~dF(x—n"*6).

[In the above expression Y’ indicates summation over all possible choices of G-1D
F’s out of (c—1) F’s (all except F;).] Under conditions of the theorem we have

o By Hp)=c 07 Y ((6,—0) {GID [ 2 f P [F()Y 1= F(x)]°/ = dx
— (2 [ 2 fARF) Y ~2[1 = F(x) ]~/ dx} +0(n™Y).
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Proceeding on exactly similar lines and using Conditions (i) and (ii) of the theorem
we see that

limN_,w N COV (u,-j, uk, | HL") = limN_.w NCOV (u,-j, u,‘, | Ho).

Hence part (a) of the theorem follows.
(b) It follows that %, in the limit as n — oo, is distributed as noncentral y? with
¢—1 degrees of freedom and the noncentrality parameter

AT =12 o1 0= 0 [Y5=1 a {62 D [ Lo S 2 OF)Y ™ [1 = F(x)]* 7~ " dx
~ 62D 2P IFY 2 [1 = FOOT ™ dx)].
which further simplifies to (5.4).

THEOREM 5.2. (a) w;; as defined in Theorem 2.1 have jointly in the limit as n — oo,
under Hg, , multivariate normal distribution, with means

nir = Q=180 Y= 1 0, = {2 [ 2o X P()[F(x) Y ~*[1 = F(x)]* 7 dx
—GID [ E X AX)F() P [1=F(x)]~7 " dx}

and the elements of the covariance matrix given by (2.1) under the following conditions:
(i) Fis absolutely continuous with derivative f.
(ii) There exists a function g such that

I[[f(x)=f(x+hx)]/h| < g(x) forsmall h and
(2, [xg(x)]f(x)dx < 00 for i=1,2,+-,2¢c~1.
(iii) There exists A < oo such that Pg[| Xf(X)| < A] = 1.
(b) Under Hg, and the above three conditions, & has, in the limit as n — oo, a non-

central y* distribution with c—1 degrees of freedom and noncentrality parameter
given by

(5.5)

t\2 ¢
Us, = (a d)‘ Z S,-(5,~—5)2 where
(5.6) d'=(dy,--,d,) with
dj=(G2D{U = DI 2 X 2E[F)Y 2 [1= F(x)]* ™ dx
— (=N [ 20X 2)[Fx) ™' [1=F(x)]™/ "' dx}

andd =Y 5_,5;6;/3 -1 ;. aand A are the same as in Theorem 5.1.

PROOF.
(a) ép(uij ' Hs,.) = ZI Ifow n(j— 1) terms [Fr(x)] n(c—j) terms [1 “Fk(x)] dF(x),
(3 indicates summation as in Theorem 5.1), thus
S| Hs) = ¢ +n7H Y5 (6,~8){(G2D) [ 20 X 2 ([FX)] ™2 [1 = F(x)]* ™/ dx
—GID 2o X A[F() Y [1=F(x)]* " dx}+0(n™Y).
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After lengthy derivation on similar lines we obtain that

limy_ o, N Cov (u;;, uy | Hs,) = limy_ . N Cov (u;;, uy | Ho).

ijs ijs
Hence part (a) of the theorem is proved.
(b) 1t follows easily that .%, in the limit as n — oo, is distributed as noncentral y2

with ¢ —1 degrees of freedom and the noncentrality parameter which simplifies to
A7 =12 Tbey 58— 8 {X5 -1 a,{(23) [ 2 X/ 2[F)P 2[1 = Fo)T ™/ dx

=D 2 X PF)Y T [1 = F(0)J ™™ dx}
which can be seen to be equal to g, .

6. Asymptotic relative efficiency. We know from Hannan’s [8] and Andrews’ [1]
work that the asymptotic relative efficiency (ARE), in the Pitman sense, of one test
with respect to another, is equal to the ratio of the noncentrality parameters of the
two test statistics, provided that they are asymptotically distributed as noncentral
%% variates with the same degrees of freedom under the given sequence of alternative
hypotheses (e.g. H;, or Hg ). Hence, to obtain a test statistic, from the class of
statistics ., which will have maximum ARE, we need to maximize the non-
centrality parameter over all real a, for a given sequence of hypotheses.

