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Abstract

This introductory paper studies a class of real analytic functions on the upper half plane

satisfying a certain modular transformation property. They are not eigenfunctions of

the Laplacian and are quite distinct from Maass forms. These functions are modular

equivariant versions of real and imaginary parts of iterated integrals of holomorphic

modular forms and are modular analogues of single-valued polylogarithms. The

coefficients of these functions in a suitable power series expansion are periods. They

are related both to mixed motives (iterated extensions of pure motives of classical

modular forms) and to the modular graph functions arising in genus one string

perturbation theory.

This paper studies examples of real analytic functions on the upper half plane satisfying

a modular transformation property of the form

f
(az + b

cz + d

)
= (cz + d)r(cz + d)sf (z) (0.1)

for integers r, s. They do not satisfy a simple condition involving the Laplacian. The raison

d’être for this class of functions is two-fold:

(1) Holomorphic modular forms f with rational Fourier coefficients correspond to

certain pure motives Mf over Q. Using iterated integrals, we can construct non-

holomorphic modular forms which are associated with iterated extensions of the

pure motivesMf . Their coefficients are periods.

(2) In genus one closed string perturbation theory, one assigns a lattice sum to a graph

[16], which defines a real analytic function on the upper half plane invariant under

SL2(Z). It is an open problem to give a complete description of this class of functions

and prove their conjectured properties.

In this introductory paper, we describe elementary properties of a class M of modular

forms. Within this class are modular iterated integrals, which are analogues of single-

valued polylogarithms, and are obtained by solving a differential equation in M. The

basic prototype are real analytic Eisenstein series, defined by

Er,s(z) =
w!

(2π i)w+1

1

2

∑

(m,n) �=(0,0)

i Im(z)

(mz + n)r+1(mz + n)s+1

123
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for all r, s ≥ 0 such that w = r + s > 0 is even. It is known that the functions Im(z)r Er,r(z)

all occur as modular graph functions (2). Their relation with motives (1) comes about by

expressing the Er,s as integrals. Indeed, they are equivariant or ‘modified single-valued ver-

sions’ of regularised Eichler integrals of holomorphic Eisenstein series, and their Fourier

expansion involves the Riemann zeta values ζ (w + 1), which are periods of simple exten-

sions of Tate motives.We shall say very little about motives in this paper and instead refer

to [1,18] for geometric motivation.

This paper is based on a talk at a conference in honour of Don Zagier’s birthday, and

connects with his work in several ways: through his work on modular graph functions

[10], on single-valued polylogarithms [33], on period polynomials [22], on periods [21],

on multiple zeta values [15], on double Eisenstein series [19], and doubtless many others.

It is a great pleasure to dedicate it to him on his 65th birthday.

1 Modular graph functions

For motivation, we briefly recall the definition of modular graph functions.

Definition 1.1 Let G be a connected graph with no self-edges. It is permitted to have a

number of half-edges. Denote its set of vertices byVG and number its edges (including the

half-edges) 1, . . . , r. Choose an orientation of G. The associated modular graph function

is defined, when it converges, by the sum [10] (3.12):

IG(z) = π−r
′∑

m1 ,n1

. . .

′∑

mr ,nr

Im(z)

|m1z + n1|2
. . .

Im(z)

|mrz + nr |2

∏

v∈VG

δ(mv)δ(nv),

where z is a variable in the upper half planeH, the prime over a summation symbol denotes

a sum over (m, n) ∈ Z2\(0, 0), and for every vertex v ∈ VG ,

mv =

r∑

i=1

εv,imi and nv =

r∑

i=1

εv,ini,

where εv,i is 0 if the edge i is not incident to the vertex v, +1 if i is oriented towards the

vertex v, and −1 if it is oriented away from v.

The function IG dependsneither on the edgenumbering, nor on the choice of orientation

of G. It defines a function IG on the upper half plane which is real analytic and invariant

under the action of SL2(Z) (Fig. 1).

Examples 1.2 Consider the graph with 3 half-edges depicted on the left:

Fig. 1 Two graphs
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The associated modular graph function is called

C1,1,1(z) = π−3
′∑

m1 ,n1 ,m2 ,n2

Im(z)3

|m1z + n1|2|m2z + n2|2|(m1 + m2)z + n1 + n2|2
,

where the sum is over (m1, n1) ∈ Z2, (m2, n2) ∈ Z2 such that

(m1, n1) �= (0, 0), (m2, n2) �= (0, 0), (m1 + m2, n1 + n2) �= (0, 0).

Zagier showed, in one of the first calculations of a modular graph function, that

C1,1,1(z) =
2

3
L2

E2,2 + ζ (3),

where throughout this paper we use the non-standard notation L = −2πIm(z) to stand

for ‘Lefschetz’ (as in the Lefschetz motive). It has the following advantages: it takes care

of the powers of π , reflects an underlying integral structure, and carries a weight grading.

See [10] Appendix B for another derivation of Zagier’s result.

1.1 Properties

The literature onmodular graph functions is too extensive to review in detail here. Instead,

we give an incomplete list of the expected and conjectural properties of these functions

and refer to [10,11,13,16,36] for further details.

(1) Zerbini [36] has shown that in all known examples, the ‘zeroth modes’ of modular

graph functions involve a certain class of multiple zeta values

ζ (n1, . . . , nr) =
∑

1≤k1<···<kr

1

n
k1
1 . . . n

kr
r

,

where n1, . . . , nr ∈ N and nr ≥ 2, which are called ‘single-valued’ multiple zeta

values. The quantity r is called the depth. The ‘single-valued’ subclass is generated

in depth one by odd zeta values ζ (2n + 1) for n ≥ 1, in depth two by products

ζ (2m+1)ζ (2n+1), but starting fromdepth three includes the following combination

of triple zeta values

ζsv(3, 5, 3) := 2ζ (3, 5, 3) − 2ζ (3)ζ (3, 5) − 10ζ (3)2ζ (5) .

(2) The IG satisfy some mysterious inhomogeneous Laplace eigenvalue equations. A

simple example of this is the Eq. [13] (1.4)

(� + 2)C2,1,1(z) = 16L2
E
2
1,1 − 2

5 L3 E3,3, (1.1)

where � is the Laplace–Beltrami operator. The function C2,1,1 corresponds to the

modular graph function of the graphwith four edges and two vertices depicted above

on the right. As an illustration of our methods, we shall solve this Laplace eigenvalue

equation in Sect. 9.3 using a new family of functions constructed here and determine

its kernel. Note that the operator � in the physics literature has the opposite sign

from the usual convention (2.21).

(3) Modular graph functions satisfymany relations [11], which suggests that they should

lie in a finite-dimensional space of modular-invariant functions.

(4) The zeroth modes of modular graph functions are homogeneous [10], Sect. 6.1, for

a grading called the weight, in which rational numbers have weight 0, and multiple

zeta values have weight n1 + · · · + nr . The weight of Im(z) is zero.
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In the continuation of this paper, we construct a class of functions MI
E ⊂ M satisfying

(1)–(5) (see Sect. 10). They are associatedwith universalmixed ellipticmotives [18], which

are in turn related to mixed Tate motives over the integers. We presently explain why we

strongly expect that the modular graph functions are contained in our class, which would

imply all the conjectures above, and a number of other consequences.

1.2 Landscape

A heuristic explanation for the connection between string theory, and our modular iter-

ated integrals can be summarised in the following picture:

Open string Closed string

Genus 0 Multiple polylogs Single-valued polylogs

Genus 1 Multiple elliptic polylogs Equivariant iterated Eisenstein integrals

The open genus zero amplitudes are integrals on the moduli spaces of curves of genus

0 with n marked points M0,n. They involve multiple polylogarithms, whose values are

multiple zeta values. The genus one string amplitudes are integrals on the moduli space

M1,n and are expressible [5] in terms of multiple elliptic polylogarithms [3]. Viewed as

a function of the modular parameter, the latter are given by certain products of iterated

integrals of Eisenstein series. The passage from the open to the closed string involves

a ‘single-valued’ construction [31]. The closed superstring amplitudes in genus one are

thus linear combinations of products of iterated of Eisenstein series and their complex

conjugates which aremodular. This is the definition of the space MI
E . A rigorous proof

of the relation between closed superstring amplitudes and our class MI
E might go along

the broad lines of the author’s thesis, generalised to genus one using [3].

2 A class of functionsM

Throughout this paper, z will denote a variable in the upper half plane

H = {z : Im z > 0}

equipped with the standard action of SL2(Z):

γ (z) =
az + b

cz + d
where γ =

(
a b

c d

)
∈ SL2(Z). (2.1)

We shall write z = x + iy, and q = exp(2iπz). Let

L = log |q| =
1

2
log qq = iπ (z − z) = −2πy. (2.2)

The quantity 2L is the single-valued period of a family of Kummermotives over the punc-

tured q-disc. The latter normalisation (i.e. 2L rather than L), simplifies some formulae

and may be preferred.

2.1 First definitions

Definition 2.1 Call a real analytic function f : H → C modular of weights (r, s), where

r, s ∈ Z, if for all γ ∈ SL2(Z) of the form (2.1) it satisfies

f (γ (z)) = (cz + d)r(cz + d)sf (z). (2.3)
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If r + s is odd, then f vanishes [put γ = −id in (2.3)]. Let Mr,s denote the space of real

analytic functions of modular weights (r, s) which admit an expansion of the form

f (q) ∈ C[[q, q]][L±]. (2.4)

A more general class of functions was considered in [27]. A function in Mr,s can be

written explicitly, for some N ∈ N, in the form

f =

N∑

k=−N

∑

m,n≥0

a(k)m,nL
kqmqn, (2.5)

where a
(k)
m,n ∈ C. For any ring R ⊂ C, letM(R) be the bigraded subspace of modular forms

whose coefficients a
(k)
m,n lie in R. Define a bigraded vector space

M =
⊕

r,s

Mr,s,

which is a bigraded algebra since Mr,sMk,l ⊂ Mr+k,s+l . Complex conjugation induces

an involution

f (z) 
→ f (z) : Mr,s
∼

−→ Ms,r

which fixes L ∈ M−1,−1. Of special importance are the quantities

w = r + s and h = r − s. (2.6)

We call w the total weight, and let w, h be even.

2.2 q-Expansions and pole filtration

Lemma 2.2 Suppose that f : H → C satisfies Eq. (2.3) and admits an expansion in the

ring C[[q, q]][log q, log q]. Then, f ∈ C[[q, q]][L].

Proof Setting γ = T = ( 1 1
0 1 ) in Eq. (2.3) gives f (z+ 1) = f (z). Since q and q are invariant

under translations z 
→ z + 1, it suffices to show that

C[log q, log q]T = C[log |q|],

where T denotes analytic continuation of q around a loop around 0 in the punctured

q-disc. We have T log q = log q + 2iπ and T log q = log q − 2iπ . It is a simple exercise

in invariant theory to show that every T -invariant polynomial in log q and log q is a

polynomial in 2 log |q| = log q + log q. ⊓⊔

Every element f ∈ M admits a q-expansion of the form (2.5) for someN . This expansion

is unique. Define the constant part of f to be

f 0 =
∑

k

a
(k)
0,0L

k ∈ C[L±].

The reason for calling this ‘constant’, although it is not constant as a function on H, is

that it is constant with respect to differential operators to be defined below. Note that

the word ‘constant’ has a different meaning in the context of quasi-modular forms [20].
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In the physics literature, the constant parts of modular graph functions are called ‘zeroth

Fourier modes’. The space M is filtered by the order of poles in L. Set

Pp
M =

{
f ∈ M : a(k)m,n(f ) = 0 if k < p

}
. (2.7)

It is a decreasing filtration. It satisfies PaM×PbM ⊂ Pa+bM, and P0M is the subalgebra

of functions admitting expansions in C[[q, q]][L] with no poles in L. Multiplication by L

is an isomorphism L : PaMr,s
∼
→ Pa+1Mr−1,s−1.

