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Abstract The effectiveness of regulatory actions designed to

improve air quality is often assessed by predicting changes in

public health resulting from their implementation. Risk of

premature mortality from long-term exposure to ambient air

pollution is the single most important contributor to such as-

sessments and is estimated from observational studies gener-

ally assuming a log-linear, no-threshold association between

ambient concentrations and death. There has been only limited

assessment of this assumption in part because of a lack of

methods to estimate the shape of the exposure-response func-

tion in very large study populations. In this paper, we propose

a new class of variable coefficient risk functions capable of

capturing a variety of potentially non-linear associations

which are suitable for health impact assessment. We construct

the class by defining transformations of concentration as the

product of either a linear or log-linear function of concentra-

tion multiplied by a logistic weighting function. These risk

functions can be estimated using hazard regression survival

models with currently available computer software and can

accommodate large population-based cohorts which are in-

creasingly being used for this purpose. We illustrate our

modeling approach with two large cohort studies of long-

term concentrations of ambient air pollution and mortality:

the American Cancer Society Cancer Prevention Study II

(CPS II) cohort and the Canadian Census Health and

Environment Cohort (CanCHEC). We then estimate the num-

ber of deaths attributable to changes in fine particulate matter

concentrations over the 2000 to 2010 time period in both
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Canada and the USA using both linear and non-linear hazard

function models.

Keywords Air pollution . Cohort . Exposure .Mortality .

Particulate matter

Introduction

Estimating the association between ambient concentrations of

outdoor air pollution and mortality has traditionally been con-

ducted with the use of cohort studies in which a group of

subjects are identified, important mortality risk factors record-

ed, and the cohort is followed up for vital status and cause of

death. Several cohort studies of ambient air pollution have

been conducted in North America and Western Europe

(Hoek et al., 2013). Although these studies have undergone

extensive analyses, there has been little attention paid to the

shape of the association between exposure and mortality.

Estimating the exposure-response relationships is critical to

assessing the impact of specific regulatory actions to improve

air quality on population mortality rates (Cohen et al., 2004,

Ostro 2004, Lim et al., 2012; US EPA, 2012; Murray et al.,

2015). Such analyses focus on predicting changes in the num-

ber of deaths associated with proposed or hypothesized chang-

es in ambient air quality for specific populations. Change in

death estimates such as

ΔD ¼ M 0 1−
1

R β;Δzð Þ

� �
� pop

can be calculated. Here, ΔD is the predicted change in the

number of deaths for the population of interest, M0 is the

baseline mortality rate,Δz is the predicted or observed change

in ambient concentrations, and pop is the size of the target

population. The mortality impact function, R(β,Δz), is often

expressed as a relative risk function of a vector of unknown

parameters β. Uncertainty is introduced into the analysis by

simulation methods. Computer software is available to con-

duct such analyses (Global Burden of Disease (Lim et al.,

2012, Murray et al., 2015), environmental Benefits Mapping

Analysis Program (BenMAP) (US EPA 2015), World Health

Organization (Ostro 2004), and Health Canada—Air Quality

Benefits Assessment Tool—(Judek et al., 2012)).

The simplest form R(β,Δz) = eβ × Δz for scalar β has been

employed most often. The risk coefficient β is obtained from

analyses of cohort studies almost exclusively based on the

Cox proportional hazards model (Cox, 1972). In these models,

a linear association between ambient concentration and the

logarithm of the hazard rate, the instantaneous probability of

death, is assumed.

Increasingly large study populations are now being used to

examine the association between ambient concentrations of

air pollution and adverse health outcomes. These studies

link study specific data, population registries (Fisher et al.,

2015), census information (Crouse et al., 2012, 2015;

Hales et al., 2012; Cesaroni et al. 2013), or administrative

health databases (Zeger et al., 2008; Greven et al. 2011;

Carey et al., 2013) to vital status and cause of death over

time and include hundreds of thousands to millions of

deaths. Although these large sample sizes are attractive in

terms of providing risk estimates with relatively small sam-

pling errors, the suite of applicable analytical methods to

characterize the exposure-response relation between air

pollution and mortality is limited due to restrictions on

the size of computer memory and analysis time.

Consequently, studies employing large cohorts often fit

natural, restricted, or smoothing splines with a few degrees

of freedom or a few categories of air pollution concentrations

to describe the shape of the association between ambient con-

centrations and mortality because these functions can be esti-

mated with standard computer software. Statistical tests are

employed comparing these functions to linear in concentration

models. These approaches require the selection of the number

and placement of spline knots or categories of air pollution

concentrations. They do not necessarily yield shapes that are

suitable for health impact assessment, such as being monoton-

ically non-decreasing. Smoothing splines are preferable in this

regard in that they display less curvature but also may not be

strictly monotonically increasing. Smoothing splines may also

mask some detail of the shape of the concentration-response

function, such as a threshold-type association, since air pollu-

tion typically explains only a small fraction of mortality, and

as such the fitted smoothing spline often has little curvature.

