A Class of Non-Holonomic Projective Connections on Sub-Riemannian Manifolds

Yanling Han ${ }^{\text {a,b }}$, Fengyun Fu $^{\text {c }}$, Peibiao Zhao ${ }^{\text {a }}$
${ }^{a}$ Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
${ }^{b}$ School of Science, Qilu University of Technology, Jinan 250353, P. R. China
${ }^{\text {c School of Mathematics and Statistics, Guangdong University of Finance and Economics, Guangzhou 510320, P. R. China }}$

Abstract

The authors define a semi-symmetric non-holonomic (SSNH)-projective connection on subRiemannian manifolds and find an invariant of the SSNH-projective transformation. The authors further derive that a sub-Riemannian manifold is of projective flat if and only if the Schouten curvature tensor of a special SSNH-connection is zero.

1. Introduction

Since A. Friedmann and J. A. Schouten [8], in the early days of 1924, firstly introduced the concept of semi-symmetric linear connections, the research related to the semi-symmetric connection was unusually brilliant, and made a series of fruitful research results.
K. Yano [21] introduced and studied the semi-symmetric metric connection of Riemannian manifolds. N. S. Agashe and M. R. Chafle [1] introduced a semi-symmetric non-metric connection on a Riemannian manifold and this was further studied by U. C. De etc. [4-7], T. Imai [15], P. B. Zhao and H. Z. Song [27], and so on.
D. K. Sen and J. R. Vastane [19] studied the Weyl manifold by using the idea of semi-symmetric connections. Later the Weyl structure was extended in the semi-Riemannian distribution framework by O. Constantinescu and M. Crasmareanu, see [3]. I. Hinterleitner and J. Mikeš [13] studied the geodesic mappings onto Weyl manifolds. M. Tripathi and N. Nakkar [20] studied the semi-symmetric non-metric connection in a Kenmotsu manifold. B. Barua and A. K. Ray [2] studied the curvature properties of semisymmetric metric connections and derived a sufficient and necessary condition for the Ricci tensor being of symmetric.
H. B. Yilmaz, F. O. Zengin and S. Aynur Uysal [22] considered a manifold equipped with a semisymmetric metric connection whose torsion tensor satisfied a special condition and proved that if a manifold

[^0]mentioned as above was conformally flat, then it was a mixed quasi-Einstein manifold. F. Y. Fu, X. P. Yang and P. B. Zhao [9] considered the geometric and physical properties of conformal mappings for the semiRiemannian manifolds.
J. Mikeš $[17,18]$ studied the projective and geodesic mappings of special Riemannian spaces. F. Y. Fu and P. B. Zhao [10] studied the geodesic mapping of pseudo-symmetric Riemannian Manifolds. In particular, the second author [23] recently studied the conformal and projective characteristics of sub-Riemannian manifolds by using the so-called non-holonomic sub-Riemannian connection. I. Hinterleitner [11] studied geodesic mappings on compact Riemannian manifolds. I. Hinterleitner and J. Mikeš [12, 13, 16] studied projective and affine connections. M. Zlatanović and etc. [24-26] studied geodesic mappings and similar problems.

However, to the author's knowledge, the study of geometric and analysis in sub-Riemannian manifolds on view of the semi-symmetric metric connection in sub-Riemannian manifolds is still a gap.

In this paper, we will, based on the setting of [14], investigate a class of semi-symmetric non-holonomic connections, find the sub-Weyl projective invariant, and study the projective flatness of sub-Riemannian manifolds.

2. The SSNH-Projective Transformation

Let $\left(M, \Delta, g_{\Delta}\right)$ be a n-dimensional sub-Riemannian manifold, where Δ is a ℓ-dimensional sub-bundle of tangent bundles, and is called a horizontal bundle, and g_{Δ} is a Riemannian metric defined on Δ. In particular, when $\Delta=T M,\left(M, \Delta, g_{\Delta}\right)$ will be degenerated into a Riemanian manifold. Without loss of generality, we assume $\Delta \neq T M$. In this subsection, we will define a semi-symmetric non-holonomic(SSNH) metric connection and discuss the SSNH-projective transformation following the work in [14].

We use unless otherwise noted the following ranges for indices: $i, j, k, h, \cdots \in\{1, \cdots, \ell\}$. The repeated indices with one upper index and one lower index indicates the summation over their range. The projection of X on the horizontal bundle is denoted by X_{h}.
Definition 2.1. A non-holonomic connection on sub-bundle $Q \subset T M$ is a mapping $\nabla: \Gamma(Q) \times \Gamma(Q) \rightarrow \Gamma(Q)$ satisfying the following

$$
\nabla_{X_{h}}\left(Y_{h}+Z_{h}\right)=\nabla_{X_{h}} Y_{h}+\nabla_{X_{h}} Z_{h}, \nabla_{X_{h}}\left(f Y_{h}\right)=X_{h}(f) Y_{h}+f \nabla_{X_{h}} Y_{h}, \nabla_{f X_{h}+g Y_{h}} Z_{h}=f \nabla_{X_{h}} Z_{h}+g \nabla_{Y_{h}} Z_{h}
$$

where $X, Y, Z \in \Gamma(T M), f, g \in C^{\infty}(M)$.
Definition 2.2. A non-holonomic connection is said to be metric and symmetric if it satisfies respectively,

$$
\begin{aligned}
& \left(\nabla_{Z_{h}} g_{\Delta}\right)\left(X_{h}, Y_{h}\right)=Z_{h}\left(g_{\Delta}\left(X_{h}, Y_{h}\right)\right)-g_{\Delta}\left(\nabla_{Z_{h}} X_{h}, Y_{h}\right)-g_{\Delta}\left(X_{h}, \nabla_{Z_{h}} Y_{h}\right)=0, \\
& \left.T\left(X_{h}, Y_{h}\right)\right)=\nabla_{X_{h}} Y_{h}-\nabla_{Y_{h}} X_{h}-\left[X_{h}, Y_{h}\right]_{h}=0 .
\end{aligned}
$$

Definition 2.3. A non-holonomic connection is said to be a sub-Riemannian connection if it is both metric and symmetric.