Example 2.3 Consider the Eisenstein series, defined for all even k ≥ 4 by

Gk (q) = −
bk

2k
+

∑

n≥1

σk−1(n)q
n ∈ Mk,0(Q), (2.8)

where σ denotes the divisor function. The Eisenstein series of weight two

G2(q) =
−1

24
+

∞∑

n=1

σ1(n)q
n = −

1

24
+ q + 3q2 + 4q3 + 7q4 + 6q5 + · · ·

is not modular invariant, but can be modified [34] §2.3 by defining

G∗
2 = G2 −

1

4L
, (2.9)

which ismodular of weight 2 and therefore defines an element inM2,0. Then, for example,

the function L2G∗
2G

∗
2 ∈ M0,0 is modular invariant, where G∗

2 = G2 − 1
4L

.

Recall that the polynomial ring

M̃ := M[G∗
2], (2.10)

whereM is the ring of holomorphic modular forms, is called the ring of almost holomor-

phic modular forms. By the previous example, it is contained in M.

2.3 Differential operators (Maass)

Definition 2.4 For any integers r, s ∈ Z, define a pair of operators

∂r = (z − z)
∂

∂z
+ r, ∂s = (z − z)

∂

∂z
+ s. (2.11)

They act on real analytic functions f : H → C.

These operators satisfy a version of the Leibniz rule:

∂r+s(fg) = ∂r(f )g + f ∂s(g) (2.12)

for any r, s and f, g : H → C, and in addition the formula

∂r
(
(z − z)k f

)
= (z − z)k∂r+k f (2.13)
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for any integers r, k . Both formulae (2.12) and (2.13) remain true on replacing ∂ by ∂ and

are verified by straightforward computation. Finally, one checks that

∂r−1

(
∂sf

)
− ∂s−1

(
∂r f

)
= (r − s)f. (2.14)

The following lemma implies that these operators respect modular transformations.

Lemma 2.5 For all γ = ( a b
c d

) ∈ M2×2(R) and z ∈ H, we have

∂r

(
(cz + d)−r f (γ z)

)
= (cz + d)−r−1(cz + d) (∂r f )(γ z),

∂s

(
(cz + d)−sf (γ z)

)
= (cz + d)(cz + d)−s−1(∂sf )(γ z).

Proof Direct computation. ⊓⊔

See Sect. 7 for another interpretation of ∂r , ∂s in terms of sections of vector bundles.

Lemma 2.6 The operators ∂r , ∂s preserve the expansions (2.5), the filtration (2.7), and are

defined over Z. Their action is given explicitly for any k,m, n by

∂r(L
k qmqn) = (2mL + r + k)Lkqmqn,

∂s(L
k qmqn) = (2nL + s + k)Lkqmqn. (2.15)

Proof Thefirst part follows immediately fromthe formulae (2.15),which are easily derived

from the definitions. The second line follows by complex conjugation. ⊓⊔

Corollary 2.7 The operators ∂r , ∂s preserve modularity:

∂r : Mr,s −→ Mr+1,s−1 and ∂s : Mr,s −→ Mr−1,s+1.

Proof This follows immediately from Lemmas 2.5 and 2.6. ⊓⊔

Definition 2.8 Let us define linear operators

∂ , ∂ : M −→ M

of bidegrees (1,−1) and (−1, 1), respectively, where ∂ acts on the component Mr,s via ∂r

for all s, and similarly, ∂ acts on Mr,s via ∂s for any r.

The operator ∂ is a derivation, i.e, ∂(fg) = ∂(f )g+ f ∂(g) for all f, g ∈ M, and similarly for

∂ . This follows, component by component, from the formula (2.12). Likewise, it commutes

with multiplication by Lk :

∂(Lk f ) = Lk ∂(f )

for all k and all f ∈ M, and similarly for ∂ . This is equivalent to (2.13). We can rewrite

the previous equation in the form

[∂ ,L] = [∂ ,L] = 0,

or think of L as being constant: ∂(L) = ∂(L) = 0.

2.4 Action of sl2

The Eq. (2.14) implies that

[∂ , ∂] = h,
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where we define the linear map

h : M −→ M (2.16)

to be multiplication by r − s on the component Mr−s.

Proposition 2.9 The operators ∂ , ∂ generate a copy of the Lie algebra sl2:

[h, ∂] = 2∂ , [h, ∂] = −2∂ , [∂ , ∂] = h (2.17)

acting upon M. Every element commutes with multiplication by Lk .

Proof Straightforward computation. ⊓⊔

2.5 Almost holomorphic modular forms

The subspace M̃[L±] of almost holomorphic modular forms inherits an sl2 module struc-

ture which is not to be confused with another sl2 module structure [34] Sect. 5.3, which

involves multiplication by G2. For the convenience of the reader, we describe the differ-

ential structure here.

Let us define a new generator

m := 4LG∗
2 = 4LG2 − 1 ∈ M1,−1.

Then, the ringM[L,m] is an sl2-module with the following structure: ∂(L) = 0, and

∂ m = 1, ∂f = 0 for all f ∈ M. (2.18)

Therefore, ∂
∣∣
M[L,m]

= ∂
∂m

is simply differentiation with respect to m. On the other hand,

by looking at their first few Fourier coefficients, we easily verify that:

∂m = −m2 + 20
3 L2G4 ,

∂G4 = −4mG4 + 7
5LG6,

∂G6 = −6mG6 + 800
7 LG2

4 .

Since the ring of holomorphicmodular formsM is generated byG4 andG6, we conclude

that M[L,m] is indeed closed under the action of ∂ . These formulae are equivalent to a

computation due to Ramanujan. In general, for any f ∈ Mn we have

∂f = −nf m + 2ϑ(f )L, (2.19)

where ϑ(f ) ∈ Mn+2 is the ‘Serre derivative’ of f [34] (53). The previous formula is com-

patible with the commutation relation h = [∂ , ∂], as the reader may wish to check.

For example, the Hecke normalised cusp form � of weight 12 satisfies ϑ(�) = 0. It

follows that ∂(�) = −12m�, which gives another interpretation of m.

2.6 Bigraded Laplace operator

By taking polynomials in L, ∂ and ∂ one can define any number of operators acting on the

space M. Examples include the Laplace operator, Rankin–Cohen brackets Sect. 6, and

the Bol operator (see [4]).
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Definition 2.10 For all integers r, s, consider the Laplace operator

�r,s = −∂s−1∂r + r(s − 1)

= −∂r−1∂s + s(r − 1). (2.20)

The second definition is equivalent to the first by the commutation relation (2.14). These

operators are compatible with complex conjugation: �r,sf = �s,r f .

From the definition and the formula z = x + iy, one verifies that

�r,s = −4y2
∂

∂z

∂

∂z
+ 2iry

∂

∂z
− 2isy

∂

∂z

= �0,0 + i(r − s)y
∂

∂x
− (r + s)y

∂

∂y
,

where �0,0 is the usual hyperbolic Laplacian

�0,0 = −y2
( ∂2

∂x2
+

∂2

∂y2

)
, (2.21)

and �r,s is denoted by �r,s in the theory of Maass [23] 176 and (9). It follows from the

previous computation (2.15) that �r,s acts via:

�r,s(L
kqmqn) =(

− 4mnL2 + 2(kn + km + rn + sm)L − k(k + r + s − 1)
)
Lkqmqn, (2.22)

which has integral coefficients. The modular transformation properties of Lemma 2.5

imply that the Laplace operator preserves the transformation law (2.3).

Corollary 2.11 The operator �r,s defines a linear map

�r,s : Mr,s −→ Mr,s.

In particular, the hyperbolic Laplacian �0,0 acts on the modular-invariant space M0,0.

Let � : M → M denote the linear operator which acts by �r,s on Mr,s. Let w : M →

M be the linear map which acts by multiplication by w = r + s on Mr,s.

Lemma 2.12 The Laplace operator satisfies the equations

(� + w)Lf = L �f (2.23)

i.e. [L,�] = wL, and also [∂ ,�] = [∂ ,�] = 0.

Proof By (2.20), for any f we have

L(�r,sf ) = L(−∂∂f + r(s − 1)f ) = (−∂∂ + r(s − 1))Lf

= (−∂∂ + (r − 1)(s − 2))Lf + (r + s − 2)Lf = �r−1,s−1Lf + (r + s − 2)Lf,

which implies (2.23). Similarly,

∂(∇r,sf ) = ∂(−∂∂f + r(s − 1)f ) = (−∂∂ + (r + 1 − 1)(s − 1))∂f = ∇r+1,s−1(∂f )

which implies that [∂ ,∇] = 0. By complex conjugating, [∂ ,∇] = 0. ⊓⊔
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2.7 Real analytic Petersson inner product

Let

D =
{
|z| > 1, |Re(z)| < 1

2

}
and dvol =

dx dy

y2

be the interior of the standard fundamental domain for the action of SL2(Z) onH, and the

SL2(Z)-invariant volume form on H in its usual normalisation. For any r, s, let

Sr,s ⊂ Mr,s

denote the subspace of functions f whose constant part f 0 vanishes. If S =
⊕

r,s Sr,s, there

is an exact sequence

0 −→ S −→ M −→ C[L±] −→ 0,

where the third map is the ‘constant part’ f 
→ f 0.

Definition 2.13 For any integer n, consider the pairing

Mr,s × Sn−s,n−r −→ C

f × g 
→ 〈f, g〉 :=

∫

D

f (z)g(z) yn d vol. (2.24)

The function f (z)g(z)yn is modular of weights (0, 0) and lies in S0,0. The pairing (2.24)

coindices with the usual Petersson inner product when restricted to holomorphic mod-

ular forms. To verify that the integral is finite, it suffices to bound the integrand near

the cusp. Any element of M grows at most polynomially in y as y → ∞, but via

q = exp(2π ix) exp(−2πy) and q = exp(−2π ix) exp(−2πy) it tends to zero in absolute

value exponentially fast in y at the cusp since g(z) ∈ S .

Two spaces Mr,s and Sr′ ,s′ can be paired via (2.24) if and only if r − s = r′ − s′.

Equivalently, 〈f, g〉 exists whenever h(f ) = h(g), where h was defined in (2.6).

The pairing (2.24) satisfies

〈f , g〉 = 〈f, g〉,

and, for any e, f ∈ M and g ∈ S such that h(e)+ h(f ) = h(g), we have 〈fe, g〉 = 〈f, eg〉. Via

(2.2), we also have for allm ∈ Z :

〈f,Lmg〉 = 〈Lmf, g〉 = (−2π )m 〈f, g〉. (2.25)

We now consider special cases of this pairing. When n = r + s, we have

〈 , 〉 : Mr,s × Sr,s −→ C

which restricts to a positive definite quadratic form on Sr,s, since

〈f, f 〉 =

∫

D

∣∣f (z)
∣∣2 yn dvol > 0 for f ∈ Sr,s.

2.8 Holomorphic projections [32]

In the particular case n = r, we have

Mr,s × Sr−s −→ C

f × g 
→ 〈f, g〉 (2.26)
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where Sr−s ⊂ Sr−s,0 is the space of holomorphic cusp forms of weight r−s. It is non-trivial

only if h(f ) = r − s ≥ 12. Similarly, by setting n = s we obtain

Mr,s × Ss−r −→ C

f × g 
→ 〈f, g〉, (2.27)

which is non-trivial only if h(f ) = r − s ≤ −12.

Equivalently, these two maps can be combined into a single linear map

Mr,s −→ Hom(Sr−s,C) ⊕ Hom(Ss−r ,C),

at least one component of which is zero. Since the classical Petersson inner product

restricts to a non-degenerate quadratic form on Sr−s, we can identify Hom(Sr−s,C) with

Sr−s, and similarly for its complex conjugate. Via this identification, the previous map

defines a projection

p = (ph, pa) : Mr,s −→ Sr−s ⊕ Ss−r , (2.28)

whose components we call the holomorphic and anti-holomorphic projections. By taking

the direct sum over r and s, this defines a linear map

p = (ph, pa) : M −→ S ⊕ S. (2.29)

2.9 A picture of M

The bigraded algebra M can be depicted as follows.