We know that under H, and Hg, & is in the limit, distributed as noncentral y?
with ¢—1 degrees of freedom and noncentrality parameters given by p; and pug,
respectively. Let us take y; first.

In it we need to maximize only 4™ !(a’b)? since the other factor does not involve a.

Let usdefineD = (d;;).x.i,j = 1,2, -+, c where

Loy 1
N (iicj_—zz)(zc—l) ?

andDy = (d;))c- 1 xe-1,6/=1,2,--,c—1.

It is then obvious that 4 = a’Da. However, we see that D is singular and of rank
c—1. But D, is nonsingular and positive definite. We notethat Y {_, d;; = Y ., d;; =
Y4_1b;=0.In view of these we may assume, without loss of generality, that
Y i=1a; =0; the value of a’b or a’Da remains unchanged even if a is replaced by
a—al.

It may then be seen that a’b=ay’b, and a’Da =a,’Ea, where a, =
(alaaZa o "ac—l)9 bO, = (bl —'bu bl—bc’ T bc—l _bc) and E = (eij) 151 = 19 29 )
c—1withe;; = (d;;—d;,—d, ;+d..).

Using the facts that }';d;; = ) ;d;; = 0, it is seen that E = TD,T where T = (t,)),
i,j=1,2,---,c—landt; = 2and¢t; = 1if i # j. Therefore, E is positive definite.

Using Cauchy’s inequality it may be seen that (a’b)?/(a’Da) = (a,'b,)?/(a,'Ea,) <
bo'E~ b, for all real @ and the equality is attained whenever a, oc E™'b,. On similar
lines it can be proved that (a’d)?*/(a’'Da) <d,’E~'d, where d,’ = (d,~d,," ",
d._,—d.). Hence, we have proved the following theorem.

c
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THEOREM 6.1. (a) The maximum of p,, forallreal a is Y s/(0,—0)*(by’E~'b,) and is
obtained whena, <« E™'byand a, = Y iZ{ a;.

(b) The maximum of pg, for all real a is Y s/8,—8)*(do’E ™" d,) and is obtained
whena, c E~'dyanda, =Y 2! a;.

It has not been possible to compute E~! in any simple or manageable form for
general ¢. However, the following results are available. E and E~! are computed
for ¢ =2,3,--+,12. Maximum values of the noncentrality parameters and the a’s
(or any multiples thereof)) that lead to these maximum values are computed for the
normal distribution and the sequences of alternative hypotheses mentioned earlier.
These results are tabulated below along with the asymptotic relative efficiencies of
the tests based on these statistics with respect to their parametric counterparts for
the normal distribution. The test based on the statistic that has the largest non-
centrality parameter under the sequence of alternatives H;  (we call it the &, -test)
is compared with the classical F test for the equality of means of several normal
populations. The test based on the statistic that has the largest noncentrality
parameter under the sequence Hy, (we call it the £ test) of alternative hypotheses
is compared with a test proposed by Lehmann ([11] pages 273-275) called the L-
test. The values are quoted up to four decimal places.