Definition 2.4. A horizontal curve $\gamma(t):[0,1] \rightarrow M$ (i.e. $\dot{\gamma}(t) \in \Delta_{\gamma(t)}$) is said to be a sub-Riemannian parallel (in briefly, $S R$-parallel) curve if it satisfies

$$
\begin{equation*}
\nabla_{\dot{\gamma}} \dot{\gamma}=0, \tag{1}
\end{equation*}
$$

where ∇ is the sub-Riemannian connection.
Let $\gamma: x^{a}=x^{a}(t)$, the corresponding equation (1) is

$$
\begin{equation*}
\frac{d^{2} x^{k}}{d t^{2}}+\left\{_{i j}^{k}\right\} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}=0 \tag{2}
\end{equation*}
$$

where t is an affine parameter.

Definition 2.5. Let D_{1}, D_{2} be two classes of non-holonomic connections. If a $S R$-parallel curve corresponding to D_{1} coincides always with one corresponding to D_{2}, then we say that D_{1} is a projective correspondence to D_{2}.

The second author [23] proved that a non-holonomic symmetric connection D is a projective correspondence if and only if there exists a smooth horizontal 1-form φ (i.e. a 1-form defined on Δ), such that, for any two horizontal vector fields X_{h}, Y_{h}, there holds

$$
\begin{equation*}
D_{X_{h}} Y_{h}=\nabla_{X_{h}} Y_{h}+\varphi\left(X_{h}\right) Y_{h}+\varphi\left(Y_{h}\right) X_{h} . \tag{3}
\end{equation*}
$$

If D is a non-holonomic connection with torsion, then we have the following
Proposition 2.6. A non-holonomic connection D with torsion is a projective correspondence to ∇ if and only if there exists 1-form λ such that the symmetric part of tensor $A\left(X_{h}, Y_{h}\right)=D_{X_{h}} Y_{h}-\nabla_{X_{h}} Y_{h}$ is of the form

$$
\begin{equation*}
\left(A\left(X_{h}, Y_{h}\right)+A\left(Y_{h}, X_{h}\right)\right) / 2=\lambda\left(X_{h}\right) Y_{h}+\lambda\left(Y_{h}\right) X_{h}, \text { for } X, Y \in \Gamma(T M) \tag{4}
\end{equation*}
$$

Proof. The necessity is obvious. We only prove the sufficiency. If (4) holds, we denote by $\left(D_{X_{h}} Y_{h}+D_{Y_{h}} X_{h}\right) / 2=$ $\tilde{D}_{X_{h}} Y_{h},\left(\nabla_{X_{h}} Y_{h}+\nabla_{Y_{h}} X_{h}\right) / 2=\tilde{\nabla}_{X_{h}} Y_{h}$, then (4) is equivalent to $\tilde{D}_{X_{h}} Y_{h}-\tilde{\nabla}_{X_{h}} Y_{h}=\lambda\left(X_{h}\right) Y_{h}+\lambda\left(Y_{h}\right) X_{h}$. Hence \tilde{D} and $\tilde{\nabla}$ have the same SR-parallel curves by (3).

On the other hand, if $\gamma(t)$ is a SR-parallel curve of D, then $\gamma(t)$ is also a SR-parallel curve of \tilde{D} by a simple computation. Hence \tilde{D} and D also have the same SR-parallel curves, so do $\tilde{\nabla}$ and ∇. Therefore, D and ∇ have the same SR-parallel curves, namely, D is a projective correspondence of ∇.

Definition 2.7. If $\bar{\nabla}$ is a projective correspondence to ∇ with torsion,

$$
\begin{equation*}
\bar{T}\left(X_{h}, Y_{h}\right)=\pi\left(Y_{h}\right) X_{h}-\pi\left(X_{h}\right) Y_{h} \tag{5}
\end{equation*}
$$

where π is a given 1-form, then we say that $\bar{\nabla}$ is a semi-symmetric non-holonomic projective connection, in briefly, a SSNH-projective connection.

Theorem 2.8. $\bar{\nabla}$ is a SSNH-projective connection if and only if there exist two 1-form p, q such that

$$
\begin{equation*}
\bar{\nabla}_{X_{h}} Y_{h}=\nabla_{X_{h}} Y_{h}+p\left(X_{h}\right) Y_{h}+q\left(Y_{h}\right) X_{h} \tag{6}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$.
Proof. Let $A\left(X_{h}, Y_{h}\right)=\bar{\nabla}_{X_{h}} Y_{h}-\nabla_{X_{h}} Y_{h}$. Since $\bar{\nabla}$ is a SSNH-projective connection, from Proposition 2.6, there exists a smooth 1-form φ such that

$$
\begin{equation*}
\left(A\left(X_{h}, Y_{h}\right)+A\left(Y_{h}, X_{h}\right)\right) / 2=\varphi\left(X_{h}\right) Y_{h}+\varphi\left(Y_{h}\right) X_{h}, \text { for } X, Y \in T M \tag{7}
\end{equation*}
$$

and 1-form π such that the torsion of $\bar{\nabla}$ is of the form $\bar{T}\left(X_{h}, Y_{h}\right)=\pi\left(Y_{h}\right) X_{h}-\pi\left(X_{h}\right) Y_{h}$, we can deduce from the above equation

$$
\begin{equation*}
A\left(X_{h}, Y_{h}\right)-A\left(Y_{h}, X_{h}\right)=\pi\left(Y_{h}\right) X_{h}-\pi\left(X_{h}\right) Y_{h} . \tag{8}
\end{equation*}
$$