Smoothing splines also can pose computer implementation

problems for very large cohorts. Unfortunately, no computer

software is available to fit monotonic natural or smoothing

splines for the Cox survival model, although monotonic

smoothing splines have been implemented for the exponential

family (Pya and Wood 2013). Finally, risk estimates from

these non-parametric models are not as conveniently incorpo-

rated into current risk assessment software as are simple alge-

braic functions.

Due to these limitations, only very simple algebraic non-

linear concentration-response functions have been examined.

Krewski et al. (2009) and Crouse et al. (2012) used the loga-

rithm of fine particulate matter (PM2.5) in their Cox survival

models and showed that the log model was a superior

predictor of mortality compared to models that included the

untransformed concentration. Jerrett et al. (2009) fit a thresh-

old function (i.e., no association below a fixed concentration

and linear above) to the association between mortality from

non-malignant respiratory disease and ground level ozone,

again demonstrating a superior fit compared to the untrans-

formed ozone concentration. These approaches to fitting alge-

braic risk functions are feasible since they are transformations

962 Air Qual Atmos Health (2016) 9:961–972



of concentration and can be directly incorporated into the sur-

vival model structure required with standard software.

Non-linear concentration-mortality associations have been

employed in the Global Burden of Disease 2004 project

(Cohen et al., 2004). Here, the American Cancer Society

Cancer Prevention Study II (CPS II) cohort was used to esti-

mate the association between ambient fine particulate concen-

trations and mortality (Pope et al. 2002). A linear association

was assumed from a counterfactual concentration of 7.5 to

30 μg/m3, the highest observed concentration at the time of

any cohort study of PM2.5, with no additional risk assumed

above this concentration. Sensitivity analyses were conducted

assuming a linear association from the counterfactual to

50 μg/m3 and no additional risk above. A risk model based

on the logarithm of concentration, whose risk parameter was

estimated from the CPS II cohort, was also considered. These

risk models were selected due to concerns that simple linear

extrapolation of excess relative risk from the low concentra-

tions observed in the USA, where the CPS II cohort was

conducted, to much higher concentrations observed world-

wide, would yield unreasonably large burden of disease

estimates.

Burnett et al. (2014) suggest a more complex shape to

describe the association between PM2.5 concentrations and

mortality, with no association below some concentration, a

near-linear association for low to moderate concentrations,

and a diminishing change in risk as concentration increases

over the global range of PM2.5. Using a meta-regression

approach, Burnett et al. (2014) demonstrated that the

PM2.5-mortality association was non-linear and more com-

plex than could be described by a single unknown param-

eter such as that postulated by the logarithm of concentra-

tion. Burnett et al. (2014) incorporated information on risk

from other sources of PM2.5 such as second-hand and ac-

tive smoking and exposure to indoor sources of PM2.5 from

the burning of biomass for cooking and heating.

Concentrations from these sources are much larger than

those observed in cohort studies of ambient air pollution

that have been largely conducted in North America and

Western Europe (Hoek et al., 2013). This information pro-

vided a means to estimate risk over the global range of

ambient concentrations, the focus of their work.

These authors incorporated information from cohort stud-

ies of ambient air pollution by estimating study-specific risk

based on contrasts in concentration from the study-specific

mean to a counterfactual level. This non-linear risk model

was used by the Global Burden of Disease 2010 project

(Lim et al., 2012) to predict mortality burden for all 188 coun-

tries worldwide and has the form

R β; zð Þ ¼
1 if z < zc f otherwise

1þ β1 � 1−e−β2 z−zc fð Þ
β3

� �
( )

for counterfactual concentration zcf, below which no addition-

al risk is assumed. Little power is available, however, to dis-

criminate among shapes of the concentration-mortality asso-

ciation if only studies of ambient air pollution are used since

their mean concentrations are similar. Thus additional infor-

mation from other sources of fine particulate exposure was

required to discern the shape of the concentration-mortality

association. The unknown parameters in this model form can-

not be estimated using standard survival model software and

thus cannot be directly applied to the analysis of individual

cohort studies.

As a result, there has been no consensus as to the shape of

the concentration-mortality association solely based on infor-

mation from existing cohort studies and no method has been

suggested as to how to identify such shapes for use in health

impact assessment. In this paper, we describe a modeling

framework in which a class of flexible algebraic

concentration-response functions can be fit to survival models

using standard computer software and can accommodate very

large cohorts. In addition, such models should ideally be able

to be directly incorporated into existing health impact assess-

ment computer software, both in terms of health impact pre-

dictions and their uncertainty. We illustrate our modeling ap-

proach with examples from the American Cancer Society

Cancer Prevention Study II (CPS II) cohort and the

Canadian Census Health and Environment cohort

(CanCHEC).