M2,0 M4,0

r

s

M0,4

M1,3

M0,2 M2,2

M1,1 M3,1M−1,1

M1,−1
M−1,−1

M0,0

∂L

L−1∂

G∗

2 G4

G∗

2

G4

L−1

1

L G
∗

2
L

G∗

2
L

The dashed arrows represent the action of L,L−1, ∂ , ∂ . Each solid circle represents a

copy of Mr,s for r + s even. Some examples of modular forms are indicated in red.
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3 Primitives and obstructions

In this section, we study the equation

∂F = f, (3.1)

where F, f ∈ M. We say that f ∈ M has a modular ∂-primitive if (3.1) holds for some

F . We exhibit three obstructions for the existence of modular primitives: the first is

combinatorial, the second relates to modularity, and the third is arithmetic.

3.1 Constants

Let us view the operators ∂r , ∂s as (continuous) linear maps

∂r , ∂s : Q[[q, q]][L±] −→ Q[[q, q]][L±]

of formal power series, setting aside questions of modularity for the time being.

Lemma 3.1 The kernels of these maps are

ker ∂r = L−rQ[[q]],

ker ∂s = L−sQ[[q]]. (3.2)

In particular, ker ∂r ∩ ker ∂s vanishes if r �= s and is equal to QL−r if r = s.

Proof Since ∂rL
k f = Lk∂r+k f (2.13), we can assume, by multiplying by Lr , that r = 0.

The kernel of ∂0 = (z− z) ∂
∂z consists of anti-holomorphic functions. The second formula

in (3.2) is the complex conjugate of the first. ⊓⊔

We now consider the kernel of the operator ∂ acting on the space M.

Proposition 3.2 Let F ∈ Mr,s such that ∂rF = 0. Then,

LrF ∈ Ms−r ,

where Mn denotes the space of anti-holomorphic modular forms of weight n. In the case

r > s i.e. ‘below the diagonal’, F vanishes. In the case r = s, we have

ker ∂ ∩ Mr,r = C L−r .

Proof By Lemma 3.1, we can write LrF = g where g : H → C is a holomorphic function.

Since f (respectively Lr) has weights (r, s) (respectively (−r,−r)), it follows that g has

weights (0, s − r) and transforms like a modular form of weight s − r, i.e. g(γ (z)) =

(cz + d)s−rg(z) for all γ ∈ SL2(Z) of the form (2.1). Thus, g ∈ Ms−r . For the last part, use

the well-known fact that there are no nonzero holomorphic modular forms of negative

weight. ⊓⊔

Thus, if Eq. (3.1) has a solution, it is unique up to addition by an element of CL−r if

h(F ) = 0, and is unique if h(F ) > 0.

Corollary 3.3 Let F ∈ Mr,s and let f = ∂F. There is a solution F ′ ∈ Mr,s to (3.1) whose

anti-holomorphic projection pa(F ′) vanishes. It is unique up to addition by a multiple of

L−rGs−r for s − r ≥ 4, where Gn is the Eisenstein series (2.8).
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Proof Since the Petersson inner product is non-degenerate, there exists a unique cusp

form g ∈ Ss−r such that pa(g) = pa(F ). Then, F ′ = F − (−2π )rL−rg has the required

properties. The second part follows since the orthogonal complement of Ss−r in Ms−r is

exactly the vector space generated by the Eisenstein series. ⊓⊔

3.2 Combinatorial obstructions

The maps ∂r , ∂s are far from surjective.

Lemma 3.4 Suppose that f ∈ C[[q, q]][L±] satisfies f = ∂rF for some F ∈ C[[q, q]][L±].

Then, the coefficients in its expansion (2.5) satisfy

a
(−r)
0,n = 0 for all n ≥ 0. (3.3)

Proof Follows immediately from Lemma 2.6. ⊓⊔

This is not the only constraint: for every m, n ≥ 0, there is a condition on the a
(k)
m,n, for

varying k , in order for f to lie in the image of the map ∂r . Nonetheless, (3.3) is already

sufficient to rule out the existence of primitives in many interesting cases.

Corollary 3.5 There exists no element F ∈ C[[q, q]][L±] satisfying ∂0F = LG∗
2.

Proof By (2.9), the a
(0)
0,0 term in LG∗

2 = LG2 − 1
4 is non-zero. This violates (3.3). ⊓⊔

3.3 A condition involving the pole filtration

Lemma 3.6 If f satisfies the condition

f ∈ P1−r
Mr+1,s−1, (3.4)

then it admits a combinatorial primitive F ∈ P−rC[[q, q]][L±] such that ∂rF = f .

Proof Denote the coefficients in the expansion of f by a
(k)
m,n. By assumption, they vanish

for all k ≤ −r and k ≥ N for someN ≥ −r. Denote the coefficients of F by b
(k)
m,n. Equation

(2.15) is equivalent to the set of equations

a(k)m,n = 2mb(k−1)
m,n + (r + k) b(k)m,n (3.5)

for every m, n. Fix an n and an m ≥ 1. Then, if we set b
(k)
m,n = 0 for all k ≥ N , (3.5) holds

for all k ≥ N + 1. For k = N , we can solve it by setting

a(N )
m,n = 2mb(N−1)

m,n .

Suppose we have determined b
(k)
m,n for all k > K . Then, Eq. (3.5) in the case k = K + 1 can

be solved uniquely for b
(K )
m,n since 2m �= 0. The process terminates at k = 1 − r, since for

k = −r Eq. (3.5) reduces to:

0 = a(−r)
m,n = 2mb(−r−1)

m,n + 0.

Setting b
(k)
m,n = 0 for all k < −r, we therefore obtain a complete solution to (3.5) for all

values of k . In the case m = 0, the Eqs. (3.5) can be solved trivially, provided that (3.3)

holds. This is certainly implied by (3.4). ⊓⊔

The commutation relation h = [∂ , ∂] implies that h f + ∂∂f is in the image of ∂ for

all f ∈ M. This remark, combined with (3.4), enables one to prove the existence of

combinatorial primitives in many cases of interest.
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3.4 Obstructions from the Petersson inner product

Another obstruction comes from the fact that a formal power series solution to (3.1) is

not necessarily modular.

Theorem 3.7 Let f ∈ Mr,s. If f has a ∂-primitive in M, then

〈f, g〉 = 0 for all g ∈ Sr−s holomorphic. (3.6)

In particular, f is in the kernel of the holomorphic projection (2.28).

Proof By multiplying by Lr−1 and appealing to (2.13), we see that the equation ∂F ′ = f

has a solution if and only if there exists F ∈ M0,s−r+2 such that

∂0(iπF ) = Lr−1f.

From the definition of ∂0, this implies that

∂F

∂z
= Lr−2f.

Let g ∈ Sr−s be a holomorphic cusp form and consider the differential form

ω = Fg dz.

It is SL2(Z)-invariant, sinceF, g, dz are ofweights (0, s−r+2), (0, r−s), (0,−2), respectively,

and therefore their product is of type (0, 0). It satisfies

dω =
∂F

∂z
g(z)dz ∧ dz = Lr−2f (z)g(z) dz ∧ dz = (−2π )r−2 f (z)g(z)yr dvol,

which is also of type (0, 0). By Stokes’ theorem, we have
∫

∂D

ω =

∫

D

dω = (−2π )r−2 〈f, g〉.

Consider the left-hand integral along the boundary ∂D of the standard fundamental

domain. By a classical argument using the modular invariance of ω, it gives zero, since

the contributions along the vertical line segments (from ρ to i∞ and i∞ to −ρ, where

ρ = e2π i/3) cancel due to translation-invariance ω(z) = ω(z + 1); the contributions

along the segments of the circle |z| = 1 from ρ to i and from i to −ρ cancel due to

ω(−z−1) = ω(z); and finally the contribution along a path from i∞ to i∞ + 1, which

corresponds to a small loop in the q-disc, also gives zero because g is cuspidal. ⊓⊔

The statement of the theorem can formally be written 〈∂F, g〉 = 0 if g ∈ S. By taking its

complex conjugate, we also deduce that 〈∂F, g〉 = 0 for all F ∈ Mr,s and all cusp forms

g ∈ Ss−r . These equations can be written

ph(∂(F )) = 0 and pa(∂(F )) = 0 for all F ∈ M.

Corollary 3.8 For every nonzero cusp form f ∈ Sn, and every k ∈ Z, the equation ∂F =

Lk f has no solution in M.

Proof By (2.13), we can assume that k = 0. If F were to exist, the previous theorem with

g = f would imply that 0 = 〈f, f 〉. But this contradicts the fact that the Petersson inner

product is positive definite. ⊓⊔

Primitives of cusp forms do exist if one allows poles at the cusp (Sect. 11 and [4]).



Brown Res Math Sci (2018) 5:7 Page 15 of 40 7

3.5 Arithmetic obstructions

Although this is largely irrelevant here, since we work mostly over the complex numbers,

the equation ∂F = f involves some subtle questions regarding the field of definition of

the coefficients a
(k)
m,n. Fundamentally, complex conjugation is not rationally defined on

algebraic de Rham cohomology.

For example, ∂F = G4L has a unique solution given by a real analytic Eisenstein series

E2,0 ∈ M2,0, to be defined in Sect. 4, but it has no solution with rational coefficients. This

is because E2,0 involves the value of the Riemann zeta function ζ (3), which is irrational as

shown by Apéry. The examples of functions in M constructed in this paper arise from

iterated integrals of modular forms, and their coefficients a
(k)
m,n are, in a certain sense,

periods. The period conjecture suggests that they are transcendental.

3.6 A class of modular iterated primitives

The functions studied in this paper lie in a special subclass of functions inside M.

Definition 3.9 Consider the largest space of functions

MI ⊂
⊕

r,s≥0

P−r−s
Mr,s,

equipped with an increasing ‘length’ filtration MIk ⊂ MI such that MIk = 0 if k < 0,

and every F ∈ MIk satisfies

∂F ∈ MIk + M[L] × MIk−1,

∂F ∈ MIk + M[L] × MIk−1, (3.7)

where M (resp. M) denotes the ring of holomorphic (anti-holomorphic) modular forms.

The conditions (3.7) are stable under the operation of taking sums of vector spaces, and

therefore a largest such space exists and is unique.

By replacing MI with MI + MI , we deduce that MI is closed under complex con-

jugation by maximality. This definition is computable: sinceMIk is contained in the first

quadrant, Eq. (3.7) implies that any F ∈ MIk of weights (n, 0) with n ≥ 0 must satisfy

∂F ∈ M[L] × MIk−1. (3.8)

In this region, modular primitives are unique by Proposition 3.2 (up to a possible constant

when n = 0). Then, for F ∈ MIk of modular weights (r, s) with r ≥ s, the first equation

of (3.7) determines F in terms of previously determined functions by increasing induction

on s. The functions in the region r < s are deduced by complex conjugation [or by using

the second equation of (3.7), starting from weights (0, n)].

Lemma 3.10 MI0 = C[L−1].

Proof SinceMI−1 = 0, any F ∈ MI0 of weights (n, 0) satisfies ∂F = 0 by (3.8). If n > 0,

then F vanishes by Proposition 3.2. Continuing in this manner, we see that any F ∈ MI0

of weights (r, s) for r > s must also vanish, and in the case r = s, it must be of the form

F ∈ CL−r . Therefore, MI0 ⊂ C[L−1]. Since ∂L = ∂L = 0, the ring C[L−1] indeed

satisfies the conditions (3.7) and hence MI0 = C[L−1]. ⊓⊔
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Remark 3.11 There are some variants.We can replace the spaceM of holomorphic mod-

ular forms in the Eq. (3.7) with another space of modular forms M′ to define a class of

functions MI(M′). Some examples:

(1) ReplaceM with S, the space of cusp forms. Since cusp forms do not admit modular

primitives, one deduces by induction that MI(S) = C[L−1].

(2) ReplaceM with

E =
⊕

n≥2

G2nQ (3.9)

the Q-vector space generated by Eisenstein series. We obtain a space

MI(E) ⊂ MI .

In the sequel to this paper, we construct a subspace MI
E ⊗ C ⊂ MI(E) (Sect. 10)

and hope that equality holds, which would have deep consequences. We shall show

below that MI(E)k = MIk for k = 0, 1 but not for k = 2.