By (6) and (8), we arrive at $A\left(X_{h}, Y_{h}\right)=(\varphi-\pi / 2)\left(X_{h}\right) Y_{h}+(\varphi+\pi / 2)\left(Y_{h}\right) X_{h}$ for $p=\varphi-\pi / 2, q=\varphi+\pi / 2$.
Conversely, we assume $\bar{\nabla}_{X_{h}} Y_{h}=\nabla_{X_{h}} Y_{h}+p\left(Y_{h}\right) X_{h}+q\left(X_{h}\right) Y_{h}$, then

$$
\begin{aligned}
& \left(A\left(X_{h}, Y_{h}\right)+A\left(Y_{h}, X_{h}\right)\right) / 2=\frac{p+q}{2}\left(Y_{h}\right) X_{h}+\frac{p+q}{2}\left(X_{h}\right) Y_{h} \\
& A\left(X_{h}, Y_{h}\right)-A\left(Y_{h}, X_{h}\right)=(p-q)\left(Y_{h}\right) X_{h}-(p-q)\left(X_{h}\right) Y_{h}
\end{aligned}
$$

By virtue of Proposition 2.6 again, we know $\bar{\nabla}$ is a projective correspondence to ∇, and we get

$$
\bar{T}\left(X_{h}, Y_{h}\right)=\bar{\nabla}_{X_{h}} Y_{h}-\bar{\nabla}_{Y_{h}} X_{h}-\left[X_{h}, Y_{h}\right]_{h}=(p-q)\left(Y_{h}\right) X_{h}-(p-q)\left(X_{h}\right) Y_{h} .
$$

Let $\pi=p-q$, then $\bar{T}\left(X_{h}, Y_{h}\right)=\pi\left(Y_{h}\right) X_{h}-\pi\left(X_{h}\right) Y_{h}$.
This completes the proof of Theorem 2.8.

In a basis $\left\{e_{i}\right\},(6)$ can be rewritten as

$$
\bar{\Gamma}_{i j}^{k}=\left\{{ }_{i j}^{k}\right\}+p_{i} \delta_{j}^{k}+q_{j} \delta_{i}^{k}=\left\{\left\{_{i j}^{k}\right\}+\varphi_{i} \delta_{j}^{k}+\varphi_{j} \delta_{i}^{k}+\rho_{j} \delta_{i}^{k}-\rho_{i} \delta_{j}^{k}\right.
$$

where $\rho_{i}=\pi_{i} / 2, p_{i}=\varphi_{i}-\rho_{i}, q_{i}=\varphi_{i}+\rho_{i}$. The Schouten curvature tensor, Ricci tensor and sub-Weyl projective curvature tensor are given, respectively, as

$$
\left\{\begin{array}{l}
\bar{R}_{i j k}^{h}=R_{i j k}^{h}+\beta_{i j} \delta_{k}^{h}+\alpha_{i k} \delta_{j}^{h}-\alpha_{j k} \delta_{i}^{h}-\delta_{k}^{h} \Omega_{i j}^{s} p_{s}-\Omega_{i j}^{h} p_{k}, \tag{9}\\
\bar{R}_{j k}=R_{j k}+\beta_{k j}-(\ell-1) \alpha_{j k}-\Omega_{k j}^{s} p_{s}-\Omega_{\varepsilon j}^{\varepsilon} p_{k}, \\
W_{i j k}^{h}=R_{i j k}^{h}+\frac{1}{\ell-1}\left(\delta_{j}^{h} R_{i k}-\delta_{i}^{h} R_{j k}\right),
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
\beta_{i j}=\left(\nabla_{i} p\right)\left(e_{j}\right)-\left(\nabla_{j} p\right)\left(e_{i}\right)=\varphi_{i j}-\varphi_{j i}+\rho_{j i}-\rho_{i j} \tag{10}\\
\alpha_{i j}=\left(\nabla_{i} q\right)\left(e_{j}\right)-q\left(e_{i}\right) q\left(e_{j}\right)=\varphi_{i j}+\rho_{i j}-\varphi_{i} \rho_{j}-\varphi_{j} \rho_{i}, \\
\varphi_{i j}=e_{i}\left(\varphi_{j}\right)-\Gamma_{i j}^{e} \varphi_{e}-\varphi_{i} \varphi_{j}=\nabla_{i} \varphi_{j}-\varphi_{i} \varphi_{j}, \\
\rho_{i j}=e_{i}\left(\rho_{j}\right)-\Gamma_{i j}^{e} \rho_{e}-\rho_{i} \rho_{j}=\nabla_{i} \rho_{j}-\rho_{i} \rho_{j} \\
R_{j k}=R_{\varepsilon j k^{\prime}}^{\varepsilon} \bar{R}_{j k}=\bar{R}_{\varepsilon j k}^{\varepsilon} .
\end{array}\right.
$$

Theorem 2.9. The tensor $S_{i j k}^{h}$ is an invariant under a SSNH-projective transformation, where

$$
\begin{align*}
S_{i j k}^{h}= & R_{i j k}^{h}+\frac{1}{\ell-1}\left(\delta_{j}^{h} R_{i k}-\delta_{i}^{h} R_{j k}\right) \\
& +\frac{1}{(\ell-1)\left(\ell^{2}-\ell-2\right)}\left\{\delta_{j}^{h}\left(R_{i k}-R_{k i}\right)-\delta_{i}^{h}\left(R_{j k}-R_{k j}\right)-(\ell-1) \delta_{k}^{h}\left(R_{i j}-R_{j i}\right)\right\} \\
& +\frac{1}{\ell^{2}-\ell-2}\left\{\delta_{j}^{h} A_{i k}-\delta_{i}^{h} A_{j k}-(\ell-1) \delta_{k}^{h} A_{i j}\right\}, \tag{11}
\end{align*}
$$

and $A_{i j}=R_{i j s}^{s}$.
Proof. For simplicity, we choose $\left\{e_{i}\right\}$ as a local frame field such that $\left[e_{i}, e_{j}\right] \in V M$, and hence we have $\Omega_{i j}^{h}=0$. Then the Schouten curvature tensors and Ricci curvature tensors can be written simply as

$$
\bar{R}_{i j k}^{h}=R_{i j k}^{h}+\beta_{i j} \delta_{k}^{h}+\alpha_{i k} \delta_{j}^{h}-\alpha_{j k} \delta_{i}^{h} \text { and } \bar{R}_{j k}=R_{j k}+\beta_{k j}-(\ell-1) \alpha_{j k},
$$