Relative risk model

In this section, we present a new class of concentration-

response models that capture relationships between ambient

concentrations and mortality in cohort studies which we a

priori suggest are suitable for health impact assessment: linear,

log-linear, threshold, and variations on sigmoidal shapes.

Consider the relative risk hazard model, h(t|x, z), of the

form

h t x; zjð Þ ¼ ho tð Þexp γ
0

xþ β*ω z μ; τjð Þ*f zð Þ
n o

;

where ho(t) is the baseline hazard function of follow-up

time t. Here, f is a known parametric monotonic function

of air pollution concentration z, 0 <ω(z|μ, τ) < 1 is a known

weighting function indexed by scalar values μ and τ, with

β an unknown parameter to be estimated from the survival

data using standard computer software. Here, x is a vector

of known risk factors such as smoking history, diet, and

education with corresponding unknown parameter vector

γ. Our focus is on identifying the shape of the association

between exposure and response and not on modeling the

other risk factors. We a priori specify the risk factors in our

analysis but for each model describing air pollution, we

allow different estimates of γ.
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Our model can be interpreted as a variable coefficient risk

function where β(z) =β×ω(z|μ, τ) represents the risk coeffi-

cient that varies with concentration.

Since variations on a sigmoidal shape are of interest, we

consider the logistic weighting function

ω z μ; τjð Þ ¼ 1þ exp −
z−μ

τ � r

� �� �n o−1

with μ a location parameter and r the range of z. The pa-

rameter τ controls the curvature of the weighting function.

Larger values of τ produce shapes with less curvature. For

example, when τ< 0.001 ω approximates an indicator func-

tion at μ. The weighting function is nearly linear for

τ> 0.5.

We then consider two forms of f: f(z) = log(z) and f(z) = z

that have been previously used to describe the relationship

between outdoor air pollution exposure and mortality, where

log(z) is the natural logarithm of concentration. We also con-

sider values for μ selected based on percentiles of the distri-

bution of z.

Concentration-response models that have been previously

examined can be included within this framework. For exam-

ple, the linear model can be specified by f(z) = z and setting μ

to a large negative number such that ω(z|μ, τ) ~ 1,∀ z. A sim-

ilar specification can approximate the log-concentration mod-

el with f (z) = log(z). The threshold model is specified by

f(z) = z−T with ω(z|μ=T, τ=0.001) for threshold concentra-

tion T.

We have found in practice that for large variations in con-

centration our hazard function can have a marked curvature

near μ and setting τ=0.1 suitably reduces this undesirable

curvature without dramatically changing the shape of the

function. Functions that approximate powers of concentration

can be constructed by setting τ=0.2. Such power in concen-

tration forms have been previously suggested for health im-

pact functions (Burnett et al., 2014). Selected forms of the

concentration-response function are displayed in Fig. 1 that

indicate the variety of shapes that can be constructed from our

model specification.

The unknown parameter β can be estimated using stan-

dard survival analysis software. The specific variable

ν(z|μ) that best fits the data within our class is selected

by the following procedure designed to minimize the num-

ber of model runs.

1. Create four weighting variables based on values of μ de-

fined at the 0th, 25th, 50th, and 75th percentiles of the air

pollution distribution with τ=0.1 and an additional four

variables with τ=0.2. Multiply these eight weighting var-

iables by the concentration or logarithm of concentration

to create 16 variables. Run 16 Cox models based on these

variables. Select the variable with the largest log-

likelihood value among the 16 examined.

2. Given the best fitting μ value based on Step 1, fit two

models setting μ to five percentile values greater than

and less than the best fitting μ. For μ equal to the mini-

mum concentration, subtract and increment equal to the

difference between the 5th percentile and minimum con-

centration from the minimum concentration and denote

this value as −5th percentile. Continue to take differences

of minimum—10 % of increment and minimum—15 %

of increment until log-likelihood is maximized.

3. If the log-likelihood values of the twomodels in Step 2 are

not larger than the best fitting model in Step 1—STOP.

Otherwise, run additional models with increments of μ set

to five percentile values until the largest log-likelihood is

achieved.

Computer code to conduct this search, written in both R

and SAS by Hong Chen, is provided in the Electronic supple-

mentary material.