The class of functions MI has an interesting sl2-module structure which could prof-

itably be reformulated in the language of [6].

3.7 Homological interpretations

The following remarks can be skipped. Let MD+k =
⊕

p Mp+k,p denote the subspace of

M upon which h acts by k . It is stable under multiplication by L. Write MD = MD+0.

Define an operator

∂Df = ∂(f )dz + ∂(f )dz.

Since dz and dz transform, respectively, like modular forms of weights (−2, 0) or (0,−2),

it follows that ∂D defines a linear map of bidegrees (−1,−1):

∂D : MD −→ M
D+2 dz ⊕ M

D−2 dz.

It extends in the usual manner via the Leibniz rule to a linear map

∂D : MD+2 dz ⊕ M
D−2 dz −→ M

Ddz ∧ dz .

It acts by ∂D(f dz + gdz) = (∂g − ∂f )dz ∧ dz. It follows from the fact that [∂ , ∂] = h

vanishes on MD, that these operators satisfy (∂D)2 = 0. Define the diagonal complex

(which generalises to vector-valued modular forms to be considered below) by

0 −→ M
D ∂D

−→ M
D+2dz ⊕ M

D−2dz
∂D

−→ M
Ddz ∧ dz −→ 0 .

Denote its cohomology groups to be H i(MD) for i = 0, 1, 2. They inherit a grading in

even degrees via the total weight grading on M, where dz and dz have weight −2.

It follows from Lemma 3.1 that H0(MD) ∼=
⊕

p L−pC. In general, H i(MD) is a free

graded C[L±]-module for all i. For example, the one-form of weight zero

ω = G∗
2dz + G∗

2dz

is closed and by Lemma 3.5 defines a non-trivial cohomology class [ω] ∈ H1(MD). The

obstructions to primitives discussed above can be interpreted in terms of this complex.

For example, the proof of Theorem 3.7 can be interpreted as a functional:
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gr2mH
2
c (M

D) −→ C

αdz ∧ dz 
→

∫

D

y−mαdz ∧ dz,

where H2
c denotes the subspace ofH2 representable by forms in SDdz ∧ dz. The obstruc-

tions in H1(MD) are purely combinatorial, by the following lemma:

Lemma 3.12 Let F ∈ C[[q, q]][L±]. If

∂DF ∈ M
D+2dz ⊕ M

D−2dz

is modular, then so is F , i.e. F ∈ MD.

Proof Suppose that ∂F ∈ Mr+1,r−1 and ∂F ∈ Mr−1,r+1. Then, for every γ ∈ SL2(Z),

F (γ z) − (cz + d)r(cz + d)rF (z) = Cγ L−r ,

where Cγ ∈ C, since by Lemma 2.5, the left-hand side lies in ker ∂ ∩ ker ∂ . It fol-

lows that γ 
→ Cγ ∈ C is a cocycle. Since SL2(Z) acts trivially on C, Z1(SL2(Z),C) =

Hom(SL2(Z);C) vanishes, and therefore Cγ = 0, i.e. F is modular of weights (r, r). ⊓⊔

4 Real analytic Eisenstein series

We consider in some detail the simplest possible family of non-holomorphic functions in

M as a concrete illustration.

4.1 Modular primitives of Eisenstein series

Eisenstein series, unlike cusp forms, admit modular primitives in M. Recall that the real

analytic Eisenstein series are defined for Re s > 1, z ∈ H by the following function

E(z, s) =
1

2

∑

m,n �=(0,0)

ys

|mz + n|2s
.

Proposition 4.1 For every w ≥ 1, there exists a unique set of functions

Er,s ∈ P−w
Mr,s

with r, s ≥ 0 and r + s = w, which satisfy the following equations:

∂ Ew,0 = LGw+2

∂ Er,s − (r + 1)Er+1,s−1 = 0 for all 1 ≤ s ≤ w (4.1)

and

∂ E0,w = LGw+2,

∂ Er,s − (s + 1)Er−1,s+1 = 0 for all 1 ≤ r ≤ w. (4.2)

These functions can be given explicitly by the following formula;

Er,s(z) =
w!

(2π i)w+2

1

2

∑

m,n

L

(mz + n)r+1(mz + n)s+1
, (4.3)

where the sum is over all integers m, n ∈ Z2\(0, 0).

Proof The uniqueness follows from Proposition 3.2. For the existence, formula (4.3)

converges and defines a modular function of weights r, s. We must verify (4.1) and (4.2).

These follow from the following identity, which holds for any integers r, s:
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∂r

( z − z

(mz + n)r+1(mz + n)s+1

)
= (r + 1)

( z − z

(mz + n)r+2(mz + n)s

)
.

By taking the complex conjugate, we deduce a similar formula for ∂ on interchanging r

and s. It follows from the definition of the holomorphic Eisenstein series as a sum:

Gw+2 =
(w + 1)!

(2π i)w+2

1

2

∑

(m,n) �=(0,0)

1

(mz + n)2w+2

that Ew,0 satisfies the first equation of (4.1). The first equation of (4.2) follows by conjugat-

ing. It remains to verify the Expansion (2.5). For this, note that for allm ≥ 1 the Definition

(4.3) implies the identity

Em,m =
i

(2π i)2m+1

(2m)!

ym
E(z,m + 1). (4.4)

The expansion of the right-hand side is well known and lies in C[[q, q]][L±]. The expan-

sions of the functions Er,s are deduced from Em,m by applying ∂ , ∂ . ⊓⊔

We immediately deduce the following properties:

Corollary 4.2 For all r + s = w > 0, the functions Er,s satisfy E r,s = Es,r ,

�Er,s = −w Er,s,

p(Er,s) = 0,

where p = ph + pa denotes the holomorphic and anti-holomorphic projections.

Proof The compatibility with complex conjugation follows by symmetry of (4.1) and

(4.2) and uniqueness. The Laplace equation follows from (2.20), (4.1) and (4.2). The last

equation follows from Theorem 3.7 since Er,s is in the image of either ∂ or ∂ . ⊓⊔

Proposition 4.3 The constant part of Er,s is given by

E
0
r,s =

−Bw+2

2(w + 1)(w + 2)
L +

(−1)s

2

w!

2w

(
w

r

)
ζ (w + 1)L−w , (4.5)

where w = r + s > 0 is even. Furthermore, E − E0
r,s has rational coefficients.

Proof The statement is well known for r = s = w, since it reduces to the Fourier

expansionof the real analytic Eisenstein seriesE(z, w+1).The remaining cases are deduced

by applying ∂ via (4.1) and by Er,s = E s,r . An alternative way to prove this theorem is to

use the expression for Er,s as the real part of the single iterated integral of holomorphic

Eisenstein series [1] §8, and use the computation of the cocycle of the latter [1], Lemma

7.1, to write down the constant terms directly. See Sect. 8.4.2. ⊓⊔

4.2 Explicit formulae

For all w ≥ 1, write

g
(k)
2w+2(q) = (−1)kk !

∑

n≥1

σ2w+1(n)

(2n)k+1
qn.
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Then, for any a + b = 2w, define

Ra,b = (−1)a
(
2w

a

) a+b∑

k=b

(
a

k − b

)
g
(k)
2w+2(q)

Lk
. (4.6)

Then, the real analytic Eisenstein series are given explicitly by

Ea,b = E
0
a,b + Ra,b + Rb,a,

where E0
a,b

is (4.5). This formula in the case a = b is equivalent to the known Fourier

expansion of the real analytic Eisenstein series. One can verify the other cases by checking

that they satisfy the differential Eqs. (4.1) and (4.2). See [4] for details.

4.3 Description ofMI1

We already showed that MI0 = C[L−1].

Corollary 4.4 In length one,

MI1 = MI0 ⊗C

⊕

r,s≥0,r+s≥2

C Er,s

Proof Let F ∈ MI1 ofweights (n, 0). By (3.8), it satisfies ∂F ∈ ML. Since ∂F is orthogonal

to cusp forms by Theorem 3.7, it must satisfy ∂F ∈ CGn+2L. This equation has the unique

family of solutions F ∈ CEn,0. By eq. (3.7), the elements F ∈ MI1 of weights (r, s) with

r > s are iterated primitives of real analytic Eisenstein series and modular forms M[L],

and hence also real analytic Eisenstein series, by a similar argument. We conclude that

MI1 is contained in the C[L−1]-module generated by the Er,s. Since the latter satisfy

(3.7), this proves equality. ⊓⊔

4.4 Picture of the real analytic Eisenstein series

Based on the previous picture of M, the real analytic Eisenstein series can be viewed as

follows:

LG4

LG6

LG4 LG6

E0,4

E1,3

E2,2

E3,3

E3,1

E4,0

E0,2

E1,1

E2,0M0,0 r

s

r = s
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The dashed arrows going up and down the anti-diagonals are ∂ and ∂ . The classical real

analytic Eisenstein series are the functions En,n lying along the diagonal r = s.

5 Eigenfunctions of the Laplacian

This section is not needed for the rest of the paper. We show that the space M has very

limited overlap with the theory of Maass waveforms [23], and determine to what extent

the solutions to a Laplace eigenvalue equation are not unique.

Call F ∈ M an eigenfunction of � if there exists λ ∈ C, the eigenvalue, such that

�F = λF . It decomposes into a sum of terms Fr,s ∈ Mr,s satisfying �r,sF = λF .

Theorem 5.1 Let F be an eigenfunction of the Laplacian. Then, its eigenvalue is an integer,

and F is a linear combination over C[L±] of real analytic Eisenstein series Er,s, almost

holomorphic modular forms and their complex conjugates.

Let us write HM ⊂ M to denote the space of Laplace eigenfunctions. It follows from

Lemma 2.12 that it is stable under the action of O = Q[L±][∂ , ∂]. Furthermore, the

subspace HM(n) of eigenfunctions with eigenvalue n is stable under the action of the Lie

algebra sl2 generated by ∂ , ∂ .

Every holomorphic modular form f ∈ Mn lies in HM(0) since �f = −∂n−1∂0f = 0.

The same is true of m defined in Sect. 2.5. More generally, Lk f is an eigenfunction with

eigenvalue (n−k −1)k . Since the ring of almost holomorphic modular forms is generated

by holomorphic modular forms and m by the action of ∂ , it follows that any almost

holomorphic (or anti-holomorphic) modular form lies in HM.

5.1 Proof of Theorem 5.1

Lemma 5.2 Let F ∈ Mr,s such that �r,sF = λF. Then, there exists an integer k0 such

that λ = −k0(k0 + w − 1), where w = r + s is the total weight. We can assume k0 =

min{k0, 1 − w − k0}. Then, F is of the form

F = α Lk0 + β L1−w−k0 +
∑

k0≤k≤−s

Lk fk (q) +
∑

k0≤k≤−r

Lkgk (q), (5.1)

where α,β ∈ C, and fk (q) ∈ C[[q]], gk (q) ∈ C[[q]] have no constant terms.

Proof Assume that F is nonzero and denote the coefficients in its expansion (2.5) by

a
(k)
m,n. We first show that a

(k)
m,n = 0 if mn �= 0. Fix m, n such that a

(k)
m,n �= 0 for some k .

Choose k maximal with this property. Taking the coefficient of Lk+2qmqn in the equation

�r,sF = λF implies, via (2.22), that λa
(k+2)
m,n = −4mna

(k)
m,n, which implies that mn = 0.

Therefore, all a
(k)
m,n vanish formn �= 0. Now, for anym, n, choose k minimal such that a

(k)
m,n

is nonzero. Equation (2.22) implies that λa
(k)
m,n = −k(k + w − 1)a

(k)
m,n, which proves the

first part of the lemma. The equation x2 + x(w − 1)+ λ = 0 has two integral solutions k0

and 1 − w − k0, which are distinct since w is even. The assumption that k0 is the smaller

of the two implies that a
(k)
m,n vanishes for all k < k0.

Now consider a nonzero coefficient of the form a
(k)
m,0 with m �= 0. Let k be maximal.