Let $k=h=\varepsilon$, and denote by $A_{i j}=R_{i j \varepsilon^{\prime}}^{\varepsilon} \bar{A}_{i j}=\bar{R}_{i j \varepsilon^{\prime}}^{\varepsilon}$, one obtains

$$
\bar{A}_{i j}=A_{i j}+\ell \beta_{i j}+\alpha_{i j}-\alpha_{j i}
$$

hence one arrives at

$$
\begin{aligned}
\beta_{j k} & =\frac{1}{\ell^{2}-\ell-2}\left[\left(\bar{R}_{j k}-\bar{R}_{k j}\right)-\left(R_{j k}-R_{k j}\right)+(\ell-1)\left(\bar{A}_{j k}-A_{j k}\right)\right] \\
\alpha_{j k} & =\frac{1}{\ell-1}\left(R_{j k}-\bar{R}_{j k}\right)-\frac{1}{(\ell-1)\left(\ell^{2}-\ell-2\right)}\left[\left(\bar{R}_{j k}-\bar{R}_{k j}\right)-\left(R_{j k}-R_{k j}\right)\right] \\
& -\frac{1}{(\ell-1)\left(\ell^{2}-\ell-2\right)}\left(\bar{A}_{j k}-A_{j k}\right) .
\end{aligned}
$$

moreover one has

$$
\begin{aligned}
\bar{R}_{i j k}^{h} & =R_{i j k}^{h}+\frac{\delta_{k}^{h}}{\ell^{2}-\ell-2}\left[\left(\bar{R}_{i j}-\bar{R}_{j i}\right)-\left(R_{i j}-R_{j i}\right)+(\ell-1)\left(\bar{A}_{i j}-A_{i j}\right)\right] \\
& +\frac{\delta_{j}^{h}}{\ell-1}\left(R_{i k}-\bar{R}_{i k}\right)-\frac{\delta_{j}^{h}}{(\ell-1)\left(\ell^{2}-\ell-2\right)}\left[\left(\bar{R}_{i k}-\bar{R}_{k i}\right)-\left(R_{i k}-R_{k i}\right)\right] \\
& -\frac{\delta_{j}^{h}}{(\ell-1)\left(\ell^{2}-\ell-2\right)}\left(\bar{A}_{i k}-A_{i k}\right)-\frac{\delta_{i}^{h}}{\ell-1}\left(R_{j k}-\bar{R}_{j k}\right) \\
& +\frac{\delta_{i}^{h}}{(\ell-1)\left(\ell^{2}-\ell-2\right)}\left[\left(\bar{R}_{j k}-\bar{R}_{k j}\right)-\left(R_{j k}-R_{k j}\right)\right] \\
& +\frac{\delta_{i}^{h}}{(\ell-1)\left(\ell^{2}-\ell-2\right)}\left(\bar{A}_{j k}-A_{j k}\right) .
\end{aligned}
$$

Rewriting the above equation by

$$
\begin{aligned}
& \bar{R}_{i j k}^{h}-\frac{\delta_{k}^{h}}{\ell^{2}-\ell-2}\left(\bar{R}_{i j}-\bar{R}_{j i}\right)+\frac{\ell-1}{\ell^{2}-\ell-2} \delta_{k}^{h} \bar{A}_{i j}+\frac{1}{\ell-1} \delta_{j}^{h} \bar{R}_{i k} \\
& +\frac{1}{(\ell-1)\left(\ell^{2}-\ell-2\right)} \delta_{j}^{h}\left(\bar{R}_{i k}-\bar{R}_{k i}\right)+\frac{1}{(\ell-1)\left(\ell^{2}-\ell-2\right)} \delta_{j}^{h} \bar{A}_{i k} \\
& -\frac{1}{\ell-1} \delta_{i}^{h} \bar{R}_{j k}-\frac{1}{(\ell-1)\left(\ell^{2}-\ell-2\right)} \delta_{i}^{h}\left(\bar{R}_{j k}-\bar{R}_{k j}\right)-\frac{1}{(\ell-1)\left(\ell^{2}-\ell-2\right)} \delta_{i}^{h} \bar{A}_{j k} \\
= & R_{i j k}^{h}-\frac{\delta_{k}^{h}}{\ell^{2}-\ell-2}\left(R_{i j}-R_{j i}\right)+\frac{\ell-1}{\ell^{2}-\ell-2} \delta_{k}^{h} A_{i j}+\frac{1}{\ell-1} \delta_{j}^{h} R_{i k} \\
& +\frac{1}{(\ell-1)\left(\ell^{2}-\ell-2\right)} \delta_{j}^{h}\left(R_{i k}-R_{k i}\right)+\frac{1}{(\ell-1)\left(\ell^{2}-\ell-2\right)} \delta_{j}^{h} A_{i k} \\
& -\frac{1}{\ell-1} \delta_{i}^{h} R_{j k}-\frac{1}{(\ell-1)\left(\ell^{2}-\ell-2\right)} \delta_{i}^{h}\left(R_{j k}-R_{k j}\right)-\frac{1}{(\ell-1)\left(\ell^{2}-\ell-2\right)} \delta_{i}^{h} A_{j k}
\end{aligned}
$$