Incorporation into risk assessment models

and uncertainty characterization

Suppose the current concentration is denoted by zC and we

wish to predict the change in risk if a target population was

exposed to concentrations predicted by future reduction sce-

narios, denoted by zF. Then, the hazard ratio associated with

such changes in concentration is

HR zCð Þ

HR zFð Þ
¼ exp Δν zC; zF

� �
� β̂

n o
;

where Δν(zC, zF) = f (zC) ×ω(zC|μ) − f (zF) ×ω(zF|μ) is the

transformed change in air pollution. The change in the

number of deaths associated with this change in exposure

is calculated by

ΔD ¼ M0 1−exp −Δν zC; zF
� �

� β̂
n o� �

� pop;

a form that can readily be incorporated into most health

impact assessment software.

Uncertainty in estimates of ΔD is characterized by uncer-

tainty of its components, namely z, M0, pop, and

Δν zC; zFð Þ � β̂. Uncertainty exists in Δν zC; zFð Þ � β̂ from

both uncertainty in the estimate β̂ for a specific variable defini-

tion v(z|μ) = f(z) ×ω(z|μ) and the selection of the variable v(z|μ).

If v(z|μ) is assumed known, then

v
�
z μ

���� � βeN
�
v
�
z μ

���� � β̂; v
�
z μ

���� � se
β̂

�
;

with seβ̂ the standard error of β̂ obtained from survival

model software. Typical health impact assessment pro-

grams simulate a large number of realizations from this
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normal distribution resulting in an uncertainty distribution

of excess deaths.

In our case, the form of v(z|μ) is not known a priori but has

been determined from the data. One can incorporate the joint

uncertainty in both β and μ by forming an “ensemble”model.

Here, simulations of a large number of realizations of v z μjð Þ

�β̂ weighted by the likelihood value for all the models fit in

our model selection procedure are undertaken, as would be

prescribed by Bayesian model averaging methods (Buckland

et al., 1997).

Illustrative examples

We illustrate the use of our model with an analysis of the

association between estimates of ambient PM2.5 concentration

and mortality in two large cohort studies: CPS II and

CanCHEC. The analytic datasets used here are the same as

that reported by Pope et al. (2015a) for CPS II and Crouse

et al. (2015) for CanCHEC. We then compare the estimated

number of excess deaths associated with changes in ambient

concentrations between two time periods (~2000 and ~2010)

for both the entire US and Canadian populations between our

optimal or ensemble non-linear risk models for each cohort

and the corresponding risk model that is linear in

concentration.

American Cancer Society Cancer Prevention Study II

(CPS II) cohort

A total of 669,046 CPS II participants were assigned estimates

of PM2.5 concentrations using a national-level hybrid land use

regression and Bayesian Maximum Entropy interpolation

model (Beckerman et al., 2013) for the 1998–2004 time peri-

od at their place of residence at the commencement of the

study in 1982. Several mortality risk factors were included

in the Cox survival model: education; marital status; body

mass index (BMI); BMI squared; cigarette smoking status;

cigarettes per day and cigarettes per day squared; years

smoked and years smoked squared; started smoking at

<18 years of age; passive smoking (hours); vegetable, fruit,

and fiber and fat intake; beer, wine, and liquor consumption;

occupational exposures; an occupational dirtiness index; and

1990 socio-demographic ecological covariates at both the ZIP

code level and the ZIP code minus the county level mean

(median household income; percentage of black residents,

Hispanic residents, and percentage of adults with post-

secondary education, unemployment, and poverty). The base-

line hazard function was stratified by single year age groups,

sex, and race.

There were 237,201 deaths from all causes during the

1982–2004 follow-up period. [Note, we could not examine

all non-accidental causes of death since we could not identify

Fig. 1 Selected hazard ratio

forms
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accidental causes prior to 1988 when subjects were linked to

the computerizedmortality files with specific causes of death.]

Fine particulate concentrations ranged from 1.4 to 27.9μg/m3.

The best fitting “optimal” model was specified with μ given

by the 5th percentile (8.2 μg/m3), f(z) = log(z), β̂ ¼ 0:0433,

and seβ̂ ¼ 0:00446 (Table 1). Similar results are presented

for all models examined by our search algorithm and the en-

semble likelihood-based weights assigned to each model. The

optimal (black line) and ensemble (blue line) models are pre-

sented in Fig. 2 (left hand panel) in addition to their uncertain-

ty intervals. The optimal and ensemble models are similar but

the ensemble uncertainty interval is clearly wider than the

corresponding interval for the optimal model. This is due to

the non-trivial ensemble weights assigned to models with

much larger estimates of β that correspond to smaller values

of μ (Table 1). The linear in concentration model was β̂ ¼ 0:

0071 and seβ̂ ¼ 0:00079 with corresponding log-likelihood

value −1,920,357.9. The log-likelihood value of the non-

linear model (−1,920,350.7) was larger than that of the linear

model suggesting the optimal non-linear model was an im-

proved fit.