Equation (2.22) implies that λa
(k+1)
m,0 = 2m(k + s)a

(k)
m,n − k(k +w− 1)a

(k+1)
m,0 , which implies

thatm(k + s) = 0 since a
(k+1)
m,0 = 0. Therefore, k = −s. A similar computation with terms

of the form a
(k)
0,n shows that they all vanish if k > −r. It remains to determine the constant
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terms a
(k)
0,0. Equation (2.22) implies that λa

(k)
0,0 = −k(k +w − 1)a

(k)
0,0, so by the above a

(k)
0,0 is

non-zero only for k ∈ {k0, 1 − w − k0}. ⊓⊔

Lemma 5.3 Let F ∈ Mr,s be an eigenfunction of the Laplacian. Then, there exist integers

M,N ≥ 0 such that ∂
M

∂NF ∈ C[L±].

Proof Apply ∂r to the expansion (5.1). By Lemma 3.1, this annihilates the term Lkgk (q)

for k = −r. The terms of the form Lkgk (q) are simply multiplied by k + r. Its action on

terms of the form Lk fk (q) increases the degree in L by at most one, by (2.15). Therefore,

∂rF has a similar expansion to (5.1), with (r, s) replaced by (r+1, s−1). Applying ∂r−1 kills

the term Lkgk (q) for with k = 1 − r. Proceeding in this manner, every term of the form

Lkgk (q) is eventually annihilated (this also follows directly from Lemma 5.2 since ∂mF

are eigenfunctions of the Laplacian with the same eigenvalue λ as F ). Now, by a similar

argument, repeated application of ∂ annihilates all the terms of the form Lk fk (q). ⊓⊔

Lemma 5.4 The maps ∂ : M̃ → M̃ and ∂ : M̃ → M̃ are surjective.

Proof Since ∂ m = 1, any element f mi, where i ≥ 0 and f ∈ M[L±], is the ∂-image of

(i + 1)−1f mi+1. The second statement follows by complex conjugation. ⊓⊔

Lemma 5.5 Consider the linear map ∂ : M̃[L±] → M̃[L±]. Then, ker ∂ ∼= C and

Coker ∂ ∼= M[L±] ⊕ Cm[L±] .

Proof The statement about the kernel follows immediately from Lemma 3.1. It follows

from the calculations in Sect. 2.5, that for any f ∈ Mn and k ≥ 0,

∂mk f = (−k − n)mk+1f + terms of degree ≤ k in m.

Since L commutes with ∂ , all terms of the form f mkLr , where f ∈ Mn, are in the image of

∂ whenever k ≥ 2 or k = 1 and n > 0. Conclude using M̃[L±] = M[m,L±]. ⊓⊔

Corollary 5.6 Let V ⊂ M denote theC[L±]-module generated by the real analytic Eisen-

stein series Er,s, M̃ and M̃. If F ∈ M satisfies ∂F ∈ V , then F ∈ V . By complex conjugation,

the same statement holds with ∂ replaced with ∂ .

Proof By Proposition 4.1, the Eisenstein series G2nL
k , for n ≥ 2 and the functions Er,s

with r > 0 admit ∂-primitives in V . By the above, we can assume that ∂F is a linear

combination of

mLk , f Lk , E0,2nL
k ,

where f is a cusp form. Since these elements have distinct h-degrees, we can treat each

case in turn, by linearity. But we showed in corollary 3.5 that mLk has no ∂-primitive in

M, and likewise, in corollary 3.8 that cusp forms have no primitives either. The elements

E0,2n (and hence LkE0,2n) have no modular primitives by Lemma 3.4, since the coefficient

of L in E0
0,2n is nonzero by (4.5). Therefore, none of these cases can arise, and we conclude

that if ∂F ∈ V , so too is F ∈ V . ⊓⊔

An eigenfunction of the Laplacian F satisfies ∂
M

∂NF ∈ C[L±] ⊂ V . It follows from the

previous corollary and induction on N that F ∈ V . This completes the proof.
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Remark 5.7 In passing, we have shown that the ring of almost holomorphic modular

forms M[m,L±] is the subspace of functions f ∈ M such that a
(k)
m,n(f ) = 0 for all n > 0,

or equivalently, which satisfy ∂
N
f = 0 for sufficiently large N .

6 Mixed Rankin–Cohen brackets

This section can be skipped. Any operator in O = Q[L±][∂ , ∂] can be expressed as a

polynomial in L±, ∂
∂z ,

∂
∂z . We wish to find elements of O ⊗ O, which act via

O ⊗ O : M ⊗ M −→ M ,

which are homogeneous inLwhen expressed in terms of ∂
∂z and

∂
∂z . Since these operators

will not be used in this paper, we shall only illustrate how the theory of Rankin–Cohen

brackets can be recovered in some basic examples and leave the many possible extensions

to the reader.

Example 6.1 (Operators of order 1). Starting with the four operators given by ∂ ⊗ id,

id ⊗ ∂ , and their complex conjugates, we form the general operator:

a1∂ ⊗ id + a2id ⊗ ∂ + a3∂ ⊗ id + a4id ⊗ ∂ ,

where ai ∈ Q. It acts upon f ⊗ g ∈ Mr1 ,s1 ⊗ Mr2 ,s2 by

a1

(
L′ ∂f

∂z
+ r1f

)
g + a2f

(
L′ ∂g

∂z
+ r2g

)
+ a3

(
−L′ ∂f

∂z
+ s1f

)
g + a4f

(
−L′ ∂g

∂z
+ s2g

)

where L′iπ = L. The terms of degree zero in L′ vanish if and only if

a1r1 + a2r2 + a3s1 + a4s2 = 0 .

A basis for its solutions are (r2,−r1, 0, 0), (s1, 0,−r1, 0) and (0, 0,−s2, s1). Dividing by L′,

the first and third solutions yield the combinations:

[f, g]1 = r2
∂f

∂z
g − r1f

∂g

∂z
,

[f, g]1 = s2
∂f

∂z
g − s1f

∂g

∂z
, (6.1)

which are the first Rankin–Cohen bracket and its complex conjugate. The second solution

defines an additional element (Df )g of mixed weights, where

Df :=
1

L

(
s1∂r1 − r1∂s1

)
f = s1

∂f

∂z
+ r1

∂f

∂z
∈ Mr1+2,s1 ⊕ Mr1 ,s1+2. (6.2)

It splits into two components of differentmodular weights in the algebraM. For example,
∂f
∂z ∈ Mn+2,0 ⊕ Mn,2 for any holomorphic modular form f ∈ Mn.

The properties of the brackets (6.1) are well-known. For instance, the bracket is anti-

symmetric and satisfies the Jacobi identity [34] §5.2.

Example 6.2 (Operators of order 2). We can easily extend this analysis to operators of

higher order.Weexcludemixed terms such as (6.2). Theoperators of order 2 andbidegrees

(2,−2) are of the form

∂2 ⊗ id, ∂ ⊗ ∂ , id ⊗ ∂2.
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A similar analysis to the one above produces a one-dimensional family of linear combina-

tions which are homogeneous of degree two inL′. They are generated by the second-order

Rankin–Cohen bracket, defined for f ∈ Mr1 ,s1 and g ∈ Mr2 ,s2 by

[f, g]2 =
r2(r2 + 1)

2

∂2f

∂z2
g − (r1 + 1)(r2 + 1)

∂f

∂z

∂g

∂z
+

r1(r1 + 1)

2
f
∂2g

∂z2
. (6.3)

In bidegrees (−2, 2), we obtain the complex conjugate bracket. A new feature appears in

bidegree (0, 0). Indeed, consider the following five terms of this type:

∂∂ ⊗ id, ∂ ⊗ ∂ , ∂ ⊗ ∂ , id ⊗ ∂∂ , id ⊗ ıd.

The commutation relation (2.14) implies that ∂∂ , ∂∂ and id are linearly related, so there

are exactly five such operators. The linear combination

r2s2 ∂∂ ⊗ id − s1r2 ∂ ⊗ ∂ − s2r1 ∂ ⊗ ∂ + r1s1 id ⊗ ∂∂ + r1r2(s1 + s2)id ⊗ id

generates a one-dimensional family of operators which become homogeneous in L′ after

rewriting them in terms of ∂
∂z and

∂
∂z . The coefficient of (L′)2 is the quantity

(
f, g

)
2
:= s1r2

∂f

∂z

∂g

∂z
+ s2r1

∂f

∂z

∂g

∂z
− r1s1 f

∂2g

∂z∂z
− r2s2 g

∂2f

∂z∂z
, (6.4)

which is symmetric in f and g and is an element of Mr1+r2 ,s1+s2 . It can be written more

elegantly as a composition of operators, as follows:
(
f, g

)
2

=
(
∂z ⊗ r2 − r1 ⊗ ∂z

)(
s1 ⊗ ∂z − ∂z ⊗ s2

)
(f ⊗ g),

where ∂z = ∂/∂z, or again as a product of commuting determinants

(
f, g

)
2

=

∣∣∣∣∣
∂z ⊗ id r1

id ⊗ ∂z r2

∣∣∣∣∣

∣∣∣∣∣
s1 ∂z ⊗ id

s2 id ⊗ ∂z

∣∣∣∣∣ (f ⊗ g).

Interesting operators of order two in the ring O ⊗ O therefore include: the Laplace

operators � ⊗ id and id ⊗ �, the Rankin–Cohen bracket [f, g]2 and its conjugate, and a

symmetric product (f, g)2. All this is part of the general study of differential operators on

M, which we shall not pursue any further here.

7 Modular forms and equivariant sections

In this section, all tensor products are over Q.

7.1 Reminders on representations of SL2

For all n ≥ 0, define

V2n =
⊕

r+s=2n

XrY sQ,

equipped with the right action of SL2(Z) given by

(X, Y )
∣∣
γ

= (aX + bY, cX + dY )

for γ of the form (2.1). There is an isomorphism of SL2-representations

V2m ⊗ V2n
∼= V2m+2n ⊕ V2m+2n−2 ⊕ · · · ⊕ V2|m−n| .
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We shall use the following choice of SL2-equivariant projector

δk : V2m ⊗ V2n −→ V2m+2n−2k (7.1)

by setting

δk = m ◦
( ∂

∂X
⊗

∂

∂Y
−

∂

∂Y
⊗

∂

∂X

)k
,

where m : Q[X, Y ] ⊗ Q[X, Y ] → Q[X, Y ] is the multiplication map. For an equivalent

formulation and further properties, see [1].

7.2 A characterisation of functions in M

See also [35], Proposition 2.1.

Proposition 7.1 Let f : H → V2n ⊗ C be real analytic. Then, it can be written in two

equivalent manners: either in the form

f =
∑

r+s=2n

f r,s(z)XrY s (7.2)

for some real analytic functions f r,s : H → C, or in the form

f =
∑

r+s=2n

fr,s(z)(X − zY )r(X − zY )s, (7.3)

where (z − z)2nfr,s : H → C are real analytic. The function f is equivariant:

f (γ (z))
∣∣
γ

= f (z) for all γ ∈ SL2(Z) (7.4)

if and only if the coefficients fr,s are modular (2.3) of weight (r, s). Suppose now that the

coefficients (7.2) of f admit expansions of the form

f r,s ∈ C[[q, q]][z, z].

Then, f is equivariant if and only if fr,s ∈ P−r−sMr,s.

Proof First, observe that the inclusion

Z[z, z][(X − zY ), (X − zY )] −→ Z[z, z][X, Y ]

becomes an isomorphism after inverting z − z. Indeed, the inverse is given by

X 
→
z

z − z
(X − zY ) −

z

z − z
(X − zY ),

Y 
→
1

z − z
(X − zY ) −

1

z − z
(X − zY ). (7.5)

This proves that the expansions (7.2) and (7.3) are equivalent. The identity

(X − γ (z)Y )
∣∣
γ

=
det(γ )

(cz + d)
(X − zY )

implies that (X − zY )r(X − zY )s transforms, under the simultaneous action of SL2(Z)

on the argument z in the usual manner and on the right of V2n, like a modular function

of weights (−r,−s). The coefficient of (X − zY )r(X − zY )s for f equivariant is therefore

modular of weights (r, s). For the last statement, the assumption on the Fourier expansions

of f r,s implies that the coefficients (z − z)r+sfr,s admit expansions in the ring C[[q, q]][z, z]

by (7.5). By Lemma 2.2, the fr,s have expansions of the form (2.5). ⊓⊔
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We construct equivariant functions f from iterated integrals. These only involve non-

negative powers of log q. Their coefficients fij will have poles in L of degree at most the

total weight, and their modular weights will naturally be located in the first quadrant

r, s ≥ 0.