that is

$$
\begin{aligned}
& \bar{R}_{i j k}^{h}+\frac{1}{\ell-1}\left(\delta_{j}^{h} \bar{R}_{i k}-\delta_{i}^{h} \bar{R}_{j k}\right)+\frac{1}{(\ell-1)\left(\ell^{2}-\ell-2\right)}\left\{\delta_{j}^{h}\left(\bar{R}_{i k}-\bar{R}_{k i}\right)-\delta_{i}^{h}\left(\bar{R}_{j k}-\bar{R}_{k j}\right)\right. \\
& \left.-(\ell-1) \delta_{k}^{h}\left(\bar{R}_{i j}-\bar{R}_{j i}\right)\right\}+\frac{1}{\ell^{2}-\ell-2}\left\{\delta_{j}^{h} \bar{A}_{i k}-\delta_{i}^{h} \bar{A}_{j k}-(\ell-1) \delta_{k}^{h} \bar{A}_{i j}\right\} \\
= & R_{i j k}^{h}+\frac{1}{\ell-1}\left(\delta_{j}^{h} R_{i k}-\delta_{i}^{h} R_{j k}\right)+\frac{1}{(\ell-1)\left(\ell^{2}-\ell-2\right)}\left\{\delta_{j}^{h}\left(R_{i k}-R_{k i}\right)-\delta_{i}^{h}\left(R_{j k}-R_{k j}\right)\right. \\
& \left.-(\ell-1) \delta_{k}^{h}\left(R_{i j}-R_{j i}\right)\right\}+\frac{1}{\ell^{2}-\ell-2}\left\{\delta_{j}^{h} A_{i k}-\delta_{i}^{h} A_{j k}-(\ell-1) \delta_{k}^{h} A_{i j}\right\} .
\end{aligned}
$$

Denote by

$$
\begin{aligned}
\bar{S}_{i j k}^{h}= & \bar{R}_{i j k}^{h}+\frac{1}{\ell-1}\left(\delta_{j}^{h} \bar{R}_{i k}-\delta_{i}^{h} \bar{R}_{j k}\right)+\frac{1}{(\ell-1)\left(\ell^{2}-\ell-2\right)}\left\{\delta_{j}^{h}\left(\bar{R}_{i k}-\bar{R}_{k i}\right)-\delta_{i}^{h}\left(\bar{R}_{j k}-\bar{R}_{k j}\right)\right. \\
& \left.-(\ell-1) \delta_{k}^{h}\left(\bar{R}_{i j}-\bar{R}_{j i}\right)\right\}+\frac{1}{\ell^{2}-\ell-2}\left\{\delta_{j}^{h} \bar{A}_{i k}-\delta_{i}^{h} \bar{A}_{j k}-(\ell-1) \delta_{k}^{h} \bar{A}_{i j}\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
S_{i j k}^{h}= & R_{i j k}^{h}+\frac{1}{\ell-1}\left(\delta_{j}^{h} R_{i k}-\delta_{i}^{h} R_{j k}\right)+\frac{1}{(\ell-1)\left(\ell^{2}-\ell-2\right)}\left\{\delta_{j}^{h}\left(R_{i k}-R_{k i}\right)-\delta_{i}^{h}\left(R_{j k}-R_{k j}\right)\right. \\
& \left.-(\ell-1) \delta_{k}^{h}\left(R_{i j}-R_{j i}\right)\right\}+\frac{1}{\ell^{2}-\ell-2}\left\{\delta_{j}^{h} A_{i k}-\delta_{i}^{h} A_{j k}-(\ell-1) \delta_{k}^{h} A_{i j}\right\} .
\end{aligned}
$$

then one obtains $S_{i j k}^{h}=\bar{S}_{i j k}^{h}$. This ends the proof of Theorem 2.9.
We now similarly define the sub-Weyl projective curvature tensor of the SSNH-projective connection by

$$
\begin{equation*}
\bar{W}_{i j k}^{h}=\bar{R}_{i j k}^{h}+\frac{1}{\ell-1}\left(\delta_{j}^{h} \bar{R}_{i k}-\delta_{i}^{h} \bar{R}_{j k}\right), \tag{12}
\end{equation*}
$$

then we have

$$
\begin{aligned}
\bar{W}_{i j k}^{h} & =W_{i j k}^{h}+\delta_{k}^{h}\left(\beta_{i j}-\Omega_{i j}^{s} p_{s}\right)+\frac{1}{\ell-1}\left(\delta_{j}^{h} \beta_{i k}-\delta_{i}^{h} \beta_{j k}\right) \\
& -\frac{1}{\ell-1}\left(\delta_{j}^{h} \Omega_{k i}^{s}-\delta_{i}^{h} \Omega_{k j}^{s}\right) p_{s}-\left[\Omega_{i j}^{h}-\frac{1}{\ell-1}\left(\delta_{j}^{h} \Omega_{i \varepsilon}^{\varepsilon}-\delta_{i}^{h} \Omega_{j \varepsilon}^{\varepsilon}\right)\right] p_{k} .
\end{aligned}
$$

We denote by

$$
\begin{aligned}
B_{i j k}^{h} & =\delta_{k}^{h}\left(\beta_{i j}-\Omega_{i j}^{s} p_{s}\right)+\frac{1}{\ell-1}\left(\delta_{j}^{h} \beta_{i k}-\delta_{i}^{h} \beta_{j k}\right) \\
& -\frac{1}{\ell-1}\left(\delta_{j}^{h} \Omega_{k i}^{s}-\delta_{i}^{h} \Omega_{k j}^{s}\right) p_{s}-\left[\Omega_{i j}^{h}-\frac{1}{\ell-1}\left(\delta_{j}^{h} \Omega_{i \varepsilon}^{\varepsilon}-\delta_{i}^{h} \Omega_{j \varepsilon}^{\varepsilon}\right)\right] p_{k}
\end{aligned}
$$

then it is obvious that $\bar{W}_{i j k}^{h}=W_{i j k}^{h}+B_{i j k}^{h}$.
Definition 2.10. If the 1-form p and q in (6) are horizontally closed, that is,

$$
\begin{aligned}
& d p\left(X_{h}, Y_{h}\right)=X_{h}\left(p\left(Y_{h}\right)\right)-Y_{h}\left(p\left(X_{h}\right)\right)-p\left(\left[X_{h}, Y_{h}\right]_{h}\right)=0 \\
& d q\left(X_{h}, Y_{h}\right)=X_{h}\left(q\left(Y_{h}\right)\right)-Y_{h}\left(q\left(X_{h}\right)\right)-q\left(\left[X_{h}, Y_{h}\right]_{h}\right)=0
\end{aligned}
$$

then we call a SSNH-projective connection $\tilde{\nabla}$ the special SSNH-projective connection.
Theorem 2.11. The sub-Weyl projective curvature tensor is an invariant under a special SSNH-projective transformation.