Canadian Census Health and Environment Cohort

(CanCHEC)

CanCHEC has been described in detail previously (Crouse

et al., 2012, 2015; Peters et al., 2013). It is a population-

based cohort of 2.6 million subjects over 25 years of age

who completed the 1991 census long-form. These subjects

were linked to the Canadian Mortality Database using deter-

ministic and probabilistic linkage methods from June 4, 1991

(census day) through December 31, 2006. For this illustrative

analysis, we extracted all non-accidental deaths. Estimates of

PM2.5 for the period 1998–2006 were obtained from a com-

bination of satellite remote sensing information and a chemi-

cal transport model (van Donkelaar et al., 2013). We included

in the Cox proportional hazards model covariates for visible

minority status, marital status, highest level of education, im-

migrant status, employment status, aboriginal ancestry, occu-

pational classification, and quintiles of household income (see

Crouse et al., 2015 for details on the definitions of these

variables). In addition to covariates recorded at the subject

level, we calculated time-varying contextual variables from

the closest census year (i.e., either 1991, 1996, 2001, or

2006).We stratified the baseline hazard by age (5 year groups)

and sex.

The cohort experienced 328,585 non-accidental deaths

during follow-up. Fine particulate concentrations ranged from

1.1 to 17.0 μg/m3. The optimal non-linear PM2.5 model was

specified by μ=−1.50, f(z) = log(z), β̂ ¼ 0:0603, and

seβ̂ ¼ 0:00451, with log-likelihood −3,196,246.5. This value

of μwas determined by subtracting the difference between the

5th and 0th percentiles from the 0th percentile. Approximately

99 % of the likelihood based weights were assigned to the

optimal model and models with adjacent values of μ, namely

−1.5 and 3.7. The predicted hazard ratio for the optimal model

(black solid line) and uncertainty bounds (black dashed line)

are presented in Fig. 2, right hand panel. In addition, we pres-

ent the ensemble hazard ratio of all models fit (blue solid line)

and uncertainty bounds (gray-shaded area) in the right hand

panel of Fig. 2. The optimal model hazard ratio is similar to

the ensemble hazard ratio. However, the ensemble model un-

certainty bounds are slightly larger than the optimal model

bounds reflecting the additional uncertainty in the estimate

of μ. Our estimate of the hazard function is clearly supra-

linear in concentration and a better mortality predictor than

the traditional linear in concentration model with

β̂ ¼ 0:0080, seβ̂ ¼ 0:000644, and log-likelihood −3,196,256.

Estimating excess deaths associated with temporal

changes in ambient PM2.5 concentrations

We have demonstrated that the optimal or best fitting hazard

model within our class is non-linear for both the CPS II and

CanCHEC cohorts (all causes of death for CPS II and non-

accidental causes for CanCHEC) and a better predictor of

mortality than a model which is linear in concentration. Of

interest is how different these models are in predicting attrib-

utable deaths within the general population. We examined this

issue using two datasets, one for Canada and the other for the

USA.

The Canadian data consisted of estimates of ambient PM2.5

concentrations for each of 288 Census Divisions in Canada for

Table 1 Estimates of β and standard error by study (CPS II or

CanCHEC) for non-linear models with f (z) = log(z) by value of μ and τ;

likelihood weight used for ensemble estimates also presented

Study μ μg/m3

(percentile)

τ β (standard error) Likelihood

weighta

CPS II −5.43 (−5 %) 0.1 0.0930 (0.00984) 0.036

1.38 (0 %) 0.1 0.0802 (0.00843) 0.080

8.19 (5 %) 0.1 0.0433 (0.00446) 0.460b

9.04 (10 %) 0.1 0.0398 (0.00412) 0.324

10.55 (25 %) 0.1 0.0351 (0.00369) 0.056

1.38 (0 %) 0.2 0.0666 (0.00704) 0.044

CanCHEC −4.10 (−10 %) 0.1 0.0620 (0.00469) 0.297

−1.50 (−5 %) 0.1 0.0603 (0.00451) 0.363b

1.10 (0 %) 0.1 0.0535 (0.00404) 0.329

3.20 (5 %) 0.1 0.0399 (0.00307) 0.011

aAll other models examined during our model search routine we assigned

weights <0.001 and not reported
bOptimal model
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two time periods: 1999–2001 and 2010–2012, in addition to

the population over 25 and number of non-accidental deaths

based on the 2010–2012 time period as complied by Stieb

et al. (2015). The US data consisted of modeled estimates of

ambient PM2.5 at the county level for the years 2000 and 2010

in addition to the population over age 30 and number of all

cause of deaths for the year 2010. Themodeled ambient PM2.5

concentration fields for the USA for 2000 and 2010 were

provided by the Multiethnic Study of Atherosclerosis and

Air Pollution (MESA-AIR) project team (Kim et al. 2015).