7.3 Vector-valued differential equations

The operators ∂ , ∂ of Definition 2.4 admit the following interpretation.

Proposition 7.2 Let F, A, B : H → V2n ⊗ C be real analytic. Then, the equation

∂F

∂z
=

2π i

2
A(z) (7.6)

is equivalent to the system of equations for all r + s = 2n, and r, s ≥ 0:

∂F2n,0 = LA2n,0,

∂Fr,s − (r + 1)Fr+1,s−1 = LAr,s if s ≥ 1. (7.7)

In a similar manner,

∂F

∂z
=

2π i

2
B(z) (7.8)

is equivalent to the following system of equations:

∂F0,2n = LB0,2n,

∂Fr,s − (s + 1)Fr−1,s+1 = LBr,s if r ≥ 1. (7.9)

Proof Differentiate the expression (7.3) to obtain

∂F

∂z
=

∑

r+s=2n

(∂Fr,s

∂z
(X − zY )r(X − zY )s − rYFr,s(X − zY )r−1(X − zY )s

)
.

On replacing Y using the second line of (7.5), the right-hand side becomes

∑

r+s=2n

((∂Fr,s

∂z
+

rFr,s

z − z

)
(X − zY )r(X − zY )s −

rFr,s

z − z
(X − zY )r−1(X − zY )s+1

)
.

Multiplying through by z − z, collecting terms and using Definition 2.4, we see that the

Eq. (7.6) is equivalent to the system of equations

∂rFr,s − (r + 1)Fr+1,s−1 = iπ (z − z)Ar,s

for 1 ≤ s ≤ 2n, and in the case s = 0, ∂2nF2n,0 = iπ (z− z)A2n,0. Conclude using (2.2). The

second set of equations can be deduced by conjugation. ⊓⊔

The commutation relation [∂ , ∂] = h of Proposition 2.9 is equivalent to

∂2F

∂z∂z
=

∂2F

∂z∂z
.

Lemma 7.3 Suppose that A : H → V2n and set

F =
δk

(k !)2

(
(X − zY )2m ⊗ A

)
.
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Then, F : H → V2m+2n−2k vanishes if k > 2n or k > 2m, but otherwise satisfies

Fr,s = (z − z)k
(
2m

k

)(
s + k

k

)
Ar−2m+k,s+k , (7.10)

where we set Ap,q = 0 for p < 0 or q < 0. Therefore, Fr,s vanishes if r < 2m − k, or

equivalently, s + k > 2n.

Proof By direct application of the definition of δk , we find that

δk

(k !)2

(
(X − zY )2m ⊗ A(X, Y )

)

= (z − z)k
∑

r,s,r+2m≥k

(
2m

k

)(
s

k

)
Ar,s(X − zY )r+2m−k (X − zY )s−k ,

where

A(X, Y ) =
∑

r+s=2n

Ar,s(X − zY )r(X − zY )s.

Equation (7.10) follows on replacing (r, s) with (r − 2m + k, s + k). ⊓⊔

Combining the lemma with Proposition 7.2, we find that if

∂F

∂z
= (π i)k+1 δk

(k !)2

(
f2m+2(z)(X − zY )2m ⊗ A(X, Y )

)

then

∂F2n,0 =

(
2m

k

)
Lk+1f2m+2(z)A2n−2m+k,k (z). (7.11)

7.4 Example: real analytic Eisenstein series

Let us write, for w > 0 even:

Ew(z) =
∑

r+s=w

Er,s(X − zY )r(X − zY )s.

It is equivariant for SL2(Z). Consider also the equivariant 1-form

Ew+2(z) = 2π iGw+2(z)(X − zY )wdz. (7.12)

Then, by Proposition (7.6) the systems of Eqs. (4.1) and (4.2) are equivalent to the following

differential equation:

dE =
1

2

(
Ew+2(z) + Ew+2(z)

)

= Re
(
Ew+2(z)

)
.

The real analytic Eisenstein series of Sect. 4 are the real parts of primitives of vector-

valued holomorphic Eisenstein series [1], §9.2.2. This motivates a general construction of

modular forms in M via equivariant iterated integrals of modular forms.

8 Modular forms from equivariant iterated integrals

The main idea behind our construction of functions in M is a modification of the theory

of single-valued periods as we presently explain in some simple examples.
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8.1 Single-valued functions

The logarithm

log z =

∫ z

1

dt

t
(8.1)

is a multivalued analytic function on C×. This means that its pull-back to the universal

covering space C of C× based at 1 is an analytic function. Indeed, via the covering map

exp : C → C×, it simply corresponds to the function z on C. The fundamental group of

C× at the point 1 is isomorphic to Z and is generated by a simple loop around the origin.

Analytic continuation around this loop creates a discontinuity

log z 
→ log z + 2π i . (8.2)

Since themonodromyperiod2π i is purely imaginary, themultivaluedness of the logarithm

can be eliminated by taking its real part:

log |z| = Re (log z).

This is the ‘single-valued’ version of the logarithm. It is a well-defined function on C×,

invariant under the left action of Z = π1(C
×, 1). The dilogarithm

Li2(z) =
∑

k≥1

zk

k2

defined for |z| < 1 and analytically continued to a multivalued function on C×\{0, 1},

satisfies the equation dLi2(z) = − log(1 − z)dzz , and has a single-valued version:

D(z) = Im
(
Li2(z) + log |z| log(1 − z)

)

called the Bloch–Wigner function. In the following sections, we construct modular ana-

logues of the functions log |z| and D(z).

There is a general way to associate single-valued functions to any period integrals [2]

§4, §8.3 generalising (8.1). The latter can depend on parameters, or even be constant.

A variant of this construction, applied to iterated integrals of modular forms, yields a

class of functions in M. This follows from Proposition 7.1 since a real analytic section

f : H → Vn ⊗ C is equivariant if and only if the coefficients fr,s in the expansion f =∑
r,s fr,s(X − zY )r(X − zY )s are modular of weights (r, s). The equivariance

f (γ z)
∣∣
γ

= f (z) for all γ ∈ SL2(Z)

can be interpreted as single-valuedness of the vector-valued function f (z) on the orbifold

quotient of H by the action of SL2(Z).

8.2 Notation

For f a holomorphic modular form of weight n, let us denote by

f (z) = 2π if (z)(X − zY )n−2dz .

It is invariant under the action of SL2(Z) on z and X, Y . We shall write

S =

(
0 −1

1 0

)
, T =

(
1 1

0 1

)
.
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8.3 The modular function Im(z)

Denote by

F (τ ) =

∫ i∞

τ

1 = 2π i

∫ i∞

τ

(X − zY )−2dz =
2π i

Y (X − zY )
.

We obtain in this manner a Q(X, Y )-valued cocycle

F (γ (τ ))
∣∣
γ

− F (τ ) = Cγ ,

where C : SL2(Z) → Q(X, Y ) is the function

Cγ = −
c 2π i

Y (Xc + Yd)
where γ =

(
a b

c d

)
.

This cocycle is cuspidal (vanishes for γ = T ). Since Cγ is imaginary, the real part Re F (τ )

is modular equivariant. Indeed, we have

Re F (τ ) =
L

(X − τY )(X − τY )
,

which is SL2(Z)-invariant since L is modular of weights (−1,−1).

8.4 Primitives of holomorphic modular forms

Now, we construct, or fail to construct, equivariant versions of classical Eichler integrals

in the same vein.

8.4.1 Cusp forms

Let f ∈ S2n be a cusp form with rational Fourier coefficients. Let

F (τ ) =

∫ i∞

τ

f (z) = 2π i

∫ i∞

τ

f (z)(X − zY )2n−2dz . (8.3)

It satisfies, by invariance of f , the following: monodromy equation

F (γ (τ ))
∣∣
γ

= F (τ ) + Cγ , (8.4)

for all γ ∈ SL2(Z) and τ ∈ H. It is the analogue of (8.2). It follows from (8.4) that the

function C : SL2(Z) → C[X, Y ] is a cocycle for SL2(Z), and indeed that

CS = C+
S + i C−

S ,

where C+
S , C−

S ∈ R[X, Y ] are the even and odd real period polynomials of f . By the

Eichler–Shimura theorem, the classes of C+ and C− are independent in group cohomol-

ogyH1(SL2(Z),C[X, Y ]), and so there is noway, by taking real and imaginary parts, that we

can kill the right-hand side of (8.4) to obtain a single-valued function. Therefore, a single

iterated integral, or primitive, of a cusp form yields nothing new. Indeed, by Proposition

7.2, such a function, if it existed, would provide a solution to the equation ∂F = f , in M,

which would contradict 3.8. This obstruction can be circumvented by introducing poles;

cusp forms do have primitives in M! (see §11).
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8.4.2 Eisenstein series

If f = G2k+2, the corresponding integral (8.3) diverges, but can be regularised in the

manner of [1] §4, yielding a primitive

F (τ ) =

∫ →
1∞

τ

E2k+2(z),

which satisfies (8.4). Here,
→

1∞ denotes the unit tangential basepoint at the cusp. The

associated Eisenstein cocycle C satisfies ([1], §7):

Cγ =
(2k)!

2

ζ (2k + 1)

(2π i)2k
Y 2k

∣∣∣
γ−1

+ (2π i)e02k+2(γ ),

where e0
2k+2

(γ ) ∈ Q[X, Y ].Now, ifwe consider the real part ofF (τ ), it satisfies the analogue

of (8.4) with C replaced with ReC . The key point is that the real part of Cγ only involves

the first term in the previous equation, which is a coboundary for SL2(Z). Therefore, the

function Re F (τ ) can be modified in the following manner to define a vector-valued real

analytic function

E2k (X, Y )(τ ) = Re F (τ ) +
(2k)!

2

ζ (2k + 1)

(2π i)2k
Y 2k ,

which is now invariant under the action of SL2(Z). This function can be rewritten

E2k (X, Y )(z) =
∑

r+s=2k

Er,s(z)(X − zY )r(X − zY )s,

where the functions Er,s : H → C are modular, and lie in Mr,s. As the notation suggests,

the coefficients are precisely the real analytic functions Er,s defined in Sect. 4. They are the

analogues of the single-valued functions log |z| on C×.

Remark 8.1 The systematic use of tangential basepoints to regularise period integrals

associated with Eisenstein series clarifies and simplifies many constructions in the litera-

ture. Since this was only recently introduced [1] §4, we provide some commentary:

• The period polynomial of the Eisenstein series is equivalent to formulae which must

have been known to Ramanujan and are given by [1], §9:

e02k (S) =
(2k − 2)!

2

k−1∑

i=1

B2i

(2i)!

B2k−2i

(2k − 2i)!
X2i−1Y 2k−2i−1 ,

e02k (T ) =
(2k − 2)!

2

B2k

(2k)!

( (X + Y )2k−1 − X2k−1

Y

)
.

However, I could not find this precise formulation elsewhere. The literature tends

to focus on period polynomials (value of a cocycle on S) which only determine the

cocycle in the cuspidal case. Zagier’s approach is to introduce poles in X, Y to force

the Eisenstein cocycle to be cuspidal.

• It is often stated thatX2n −Y 2n is the period polynomial of an Eisenstein series, but is

in fact the value of the cuspidal coboundary cocycle at S and vanishes in cohomology.

It is, however, nonzero in relative cohomology and is dual to the Eisenstein cocycle

under the Petersson inner product (which pairs cocycles and compactly supported

cocycles). This is discussed in [1] §9.

• The ‘extra’ relation satisfied by period polynomials of cusp forms [21] expresses the

orthogonality of the cocycle of a cusp form to the Eisenstein cocycle with respect to

the Haberland-Petersson inner product.
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9 Equivariant double iterated integrals

We now define equivariant versions of double Eisenstein integrals, which are modular

analogues of the Bloch–Wigner function D(z).