Proof. If $\tilde{\nabla}$ is a special SSNH-projective connection, then the 1-form p and q in (9) are all horizontally closed. Therefore there holds

$$
\begin{aligned}
& 0=d p\left(e_{i}, e_{j}\right)=e_{i}\left(p_{j}\right)-e_{i}\left(p_{j}\right)-p\left(\left[e_{i}, e_{j}\right]_{h}\right)=\varphi_{i j}-\varphi_{j i}+\rho_{i j}-\rho_{j i} \\
& 0=d q\left(e_{i}, e_{j}\right)=e_{i}\left(q_{j}\right)-e_{i}\left(q_{j}\right)-q\left(\left[e_{i}, e_{j}\right]_{h}\right)=\varphi_{i j}-\varphi_{j i}+\rho_{j i}-\rho_{i j}
\end{aligned}
$$

By adding above two equations one gets $\varphi_{i j}=\varphi_{j i}$, and $\rho_{i j}=\rho_{j i}$ by subtracting these equations. Then one obtains $\beta_{i j}=0$ and

$$
\tilde{R}_{i j k}^{h}=R_{i j k}^{h}+\alpha_{i k} \delta_{j}^{h}-\alpha_{j k} \delta_{i}^{h}
$$

Contracting by i and h, one gets

$$
\tilde{R}_{j k}=R_{j k}-(\ell-1) \alpha_{j k}
$$

Therefore, one obtains

$$
\begin{aligned}
\tilde{W}_{i j k}^{h} & =\tilde{R}_{i j k}^{h}+\frac{1}{\ell-1}\left(\delta_{j}^{h} \tilde{R}_{i k}-\delta_{i}^{h} \tilde{R}_{j k}\right) \\
& =R_{i j k}^{h}+\alpha_{i k} \delta_{j}^{h}-\alpha_{j k} \delta_{i}^{h}+\frac{1}{\ell-1} \delta_{j}^{h}\left(R_{i k}-(\ell-1) \alpha_{i k}\right)-\frac{1}{\ell-1} \delta_{i}^{h}\left(R_{j k}-(\ell-1) \alpha_{j k}\right) \\
& =W_{i j k}^{h} .
\end{aligned}
$$

The proof is finished.

Remark 2.12. It is obvious that a projectively flat sub-Riemannina manifold is transformed to a projectively flat sub-Riemannina manifold by a SSNH-projective transformation.

Theorem 2.13. A sub-Riemannian manifold $\left(M, \Delta, g_{\Delta}\right)$ is projective flat if and only if the Schouten curvature tensor \tilde{R} of the special SSNH-projective connection \tilde{D} is vanished.

Proof. If $\tilde{\nabla}$ is a special SSNH-projective connection and

$$
\begin{equation*}
\tilde{R}_{i j k}^{h}=R_{i j k}^{h}+\beta_{i j} \delta_{k}^{h}+\alpha_{i k} \delta_{j}^{h}-\alpha_{j k} \delta_{i}^{h}=0, \tag{13}
\end{equation*}
$$

then by contracting (13) with i, h, we have $\tilde{R}_{j k}=R_{j k}+\beta_{k j}-(\ell-1) \alpha_{j k}=0$. Since $\tilde{\nabla}$ is special, then the 1 -form p is horizontally closed. Hence we get $\beta_{i j}=0$, and

$$
\begin{equation*}
R_{i j k}^{h}=\alpha_{j k} \delta_{i}^{h}-\alpha_{i k} \delta_{j}^{h}, R_{i k}=(\ell-1) \alpha_{i k}, \tag{14}
\end{equation*}
$$

By substituting (14) into the following equation

$$
W_{i j k}^{h}=R_{i j k}^{h}+\frac{1}{\ell-1}\left(\delta_{j}^{h} R_{i k}-\delta_{i}^{h} R_{j k}\right)
$$

we obtain $W_{i j k}^{h}=0$, that is, M is projectively flat.
Conversely, if M is projectively flat, then $W_{i j k}^{h}=0$, and $R_{i j k}^{h}=\frac{1}{\ell-1}\left(\delta_{i}^{h} R_{j k}-\delta_{j}^{h} R_{i k}\right)$, namely, $R_{i j k h}=\frac{1}{\ell-1}\left(g_{i h} R_{j k}-\right.$ $g_{j h} R_{i k}$). Since $R_{i j h h}=0$, we get $R_{i k}=\frac{R}{\ell} g_{i k}$. If the 1 -form p is horizontally closed, then the equation $\tilde{R}_{i j}=R_{i j}+\beta_{i j}-(\ell-1) \alpha_{i j}=0$ is equivalent to

$$
\begin{equation*}
\left(\nabla_{i} q\right)\left(e_{j}\right)-q_{i} q_{j}=\frac{R}{\ell(\ell-1)} g_{i j} \tag{15}
\end{equation*}
$$

where $\left(\nabla_{i} q\right)\left(e_{j}\right)-q_{i} q_{j}=\alpha_{i j}$.
Now taking a covariant derivative of Equation (15), we get