PM2.5 air quality levels in much of North America im-

proved between over time, with generally more widespread

reductions in the Eastern and Northwestern USA and

California and in the more southern census divisions in

Canada (Fig. 3). The average change in concentration among

census divisions in Canada was 1.1 μg/m3. However the

population-weighted change was 2.0 μg/m3 or 24 % of

1999–2001 values based on a reduction from 8.5 μg/m3 in

1999–2001 to 6.5 μg/m3 in 2010–2012. The mean US county

average concentration changed by 2.3 μg/m3 with the

population-weighted concentration changing from 12.4 μg/

m3 in 2000 to 8.7 μg/m3 in 2010, a decline of 3.7 μg/m3 or

17 % of 2000 concentrations. Greater changes in concentra-

tions over time were observed for those areas with larger pop-

ulations in both countries. Increases in PM2.5 occurred in 31%

of Canadian census divisions and 12% ofUS counties, largely

in the central region of the USA and the north and western

regions of Canada, areas with sparser populations.

The focus of our illustrative analysis is on changes in con-

centrations over time. As such, we are interested in how the

hazard function changes with concentration. To understand

this change, we plot the derivatives of the hazard functions

(Fig. 4, left hand panel) with respect to concentration as sug-

gested by Pope et al. 2015b. The CanCHEC hazard function

derivative is greater than the CPS II derivative when PM2.5

<7 μg/m3. However, only 40 % of Canadians lived in areas

below this level in 2000. The derivative of the CanCHEC

optimal non-linear hazard function is greater than the deriva-

tive for the linear in concentration model when PM2.5 <9 μg/

m3. Approximately half of Canadians lived in areas under his

value in 2000. Estimates of deaths attributable to the

difference in concentrations over time are presented in

Table 2. Similar deaths were predicted for the linear in con-

centration (3477), optimal non-linear (3146), and ensemble

non-linear (3323) CanCHEC models. This similarity is due

to the fact that half of Canadians lived in regions where the

non-linear model derivatives were greater/less than the linear

model derivative. However, the excess deaths predicted by the

CPS II linear in concentration model (3090) were smaller than

the CPS II non-linear model (4302 for the optimal model and

4243 for the ensemble model) since more Canadians (60 %)

lived in areas where the CPS II non-linear model derivative

was larger than either the linear or non-linear model

CanCHEC derivative.

Estimates of year 2000 and 2010 ambient PM2.5 concen-

trations along with the linear, optimal, and ensemble non-

linear concentration-response hazard functions for the

CanCHEC and CPS II cohorts were input into BenMAP to

generate estimates of the number of deaths attributable to

changes in exposure between 2000 and 2010 for the USA.

The resulting estimates are presented in Table 2 for the CPS

II-based linear model, the optimal and ensemble non-linear

models based on CanCHEC, and both the optimal and ensem-

ble non-linear models based on CPS II. For the USA, we

observed that the CanCHEC model predicted fewer reduc-

tions in attributable deaths (46,600) compared to the linear

model (60,900) and even fewer compared to the CPS II opti-

mal (77,700) and ensemble (76,500) models. As with the

Canadian data, these differences in attributable deaths are ex-

plained by the location in the exposure distribution where

most of the change in concentration occurs. Only 5 % of the

over 30 population in the USA lived in counties with 2000

concentrations less than 7 μg/m3, where the CanCHECmodel

derivative is greatest, while 61 % lived in counties with con-

centrations between 7 and 14 μg/m3, where the change in the

CPS II model mortality response is greatest.

Figure 5 shows the distribution of county level estimated

reduction in premature mortality for the USA by combinations

of year 2000 PM2.5 concentrations and the change in PM2.5

between 2000 and 2010. Size of the circles is proportional to

the predicted reductions in premature deaths for the CPS II

optimal non-linear model (dark gray) or CanCHEC optimal

Fig. 2 Hazard functions for CPS

II (left hand panel) and

CanCHEC (right hand panel).

Optimal hazard function (black

solid line) with uncertainty

bounds (dashed black lines).

Ensemble hazard function (blue

solid line) with uncertainty

bounds (gray-shaded area)
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non-linear model (light gray). The light gray circles indicate

combinations of concentration levels and changes where the

CanCHEC model predicts greater mortality impacts than the

CPS II model. The dark gray circles indicate combinations of

concentration levels and changes where the CPS II model

predicts greater mortality impacts than the CanCHEC model.