9.1 Double Eisenstein integrals

Recall that

E2n : H −→ V2n ⊗ C

is the modular-invariant real analytic function which satisfies

d E2n = ReE2n+2 . (9.1)

For every a, b ≥ 2, consider the family of one-forms

D2a,2b : H −→
(
V2a−2 ⊗ V2b−2

)
⊗

(
C dz + C dz

)

D2a,2b = E2a ⊗ E2b−2 + E2a−2 ⊗ E2b.

They are modular invariant: for all γ ∈ SL2(Z), we have

D2a,2b(γ z)
∣∣
γ

= D2a,2b(z) .

Lemma 9.1 The family of forms D2a,2b are closed:

dD2a,2b = 0.

Proof By (9.1) and writing dz ∧ dz = −dz ∧ dz, we find that

d D2a,2b = −E2a ⊗ E2b + E2a ⊗ E2b = 0 .

⊓⊔

By the previous lemma, it makes sense to consider the indefinite integral

K2a,2b(z) =
1

2

∫ →
1∞

z
D2a,2b(z) , (9.2)

since the integrand is closed, and the integral only depends on the homotopy class of the

chosen path. This function can be written in terms of real and imaginary parts of products

of iterated integrals of Eisenstein series. Indeed, we have

K2a,2b(z) ≡
1

2i
Im

⎛
⎝

∫ →
1∞

z
E2aE2b

⎞
⎠ −

1

2
Re

⎛
⎝

∫ →
1∞

z
E2a

⎞
⎠ ×

∫ →
1∞

z
E2b

modulo iterated integrals of length one (we integrate from left to right).

The real analytic function

K2a,2b(z) : H −→ V2a−2 ⊗ V2b−2 ⊗ C

satisfies the pair of differential equations

∂

∂z
K2a,2b =

2π i

2
G2a(z)(X − zY )2a−2 ⊗ E2b−2(z),

∂

∂z
K2a,2b =

2π i

2
E2a−2(z) ⊗ G2b(z)(X − zY )2b−2.

Recall the normalised projection

(π i)k
δk

(k !)2
: V2a−2 ⊗ V2b−2 ⊗ C −→ V2a+2b−4−2k ⊗ C.
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Definition 9.2 For any a, b ≥ 1 and 0 ≤ k ≤ min{2a, 2b}, define

K
(k)
2a+2,2b+2

(z) = (π i)k
δk

(k !)2
K2a+2,2b+2(z) .

By Eq. (7.11), its lowest weight components satisfy

∂
(
K

(k)
2a+2,2b+2

)
2a+2b−2k,0

=

(
2a

k

)
Lk+1G2a+2E2b−k,k . (9.3)

9.2 Equivariant versions of double Eisenstein integrals

Since D2a,2b, and hence dK
(k)
2a,2b

, is modular equivariant, it follows that

Cγ = K
(k)
2a,2b

(γ τ )
∣∣
γ

− K
(k)
2a,2b

(τ )

is constant (does not depend on τ ), and defines a cocycle

Cγ ∈ Z1(SL2(Z), V2a+2b−4−2k ⊗ C).

By the Eichler–Shimura theorem, any such cocycle can be expressed as a linear com-

bination of cocycles of cusp forms or their complex conjugates, Eisenstein series, and a

coboundary c|γ−id for some c ∈ V2a+2b−4−2k ⊗ C. Define a modified function

M
(k)
2a,2b

= K
(k)
2a,2b

− c −
1

2

∫ →
1∞

z

(
f + g

)
, (9.4)

where f is a holomorphicmodular form, and g a cusp form, both of weight 2a+2b−2−2k ,

which is modular equivariant:

M
(k)
2a,2b

(γ τ )
∣∣
γ

= M
(k)
2a,2b

(τ ) .

This equation uniquely determines the functions f, g, c and M
(k)
2a,2b

, except in the case

when 2a + 2b − 4 − 2k = 0 since we can add an arbitrary constant c ∈ C. Extracting the

coefficients ofM
(k)
2a,2b

via (7.3) yields a class of functions in M.

Theorem 9.3 Let a, b ≥ 1 and 0 ≤ k ≤ min{2a, 2b}, and set w = a + b − k. There exists

a family of elements Fr,s ∈ MI2 ∩ Mr,s of total modular weight 2w = r + s where r, s ≥ 0,

which satisfy the equations

∂Fr,s − (r + 1)Fr+1,s−1 =

(
2a

k

)(
k + s

k

)
Lk+1G2a+2E2b−k−s,k+s if s ≥ 1

∂F2w,0 =

(
2a

k

)
Lk+1G2a+2E2b−k,k + L f, (9.5)

where f is the unique cusp form of weight 2w + 2 satisfying

ph
((

2a

k

)
Lk+1G2a+2E2b−k,k + L f

)
= 0 (9.6)

and Em,n is understood to be zero if either of m, n are negative.

Proof The function M
(k)
2a+2,2b+2

: H → V2w ⊗ C is equivariant by definition. Let Mr,s

denote its modular components obtained from Proposition 7.1. From the Definition (9.4),

and the differential equation for K
(k)
2a+2,2b+2

, we can apply Proposition 7.2 to deduce the
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equations satisfied byMr,s. The first line of (9.5) follows since the correction terms in (9.4)

only affect the case s = 0. For s = 0, (9.4) and (9.3) imply that

∂M2w,0 =

(
2a

k

)
Lk+1G2a+2E2b−k,k + L f .

By modifying M
(k)
2a+2,2b+2

by a suitable multiple of E2w+2, we can assume that f is a cusp

form. It is uniquely determined by Theorem 3.7, which gives Eq. (9.6).

The quantities ∂Mr,s can be computed from (9.4), and satisfy:

∂Mr,s − (s + 1)Mr−1,s+1 =

(
2b

k

)(
k + s

k

)
Lk+1G2b+2E2a−k−s,k+s,

∂M0,2w =

(
2b

k

)
Lk+1G2b+2E2a−k,k + L g. (9.7)

This proves that the Mr,s lie in MI2. The cusp form g is uniquely determined from the

anti-holomorphic projection pa(∂M0,2w) = 0. ⊓⊔

Remark 9.4 The antisymmetrization of K
(k)
2a,2b

is related to the function I
(k)
2a,2b

defined in

[1], and its holomorphic projection is related to the double Eisenstein series of [9].

The Eqs. (9.5) and (9.7) uniquely determine Fr,s when r + s > 0, and determine it up to

a constant when r = s = 0. We can show that the functions Fr,s are linearly independent

for distinct values of a, b and k .

9.3 Example

Since there are no cusp forms in weights≤ 10, it follows that the functions defined above,

for 2w = 2a+2b−2k ≤ 8 only involve iterated integrals of Eisenstein series. The simplest

possible example is the case a = 1, b = 1 and k = 0, 1, 2. The equivariant iterated integral

M
(k)
4,4 of G4 and G4 solves the equation

∂F (k)

∂z
= (iπ )k+1 δ(k)

(k !)2

(
G4 ⊗ E2

)

for k = 0, 1, 2, corresponding to the three components of

δ0 ⊕ δ1 ⊕ δ2 : V2 ⊗ V2
∼

−→ V4 ⊕ V2 ⊕ V0 .

By Proposition 7.2, this equation is equivalent to the following three families of equations,

which we spell out for concreteness. In the case k = 0, we have

∂F
(0)
0,4 − F

(0)
1,3 = 0,

∂F
(0)
1,3 − 2F

(0)
2,2 = 0,

∂F
(0)
2,2 − 3F

(0)
3,1 = LG4E0,2,

∂F
(0)
3,1 − 4F

(0)
4,0 = LG4E1,1,

∂F
(0)
4,0 = LG4E2,0. (9.8)

In the case k = 1, we have

∂F
(1)
0,2 − F

(1)
1,1 = 0,

∂F
(1)
1,1 − 2F

(1)
2,0 = 4L2G4E0,2,

∂F
(1)
2,0 = 2L2G4E1,1. (9.9)
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Finally, in the case k = 2 we have the single equation

∂F
(2)
0,0 = L3G4E0,2 . (9.10)

Since there are no cusp forms in weight 4, the statement of Theorem 3.7 is vacuous and

there is no obstruction to the existence of a solution of these equations. The constant

terms can be computed from the double integral of the Eisenstein series E4 and E4. The

latter involves at most ζ (3), ζ (5) and ζ (3)2.

The shuffle product formula for iterated integrals implies that

F
(0)
0,4 = 1

2E
2
0,2 F

(0)
4,0 = 1

2E
2
2,0

F
(0)
1,3 = E0,2E1,1 F

(0)
3,1 = E2,0E1,1

F
(0)
2,2 = E2,0E0,2 + 1

2E
2
1,1

are linear combinations of products of real analytic Eisenstein series as is

F
(2)
0,0 = L2(E2,0E0,2 − 1

4E
2
1,1)

but this is not the case for the functions F (1), which are new. The above identities can be

verified from their differential equations. Observe that the functions E2,0E0,2 and E2
1,1 can

be expressed as linear combinations of F
(0)
2,2 and L−2F

(2)
0,0 . By Theorem 9.3

∂F
(1)
0,2 = 2L2G4E1,1,

∂F
(1)
1,1 − 2F

(1)
0,2 = 4L2G4E2,0,

∂F
(1)
2,0 − F

(1)
1,1 = 0 ,

and ∂F
(2)
0,0 = L3G4E2,0. Now, from the above equations and the Definition 2.20 of the

Laplacian, we deduce the equations:

(� + 2)F
(1)
0,2 = −4L2,G4E2,0 (� + 4)F

(0)
0,4 = −LG4E1,1,

(� + 2)F
(1)
1,1 = −4L3G4G4 (� + 4)F

(0)
1,3 = −2LG4E2,0,

(� + 2)F
(1)
2,0 = −4L2G4E0,2 (� + 4)F

(0)
2,2 = −L2G4G4 ,

(� + 4)F
(0)
3,1 = −2LG4E0,2,

�F
(2)
0,0 = −L4 G4G4 (� + 4)F

(0)
4,0 = −LG4E1,1.

In fact, we note that

(� + 2)E2
1,1 = −8 E0,2E2,0 and � E2,0E0,2 = −E

2
1,1 − L2G4G4 .

We have therefore generated three modular-invariant functions

L2
E2,0E0,2, L2

E
2
1,1, LF

(1)
1,1 ∈ M0,0

out of which one can construct solutions to inhomogeneous Laplace equations:

(� + 2)
(
LF

(1)
1,1 − 4L2

E2,0E0,2
)

= 4L2
E
2
1,1.

By comparing with (1.1), this suggests that the modular graph function C2,1,1(z) of the

introduction can be expressed in terms of LF
(1)
1,1 − 4L2E2,0E0,2, L

3E3,3 and a constant.

Remark 9.5 The coefficients in the expansion (2.5) of these functions are easily deter-

mined from the formulae for the action (2.15) of ∂ , ∂ and the above differential equations,

up to the sole exception of a constant term αL−w . When w > 0, it is uniquely determined

by modularity. If w = 0, we can assume this coefficient is zero.
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9.4 L-functions and constant terms

All expansion coefficients (2.5) of an element f ∈ MIk are uniquely determined by those

of functions in MIk−1 of lower length by the defining Eq. (3.7) and Lemma 2.6 except for

a single constant term of the form αL−w , where α is typically transcendental. Thismissing

constant (when w > 0) can be determined from the others by analytic continuation using

an L-function [27].

To define this, note that the functions f ∈ MI have the property that their coefficients

a
(k)
m,n have polynomial growth, i.e. there exist K,μ ∈ R such that |a

(k)
m,n| ≤ KNμ for all

m, n ≤ N . This property is stable under sums, products and taking primitives. For any

such f ∈ Mα,β with an expansion (2.5), define

c
(k)
N =

∑

m+n=N

a(k)m,n

for all N ≥ 1, and consider the Dirichlet series

L(k)(f, s) =
∑

N≥1

c
(k)
N

N s
,

which converges absolutely for Re(s) sufficiently large.