TABLE 6.1
ay,d,,° 4, Sup (a’b)?
. .. — €, F
¢ which maximize y; a 4
2 anya, #a, 0.9549 0.9549
3 1,0, -1 0.9549 0.9549
4  2.1768, —0.8884, 0.8884, —2.1768 0.9884 0.9884
5 21768, -0.1221,0,0.1221, —2.1768 0.9884 0.9884
6 2.4477, —1.0172, 2.6608, —2.6608, 1.0172, 0.9951 0.9951
—2.4477
7 2.4477, —0.4397, 1.4348,0, —1.4348, 0.9951 0.9951
0.4397, —2.4477
8  2.6326, —1.3212,4.7812, —5.8550, 5.8550, 0.9974 0.9974
—4.7812,1.3212, —2.6326
9  2.6326, —0.8269, 3.2556, —1.8664, 0, 1.8664, 0.9974 0.9974
—3.2556, 0.8269, —2.6326
10 2.7715, —1.6932, 7.3510, —11.8320, 16.6798, 0.9984 0.9984
—16.6798, 11.8320, —7,3510, 1.6932, —2.7715
11 2.7715, —1.2467, 5.5422, —6.0771, 5.2751, 0, 0.9984 0.9984
—5.2751, 6.0771, —5.5422, 1.2467, —2.7715
12 2.8822, —2.0989, 10.3953, —21.1706, 37.6720, 0.9989 0.9989

—48.7371, 48.7371, —37.6720, 21.1706,
—10.3953, 2.0989, —2.8822
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TABLE 6.2
a,,a,, ", a, Sup (a’d)?
¢ which maximize g, a 4 ot
3 1,-2,1 1.5198 0.7599
4 1,-1,-1,1 1.5198 0.7599
5  4.3200, —7.6318, 6.6236, —7.6318, 4.3200 1.7914 0.8957
6  4.3200, —5.2414,0.9214,0.9214, —5.2414, 1.7914 0.8957
4.3200
7  5.4180, —10.2355, 15.5336, —21.1037, 15.5336, 1.8841 0.9420
—10.2355, 5.4180
8  5.4180, —7.9993, 8.0300, —5.4487, —5.4487, 1.8841 0.9420
8.0300, —7.9993, 5.4180 ’
9  6.2656, —13.1035, 27.5726, —47.8633, 53.8877, 1.9264 0.9632
—47.8633, 27.5726, —13.1035, 6.2656
10  6.2656, —10.9513, 18.6771, —22.6565, 8.6651, 1.9264 0.9632
8.6651, —22.6565, 18.6771, —10.9513, 6.2656
11 6.9565, —16.1388, 43.8426, —93.1663, 141.2287, 1.9491 0.9745

—165.4457, 141.2287, —93.1663, 43.8426,
—16.1388, 6.9565
12 6.9565, —14.0392, 32.9369, —55.8002, 55.9943, 1.9491 0.9745
—26.0483, —26.0483, 55.9943, — 55.8002,
32.9369, —14.0392, 6.9565

7. Remarks. Both tabular displays in the last section reinforce the conjecture
that the efficiency of the ““best” tests in this class will monotonically increase to one
with ¢ when compared with their ‘“‘best”” parametric counterparts for the normal
distribution. Unfortunately the author has not been able to get an analytic proof of
it and must leave it as an open problem. It may be noticed that the lowest efficiency,
that for ¢ = 2, 3, is the same as that of the Wilcoxon test [12], [15] or the Kruskal
test [10] for shift alternatives.

It is possible to take a different approach to construct tests. Bhapkar [3] has
constructed a test for the ¢ sample problem based on pairs (X, X;) of observations
where X; and X are from different samples. Chatterjee [4] has proposed a test based
on triplets (X;, X;, X;) of observations for the same problem. Let us consider #-plets
formed by #(Z ¢) observations such that each of them represents a distinct sample.
Let us define a function :

(7.1) P Xaysays " s Xays,) = M;  Whenever  x,  is larger

than exactly (j—1) x’s and smaller than the rest. Here (a;, - - -, o) are t members of
(1,2,-+-,¢). To assure symmetry between all the ¢ samples we will have to consider
a function based collectively on all the #-plets in which an observation from the
«;th sample occurs.
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It may easily be seen that we shall develop identical tests if we base them on ¢-
plets using the function defined in (7.1) or if we base them on c-plets using the
function (7.2) defined below.

(7.2)  @u(X11s X210y "+ s Xer) = 2521 (G2 D(GZH)m;  whenever x;, is larger than
exactly k—1 x’s

=( otherwise.
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