$$
\begin{aligned}
& \left(\nabla_{i} \nabla_{j} q\right)\left(e_{k}\right)+\left(\nabla_{j} q\right)\left(\nabla_{i} e_{k}\right)-\left(\nabla_{i} q\right)\left(e_{j}\right) q\left(e_{k}\right)-q\left(\nabla_{i} e_{j}\right) q\left(e_{k}\right)-q\left(e_{j}\right)\left(\nabla_{i} q\right)\left(e_{k}\right)-q\left(\nabla_{i} e_{k}\right) q\left(e_{j}\right) \\
& =\frac{K}{\ell(\ell-1)}\left(g\left(\nabla_{i} e_{j}, e_{k}\right)+g\left(e_{j}, \nabla_{i} e_{k}\right)\right) \\
& =\left(\nabla_{\nabla_{i} e_{j}} q\right)\left(e_{k}\right)-q\left(\nabla_{i} e_{j}\right) q\left(e_{k}\right)+\left(\nabla_{j} q\right)\left(\nabla_{i} e_{k}\right)-q\left(\nabla_{i} e_{k}\right) q\left(e_{j}\right),
\end{aligned}
$$

where the last equality follows from Equation (15). Namely,

$$
\begin{equation*}
\left(\nabla_{i} \nabla_{j} q\right)\left(e_{k}\right)-\left(\nabla_{i} q\right)\left(e_{j}\right) q\left(e_{k}\right)-q\left(e_{j}\right)\left(\nabla_{i} q\right)\left(e_{k}\right)=\left(\nabla_{\nabla_{i} e_{j} q} q\left(e_{k}\right)\right. \tag{16}
\end{equation*}
$$

Since the horizontal 1-form p is closed, then by (15), (16) and $W_{i j k}^{h}=0$, we obtain

$$
\begin{equation*}
\left(\nabla_{i} \nabla_{j} q-\nabla_{j} \nabla_{i} q-\nabla_{\left[e_{i}, e_{j}\right]_{h}} q\right)\left(e_{k}\right)=-R_{i j k}^{h} q_{h} \tag{17}
\end{equation*}
$$

therefore there exists a solution q to Equation (15), let

$$
\begin{equation*}
\tilde{\Gamma}_{i j}^{k}=\left\{\left\{_{i j}^{k}\right\}+p_{i} \delta_{j}^{k}+q_{j} \delta_{i}^{k}\right. \tag{18}
\end{equation*}
$$

where p is a closed horizontal 1-form.
By Theorem 2.8, we know $\tilde{\nabla}$ whose connection coefficients are defined by (18) is a SSNH-projective connection. On the other hand, $\alpha_{i j}$ is proportional to $g_{i j}$ by (15), so it is symmetric and $d q\left(e_{i}, e_{j}\right)=\alpha_{i j}-\alpha_{j i}=0$, which implies that the 1-form q is horizontally closed.

This completes the proof of Theorem 2.13.

3. Example

Example 3.1. (Almost contact metric sub-Riemannian manifold)

Let $\left(M, \Delta, g_{\Delta}\right)$ be a $(2 n+1)$-dimensional sub-Riemannian manifold, an almost contact structure is denoted by (φ, ξ, η), where φ is a horizontal (1,1)-tensor field(i.e. $\left.\varphi\left(X_{h}\right) \in \Delta\right)$, ξ is a vector field and η is a 1-form such that

$$
\varphi^{2}=-I+\eta \otimes \xi, \eta(\xi)=1, g\left(\varphi X_{h}, \varphi Y_{h}\right)=g\left(X_{h}, Y_{h}\right)-\eta\left(X_{h}\right) \eta\left(Y_{h}\right)
$$

then $(M, \Delta, g, \varphi, \xi, \eta)$ is called an almost contact metric sub-Riemannian manifold. In virtue of this 1-form η, one defines a metric connection,

$$
\begin{equation*}
\tilde{\nabla}_{X_{h}} Y_{h}=\nabla_{X_{h}} Y_{h}+\eta\left(X_{h}\right) Y_{h}+\eta\left(Y_{h}\right) X_{h} \tag{19}
\end{equation*}
$$

in local coordinate, that is,

$$
\begin{equation*}
\tilde{\Gamma}_{i j}^{k}=\Gamma_{i j}^{k}+\eta_{i} \delta_{j}^{k}+\eta_{j} \delta_{i}^{k} \tag{20}
\end{equation*}
$$

where ∇ is the sub-Riemannian connection, then $\tilde{\nabla}$ is actually a SSNH-projective connection.
In fact, if $\gamma: x^{a}=x^{a}(t)$ is a SR-parallel curve with respect to sub-Riemannian connection, then it satisfies Equations (2), substituting (20) into the above Equations, one obtains,

$$
\frac{d^{2} x^{k}}{d t^{2}}+\tilde{\Gamma}_{i j}^{k} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}=-2 \eta_{i} \frac{d x^{i}}{d t} \frac{d x^{k}}{d t}
$$

Now we introduce a new parameter s by the equation

$$
s=\int e^{\int-2 \eta_{i} d x^{i}} d t
$$

and obtain the following relations by straight-forward calculation,

$$
\begin{aligned}
& \frac{d s}{d t}=e^{\int-2 \eta_{j} d x^{j}}, \frac{d^{2} s}{d t^{2}}=e^{\int-2 \eta_{j} d x^{j}}\left(-2 \eta_{j} \frac{d x^{j}}{d t}\right) \\
& \frac{d x^{i}}{d t}=e^{\int-2 \eta_{j} d x^{j}} \frac{d x^{i}}{d s}, \frac{d^{2} x^{i}}{d t^{2}}=e^{2 \int-2 \eta_{j} d x^{j}}\left(\frac{d^{2} x^{i}}{d s^{2}}-2 \eta_{j} \frac{d x^{j}}{d s} \frac{d x^{i}}{d s}\right)
\end{aligned}
$$

hence, we have

$$
\frac{d^{2} x^{k}}{d s^{2}}+\tilde{\Gamma}_{i j}^{k} \frac{d x^{i}}{d s} \frac{d x^{j}}{d s}=0
$$

that is $\gamma: x^{a}=x^{a}(t)$ is also a SR-parallel curve associated with the connection (19). On the other hand, one can prove the converse statement is also true by the same method. Therefore, the metric connection (19) is a SSNH-projective connection.