Definition 9.6 The completed L-function is

�(f, s) =
∑

k

(−1)k (2π )−sŴ(s + k)L(k)(f, s + k) .

Theorem 9.7 The function �(f, s) has a meromorphic continuation to s ∈ C. It satisfies

the functional equation

�(f, s) = ih�(f, w − s)

and has at most simple poles at integers s ∈ Z. Its polar part is

∑

k

(−2π )ka
(k)
0,0

( ih

s − w − k
−

1

s + k

)
,

where w = w(f ) and h = h(f ).

Since the definition of � only involves a
(k)
m,n for mn > 0, the theorem gives a means to

deduce the constant part of f by analytic continuation. Indeed, we have

�(f, s) =

∫ ∞

0

(
f (iy) − f 0(iy)

)
ys
dy

y

for Re(s) large. The theorem is easily proved by decomposing the range of integration into

a piece from 0 to 1 and 1 to ∞ and invoking the functional equation, in the usual manner.

In particular, for any convergent modular graph function, we can associate an L-function.

Similarly, one can assign (a family of) L-functions to universal mixed elliptic motives [18].

This will be discussed elsewhere.

9.5 Orthogonality conditions

We now wish to consider the problem of finding linear combinations of equivariant

iterated integrals which only involve Eisenstein series, i.e. in which all integrals of cusp

forms cancel out. This is equivalent to finding linear combinations of the M
(k)
2a,2b

which

are orthogonal to all cusp forms under the Petersson inner product. Since this problem is

discussed in [1], §22 in an essentially equivalent form, we illustrate with a simple example.
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Example 9.8 Let k = 0, and let � denote the Hecke normalised cusp form of weight 12.

Consider the four ‘lowest weight’ functions F2a+2,2b+2
10,0 ∈ M10,0 for a+b = 5 and 1 ≤ a, b

which are described in Theorem 9.3, and satisfy the equations

∂F2,8 = LG4E8,0 − α2,8L� , ∂F8,2 = LG10E2,0 − α10,4L�

∂F4,6 = LG6E6,0 − α4,6L� , ∂F6,4 = LG8E4,0 − α6,4L�

where α2a,2b are determined by the Petersson inner product:

α2a,2b〈�,�〉 = 〈G2a+2E2b,0,�〉 .

The right-hand side can be computed by the Rankin–Selberg method [1] §9 and implies

that α2a,2b is proportional, by some explicit factors, to L(�, 2a+ 1)L(�, 12). On the other

hand, it is well known that the quantities L(�, k) for 1 ≤ k ≤ 11 satisfy the period

polynomial relations over Q, and we deduce that the quantity

X = 9
(
F2,8 − F8,2

)
+ 14

(
F4,6 − F6,4)

has the property that all terms involving � drop out of ∂X . One can show, furthermore,

that X is dual to the relations between double zeta values in weight 12.

Viewed in this manner, it might seem hopeless to find iterated integrals of Eisenstein

series of higher lengthswhich are equivariant. Already in length three, the Rankin–Selberg

method can no longer be applied in any obvious manner to find the necessary linear

combinations of triple Eisenstein integrals. Fortunately, using the theory of the motivic

fundamental group of the Tate curve, we can find an infinite class and, conjecturally all,

solutions to this problem. This is summarised below.

10 A space of equivariant Eisenstein integrals

Recall that E is the graded Q vector space generated by Eisenstein series (3.9). Let Zsv

denote the ring of single-valued multiple zeta values.

Theorem 10.1 There exists a space MI
E ⊂ M with the following properties:

(1) It is the Zsv-vector space generated by certain (computable) linear combinations of

real and imaginary parts of regularised iterated integrals of Eisenstein series.

(2) The space MI
E[L±] is stable under multiplication and complex conjugation.

(3) It carries an even filtration (conjecturally a grading) by M-degree, where L has M-

filtration 2, and the Er,s have M-filtration 2. It is also filtered by the length (number

of iterated integrals), which we denote by MI
E
k ⊂ MI

E .

(4) The subspace of elements of MI
E of total modular weight w andM-filtration ≤ m is

finite-dimensional for every m, w.

(5) Every element of MI
E admits an expansion in the ring

Z
sv[[q, q]][L±] ,

i.e. its coefficients are single-valued multiple zeta values. An element of total modular

weight w has poles in L of order at most w. An element of M-filtration 2m has terms

in Lk for k ≤ m.
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(6) The space MI
E has the following differential structure:

∂
(
MI

E
k

)
⊂ MI

E
k + E[L] × MI

E
k−1

∂
(
MI

E
k

)
⊂ MI

E
k + E[L] × MI

E
k−1

where E is (3.9). The operators ∂ , ∂ respect theM-filtration, i.e. degM ∂ = degM ∂ = 0,

where the generators G2n+2 of E are placed in M-degree 0.

(7) Every element F ∈ MI
E
k of total modular weight w satisfies an inhomogeneous

Laplace equation of the form:

(� + w) F ∈ (E + E)[L] × MI
E
k−1 + EE[L] × MI

E
k−2 .

Explicitly, we have MI
E
0 = Zsv , and

MI
E
1 = Z

sv ⊕
⊕

r,s≥0

Er,sZ
sv .

In length 2, we can show thatMI
E
2 is generated by the coefficients of linear combinations

ofM
(k)
2a,2b

which do not involve any cusp forms, and in particular the example of Sect. 9.3.

The previous theorem can be compared with Sect. 1.1: the class MI
E satisfies most, if

not all, the conjectural properties of modular graph functions.

Remark 10.2 A more precise statement about the Laplace equation (7) can be derived

from the differential equations (6). In fact, the differential equations with respect to ∂ , ∂

are the more fundamental structure. This simplicity is obscured when looking only at the

Laplace operator. Recently, a generalisation of modular graph functions called modular

graph forms were introduced in [11]. These define functions in M of more general mod-

ular weights (r, s), and, up to scaling by L±, are closed under the action of ∂ , ∂ . It suggests

that one should try to find systems of differential equations, with respect to ∂ , ∂ , satisfied

by modular graph forms using partial fraction identities (see [11], (2.30)), and match their

solutions with elements in MI
E[L±].

We briefly explain how the previous theorem relates to a recent observation in [12]

for modular graph functions. Suppose that f ∈ MI
E of modular weights (w,w). Then,

Lwf is modular invariant, and by (7) and repeated application of (2.23) it satisfies an

inhomogenous Laplace eigenvalue equation with eigenvalue

−(2w + 2w − 2 + 2w − 4 + · · · + 2 + 0) = −2

(
w

2

)
= −w(w − 1) .

It was observed in [12] that dihedral modular graph functions satisfy an inhomogeneous

Laplace equation with eigenvalue −s(s − 1), where s is a positive integer, and the same

statement was proved in [14] for two-loop modular graphs functions using the represen-

tation theory of SO(2, 1).

The M-filtration can be made more precise. If F ∈ MI
E of M-filtration ≤ 2m, then

the coefficient of L−k in the constant part F0 of F is a single-valued multiple zeta value of

weight ≤ k +m. If one assumes (for example, by replacing multiple zeta values with their

motivic versions) that multiple zeta values are graded, rather than filtered, by weight, then

this filtration would also be a grading. For example, the elements Er,s have constant parts

E
0
r,s ∈ L Q + L−r−s ζ (r + s + 1)Q .
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The (MZV)-weight of ζ (r + s+ 1) is (conjecturally) r + s+ 1, and the weight of a rational

number is 0. This is entirely consistent with degM Er,s = 2.

This theorem and further properties of MI
E will be proved in the sequel.

11 Meromorphic primitives of cusp forms

We revisit the problem of finding primitives of cusp forms. If we allow poles at the cusp,

then we can indeed construct modular equivariant versions of cusp forms [4].

11.1 Weakly analytic variant ofM

Let M!
r,s denote the vector space of functions f : H → C which are real analytic modular

of weights (r, s) ∈ Z2 admitting an expansion of the form

f (q) =

N∑

k=−N

Lk

⎛
⎝ ∑

m,n≥−M

a(k)m,nq
mqn

⎞
⎠

for some integersM,N ∈ N, i.e. with poles in q, q at 0. Let

M
! =

⊕

r,s

M
!
r,s .

It is a bigraded algebra and satisfies M! = M[�(z)−1,�(z)
−1

] where �(z) denotes the

Heckenormalised cusp formofweight 12.This ring of functions satisfies similar properties

to M, and is equipped with operators ∂ , ∂ ,� as defined earlier.

Definition 11.1 Define a space of modular iterated integrals MI
! ⊂ M as follows. Let

MI
!
−1 = 0 and let MI

!
k ⊂ M be the largest subspace which is contained in the positive

quadrant (modular weights (r, s) with r, s ≥ 0), such that

∂MI
!
k ⊂ MI

!
k + M![L] × MI

!
k−1,

∂MI
!
k ⊂ MI

!
k + M![L] × MI

!
k−1 .

We now give some examples of elements in MI
!
k for k ≤ 2.

11.2 Primitives of cusp forms

The following theorem is proved in [4].

Theorem 11.2 For every cusp form f ∈ Sn, there exists a canonical family of functions

H(f )r,s for all r, s ≥ 0, with r + s = n satisfying

∂ H(f )n,0 = Lf

∂ H(f )r,s = (r + 1)H(f )r+1,s−1 for all 1 ≤ s ≤ w

and

∂ H(f )0,n = L s(f ),

∂ H(f )r,s = (s + 1)H(f )r−1,s+1 for all 1 ≤ r ≤ w,

where s(f ) ∈ S!n is a weakly holomorphic modular form canonically associated with f . The

H(f )r,s are eigenfunctions of the Laplacian with eigenvalue −n.
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If we write

H(f ) =
∑

r+s=n

H(f )r,s(X − zY )r(X − zY )s,

then the system of equations above are equivalent to

dH(f ) = π if (z)(X − zY )ndz + π i s(f )(z)(X − zY )ndz. (11.1)

In [1] §18, these formulae were generalised to all higher order iterated integrals. We

show in [4] that MI
!
0 = C[L−1], and prove:

Theorem 11.3 MI
!
1 is the free C[L−1]-module generated by the H(f )r,s .

11.3 New elements in Mr,s

By multiplying by a suitable power of �(z)�(z) to clear the poles at the cusp, we obtain

elements in M. For every cusp form f ∈ Sn,

�(z)
N

H(f )r,s ∈ M

for sufficiently large N (in fact, N = dim Sn will do). In particular,

�(z)H(�(z))r,s ∈ Mr,s+12 .

This provides further evidence that the space of modular forms M contains potentially

interesting elements.

11.4 Double integrals

Having defined the weakly holomorphic modular primitives of cusp forms, we can use

them to construct equivariant double integrals of an Eisenstein series and a cusp form, or

two cusp forms. The definition is along very similar lines to Sect. 9: consider the indefinite

integrals of the one-forms:

f ⊗ H(g) + H(f ) ⊗ g or f ⊗ En + H(f ) ⊗ En+2.

They are closed by (11.1), and so their indefinite integrals are well-defined (homotopy

invariant). The general strategy is always the same: let

� =
∑

r+s=n

ωr,s(X − zY )r(X − zY )s

with d� = 0, and ωr,s ∈ M!
r+2,sdz + M!

r,s+2dz (which implies that �(γ z)
∣∣
γ

= �(z) for

all γ ∈ SL2(Z)). Consider the indefinite integral

F (z) =

∫ z0

z
�

where z0 ∈ H is any point. Then,

γ 
→ F (γ z)
∣∣
γ

− F (z) ∈ Z1(SL2(Z);Vn ⊗ C)

is a cocycle. By the Eichler–Shimura theorem, we can add primitives of holomorphic

modular forms, anti-holomorphic cusp forms, and constants to F to make this cocycle

vanish (this is a generalisation of the proof of Lemma 3.12). The resulting function is
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therefore modular equivariant. Extracting the coefficients in the manner of Proposition

7.1, we obtain non-trivial functions in MI
!
2.

As above, by multiplying by sufficiently large powers of �(z)�(z), we can clear poles in

the denominators to obtain yet more elements in M, and so on.
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