Black circles show the grid cells where there was an increase

in PM2.5 between 2000 and 2010. The overall pattern of the

distribution shows that the CPS II model predicts greater im-

pacts in locations with greater concentrations and greater re-

ductions, while the CanCHEC model gives greater impacts

where concentrations are lower and reductions are smaller,

consistent with the analysis of the model derivatives.

The incorporation of the additional uncertainty implied by

alternative values of μ in estimates of excess deaths depends

on the uncertainty in the derivative of the hazard function as

Fig. 3 Change in PM2.5

concentrations over time. Census

division are represented in

Canada and counties in the USA.

Time period displayed for Canada

was based on 1999–2001 average

and 2010–2012 average. Time

period displayed for the USAwas

based on 2000 and 2010

Fig. 4 Derivative with respect to concentration of optimal non-linear

models (blue line CPSII, red line CanCHEC) and linear in

concentration models (black line CPSII, orange line CanCHEC)

displayed in the left hand panel. Derivatives for CPS II (optimal model

= black line, ensemble model = blue line) with uncertainty bounds

(optimal model = black dashed lines, ensemble model = gray-shaded

area) presented in the middle panel and CanCHEC (optimal model =

black line, ensemble model = blue line) with uncertainty bounds

(optimal model = black dashed lines, ensemble model = gray-shaded

area) displayed in the right hand panel
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shown in Fig. 4 for CPS II (middle panel) and CanCHEC

(right hand panel) for both the optimal (dashed black lines)

and ensemble (gray-shaded area) models. The uncertainty

associated with the optimal and ensemble models was sim-

ilar for both the CPS II and CanCHEC models when con-

centrations are greater than 8 μg/m3. However, the deriva-

tive of the ensemble models displayed much greater uncer-

tainty for the CPS II model below this concentration and

somewhat greater uncertainty for the CanCHEC model.

This observation is consistent with our uncertainty esti-

mates of excess deaths (Table 2) where in Canada, the

ensemble models displayed greater uncertainty than the

optimal models but no such pattern was observed in the

USA due to the location of changes in concentration within

the exposure distribution (at higher concentrations in the

USA compared to Canada).

Table 2 Estimates of excess deaths attributable to changes in PM2.5 concentration over time by form of hazard function (linear or non-linear), cohort

(CanCHEC and CPS II), and country (Canada and USA)

Country (population weighted

change in PM2.5)

Hazard model form—cohort Number of excess deathsa

(95 % confidence interval)

Percent change in

baseline mortality rate

Canada (2.0 μg/m3) Linear—CanCHEC 3480 (2940–4020) 1.55

Linear—CPS II 3090 (2430–3750) 1.38

Non-linear optimal—CanCHEC 3146 (2700–3610) 1.41

Non-linear ensemble—CanCHEC 3320 (2720–4060) 1.48

Non-linear optimal—CPS II 4300 (3420–5200) 1.92

Non-linear ensemble—CPS II 4240 (3100–5560) 1.90

Combined non-linear ensemblea 3640 (2780–4500) 1.62

USA (3.7 μg/m3) Linear—CanCHEC 68,700 (58,000–79,300) 2.82

Linear—CPS II 60,900 (47,500–74,100) 2.50

Non-linear optimal—CanCHEC 46,600 (39,700–53,400) 1.92

Non-linear ensemble—CanCHEC 49,000 (40,700–57,100) 2.01

Non-linear optimal—CPS II 77,700 (62,200–93,100) 3.20

Non-linear ensemble—CPS II 76,700 (60,600–93,000) 3.15

Combined non-linear ensemblea 61,900 (34,700–89,100) 2.54

aMeta-analytic combination of CanCHEC and CPS II ensemble models

Fig. 5 Estimated reductions in

US premature deaths by

combinations of 2000 PM2.5

concentration and PM2.5 change

between 2000 and 2010
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Comparing and combining concentration-response

functions

The forms of the concentration-mortality association identi-

fied in CanCHEC and CPS II are clearly different. The loga-

rithm was selected for each cohort and the optimal value of μ

was near the lower end of the exposure distribution for both

cohorts (5th percentile for CPS II and the −5th percentile for

CanCHEC). However, the rate of change for very low con-

centrations was greater in CanCHEC compared to CPS II and

the opposite pattern was observed for medium and higher

concentrations (Fig. 4).

This may be due to a few factors. The 5th percentile con-

centration for CPS II was 8.2 μg/m3 while that for CanCHEC

was 3.2 μg/m3. This was due to both lower concentrations in

Canada compared to the USA in general, and the fact that

subjects in CanCHEC covered the entire population including

those living in low exposure rural areas. There was, thus,

additional uncertainty in the form of the function at lower

concentrations for CPS II as evidenced by the need to include

additional functions in the ensemble estimate with μ values

(0th and −5th percentiles) lower than the optimal value at the

5th percentile.