References

[1] N. S. Agashe and M. R. Chafle, A semi-symmetric non-metric connection in a Riemannian manifold, Indian J. Pure Appl. Math., 23 (1992), 399-409.
[2] B. Barua and A. K. Ray, Some properties of semisymmetric metric connection in a Riemannian manifold, Indian J. Pure Appl. Math., 16 (1985), 736-740.
[3] O. Constantinescu and M. Crasmareanu, Sub-Weyl geometry and its linear connections, Int. J. Geom. Methods Mod. Phys., 9 (2012).
[4] U. C. De and S. C. Biswas, On a type of semi-symmetric metric connection on a Riemannian manifold, Publ. Inst. Math. (Beograd) (N. S.), 61 (75) (1997), 90-96.
[5] U. C. De and D. Kamilya, Hypersurfaces of a Riemannian manifold with semi-symmetric non-metric connection, J. Indian Inst. Sci., 75 (1995), 707-710.
[6] U. C. De and G. C. Ghosh, On conformal flat special quasi-Einstein manifolds, Publ. Math. Debrecen, 57 (3-4) (2000), 297-306.
[7] U. C. De and J. Sengupta, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Bull. Cal. Math. Soc., 92 (2000),375-884.
[8] A. Friedmann and J. A. Schouten, Uber die Geometrie der. Halbsymmerischen. Uber tragung. Math. Z., 21 (1924), 211-233.
[9] F. Y. Fu, X. P. Yang, and P. B. Zhao, Geometrical and physical characteristics of some class of conformal mappings. J. Geom. Phys., 62 (6) (2012), 1467-1479.
[10] F. Y. Fu and P. B. Zhao, A property on geodesic mappings of pseudosymmetric Riemannian manifolds, Bull. Malays. Math. Sci. Soc., 33 (2) (2010), 265-272.
[11] I.Hinterleitner, Geodesic mappings on a compact Riemannian manifolds with conditions on sectional curvature, Publ. Inst. Math. (Beograd) (N.S.), 94 (108) (2013), 125-130.
[12] I.Hinterleitner and J. Mikeš, Geodesic mappings and differentiability of metrics affine and projective connections, Filomat, 29 (6) (2015), 1245-1249.
[13] I.Hinterleitner and J. Mikeš, Geodesic mappings onto Weyl manifolds, 8th Int. Conf. Appl. Math. (Aplimat 2009), Bratislava; 8th Int. Conf. Prol. (2009), 423-430.
[14] Y. L. Han, F. Y. Fu and P. B. Zhao, On semi-symmetric metric connection in sub-Riemannian manifold (to appear in Tamkang Journal of Mathematics)
[15] T. Imai, Notes on semi-symmetric metric connections, Tensor, 24 (1972), 293-296.
[16] J. Mikeš etc. al., Differential geometry of special mappings, Palacky Univ. Olomouc, Olomouc, 2015, 568pp.
[17] J. Mikeš, Geodesic and holomorphically projective mappings of special Riemannian spaces, PhD. Thesis, Odessa University (1979).
[18] J. Mikeš, Geodesic mappings on semisymmetric spaces, (Russian)Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 2, 37-43; translation in Russian Math. (Iz. VUZ), 38 (2) (1994), 35-41.
[19] D. K. Sen and J. R. Vastane, On Weyl and Lyra manifolds, J. Math. Phys., 13 (1972), 990-993.
[20] M. M. Tripathi and N. Nakkar, On a semi-symmetric non-metric connection in a Kenmotsu manifold , Bull. Cal. Math. Soc., 16 (4) (2001), 323-330.
[21] K. Yano, On semi-symmetric metric connection, Rev. Roum. Math. Pureset Appl., 15 (1970), 1579-1586.
[22] H. Yilmaz, F. Zengin and S. Uysal, On a Semi Symmetric Metric Connection with a Special Condition on a Riemannian Manifold, Eur. J. Pure Appl. Math., 4 (2011), 152-161.
[23] P. B. Zhao and L. Jiao, Conformal transformations on Carnot Carathéodory spaces, Nihonkai Math. J., 17 (2) 2006, 167-185.
[24] M. Zlatanović, I. Hinterleitner and M. Najdanović, On equitorsion concircular tensor of generalized Riemannian spaces, Filomat, 28 (3) (2014), 463-471.
[25] M. Zlatanović , L. S. Velimirović and M. S. Stanković, Necessary and sufficient conditions for equitorsion geodesic mapping, J. Math. Anal. Appl., 435 (1) (2016), 578-592.
[26] M. Zlatanović , S. M. Minc̆cić and L. S. Velimirović, On integrability conditions of derivation equations in a subspace of asymmetric affine connection space, Filomat, 29 (10) (2015), 2421-2427.
[27] P. B. Zhao and H. Z. Song, An invariant of the projective semi-symmetric connection, Chinese Quarterly J of Math., 16 (4) (2001), 49-54.

[^0]: 2010 Mathematics Subject Classification. Primary 53C20; Secondary 53D11
 Keywords. Sub-Riemannian manifolds, Non-holonomic connection, SSNH-projective connection.
 Received: 05 February 2015; Accepted: 07 May 2015
 Communicated by Mića Stanković
 The first author is supported by a Grant-in-Aid for Scientific Research from Nanjing University of Science and Technology (KN11008).

 The second author is supported by NSFC(No. 11526055).
 The third author is supported by a Grant-in-Aid for Science Research from Nanjing University of Science and Technology (30920140132035), by NUST Research Funding No.CXZZ11-0258, AD20370 and by the NNSF of China(No.11371194; No.11571172).

 Email addresses: hanyanling1979@163.com (Yanling Han), ffy1984229@163. com (Fengyun Fu), pbzhao@njust. edu. cn (Peibiao Zhao)