However, the change in risk for concentrations larger than

9 μg/m3 was much greater for CPS II than that for CanCHEC

(Fig. 4). This may be due to the form of the PM2.5 exposure

model. The CPS II exposure model incorporated land use

information including traffic counts while the CanCHEC ex-

posure model used only remote sensing information. Turner

et al. (2016) examined the effect of both regional and local

variation in PM2.5 and mortality in CPS II cohort and found

local variation, primarily induced by land use and traffic data,

was a much stronger predictor than regional variation. The

hazard ratio for a 10 μg/m3 change in PM2.5 based on regional

variation was 1.05 (1.03, 1.07) while for local variation the

hazard ratio was 1.27 (1.21, 1.34). This additional information

may have improved the predictive power of the CPS II expo-

sure model over the CanCHEC exposure model, especially in

the center of the exposure distribution containing the majority

of data.

We have presented two very different estimates of excess

deaths attributable to changes in PM2.5 ambient concentra-

tions over the first decade of this century (Table 2). We have

suggested this could be due to both different concentration

distributions and exposure models. Health impact assessments

of PM2.5 have either used a single study, such as the US EPA

(2012), or a meta-analysis of studies (Judek et al., 2012). Both

these approaches use a linear in concentration risk model. The

meta-analysis approach assumes a common, true, risk func-

tion and that each study is a random representation of that

common function. In most cases, the risk function is charac-

terized by a single parameter assumed to be normally distri-

bution with a mean common to all studies and a study specific

standard error. The meta-analysis approach uses a random

effects model to estimate both a commonmean and uncertain-

ty as a function of true heterogeneity in risk among studies and

within study error.

We can reduce the dimension of our ensemble estimates of

risk for each study by first conducting the health impact as-

sessment, which yields a single uncertainty distribution per

study. We have found that the uncertainty distribution of ex-

cess deaths in our example is well approximated by a normal

distribution. We can then pool the information between the

two functions through the excess death distributions using

the meta-analytic random effects procedure (Viechtbauer

2010). This approach yields mean estimates of excess deaths

(Table 2) between the CanCHEC and CPS II estimates (61,

900 for the USA and 3640 for Canada). However, since the

two functions are very different, the uncertainty intervals are

much wider than either function examined separately

(Table 2).

Discussion

We present an approach to characterizing the shape of the

association between ambient concentrations of air pollution

and mortality applicable to the analysis of large cohort studies

and for use in health impact assessment. Our modeling ap-

proach is very simple to program and implement with stan-

dard computer software for survival analysis. The results can

also be directly incorporated into existing health impact as-

sessment software, including widely used software such as

Health Canada’s AQBAT and the US EPA’s BenMAP. The

computer code to implement our model identification and

estimation procedure is provided in the Electronic

supplementary material in both SAS and R.

Pope et al. (2015b) examine implications of using non-

linear risk models for cost/benefit analysis. A feature of a

linear model is that the magnitude of risk is proportional to

the size of the change in exposure. However, for non-linear

models, the location of exposure changes within the exposure

distribution is also important (Pope et al. 2015b). The use of

non-linear health impact assessment models makes the inter-

pretation of such exposure changes more complex and a priori

less predictable, as illustrated by our examples. We note, for

example, that the linear in concentration model parameter was

slightly greater for CanCHEC (0.008) than that for CPS II

(0.007). However, in our examples for both Canada and the

USA, the CPS II non-linear models predicted more deaths

than did the CanCHEC non-linear models.

We suggest possible explanations for differences in the

shape of the concentration-mortality function between

CanCHEC and CPS II, namely the population size covered

by low concentrations and the form of the exposure model.

We suggest an approach to combining the distributions of
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excess deaths estimated from each model using standard

meta-analysis methods to form a single summary uncertainty

distribution.We also suggest that this approach is preferable to

combining the non-linear functions themselves (Armstrong

et al., 2014) and then conducting the health impact analysis

since the focus of our analysis is on estimating disease burden

associated with changes in exposure and not obtaining a com-

mon risk function. Our method combines both uncertainty in

the risk function within each study and variation in the func-

tions, as they pertain to burden estimates, between functions.

We present a new method to identify the shape of the as-

sociation between air pollution and mortality in cohort study

designs using the Cox proportional hazards model for analy-

ses. However, our method is not restricted to the Cox survival

model and can be used with any regression modeling tech-

nique. For example, the case-crossover design (Maclure 1991)

is often used to examine the association between short-term

exposure to air pollution and acute health events using a con-

ditional logistic regression model. We provide computer code

in both R and SAS to implement our search routine for such

designs in the Electronic supplementary material.
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