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A CLASS OF NONANALYTIC AUTOMORPHIC FUNCTIONS

DOUGLAS NIEBUR

In this paper we consider a class of nonanalytic automorphic functions
which were first mentioned to A. Selberg by C. L. Siegel. These functions
have Fourier coefficients which are closely connected with the Fourier
coefficients of analytic automorphic forms, and they are also eigenfunctions
of the Laplace operator derived from the hyperbolic metric. We shall
show how this latter property gives new results in the classical theory
of automorphic forms.

I am indebted to Professor Selberg for introducing me to these
functions.

§ 1. Definitions and Notation

Let Γ be a discrete subgroup of SL(2,R) having a fundamental
domain of finite non-Euclidean area. We assume that Γ has a single
maximal parabolic subgroup JΓOO = < ± ( Q Λ:neZ>, although this as-
sumption is not necessary. Let 2 be the fundamental domain contain-
ing the strip Sγ = {z: Im z > Y, 0 < Re z < 1}, for sufficiently large
positive Y.

If H denotes the upper half plane and z and z' are in H, where
z = x + ίy, zr = %' + iyf, then the non-Euclidean metric d(z, zf) is given by
cosh(Z(z,2') = 1 + \z — z'\2/2yy'. The invariant measure is dz = y~2dxdy
and the Laplace operator derived from the metric is

Let U{0) be the space of all square-integrable automorphic functions

/ defined on H; i.e., f(Mz) = f(z) for all MeΓ and f \f(z)\2dz < oo.
J a r

The inner product in this Hubert space is denoted by (/, g) = fgdz,

and the self-ad joint operator derived from D is also denoted by D.
Received May 7, 1973.
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134 DOUGLAS NIEBUR

The Eisenstein series for Γ is E(z,s) = ΣιMeroo\r (ίmMzy for Res > 1.

Because Dys = s(s — l)y*9 it follows that DE(zys) = s(s — l)2?(s,s). Also

E(Mz, s) — ί7O, s) for all M e Γ. These properties are the main reasons

why E(z,s) has a meromorphic continuation to the entire s-plane.

As shown in Chapter II of [4], the Fourier expansion of the Eisen-

stein series is E(x + iy,s) = Σ%=-°° dm(y>^)e(mx)y where e(x) = exp (2πίx),

a>o(y>s) = Vs + φ(s)yι-*9 and am(y,s) = αm(s)#1/2Zs_1/2(2τr|m|?/) for m Φ 0.

Here,

and

where S(m,n; c) is the general Kloostermann sum Σ0^<jd e((ma + wd)/c),

S) s Γ-
Although φm is defined by the Dirichlet series only for Res > 1, the

continuation of E(z, s) results in the continuation of φm. It is shown in

[4] that φ(s)φ(l - s) = 1 and E(z,s) = φ(s)E(z, 1 - s). Thus, αw(s) =

^(s)αm(l — s) since the Bessel function Kv(y) is an even function of v.

We now come to the definition of the class of functions to which

the title alludes. Suppose that n is a nonzero integer and s — σ + it,

where σ > 1. For zeH, let

Fn(z, s) = 2 eOi Re M2) (Im M^)1/2/s_1/2(2τr |w| Im Ms) ,

where /β_i/2 is the modified Bessel function of the first kind. This sum

converges absolutely and uniformly on any strip of the form {x + iy:

\%\ < A,y > ε > 0}, because y1/2ls-i/2(y) = O(yσ) as y -> 0. If f(x + iy) =

β(^^)7/1/2/s_1/2(2τr|^|^), then Df = s(s — 1)/. From these remarks it fol-

lows that Fn(Mz, s) = Fn(s, s) for all M e Γ and Z)Fn(z, s) = s(s - l)Fn(^, s).

§2. The Fourier Coefficients

In this section it is shown that the Fourier coefficients of Fn(z,s)

are generalizations of the Fourier coefficients of analytic automorphic

forms of integral weight. Again denote the general Kloostermann sum

by S(m,n; c), and for simplicity let
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NONANALYTIC AUTOMORPHIC FUNCTIONS 135

'J2s_1(\mn\1/2y), mn > 0
M2S 1 ,

U ( | m n | 1 / 2 i / ) mn

THEOREM 1. Let s = σ + if, σ > 1, αmί z = x + iyeH. Then

Fn(z, s) = e(nx)y1/2ls_1/2(2π \n\y) + Σ &TO(#> s n)e{mx) ,

where bo(y, s n) = βo(s n)yι~s, and for m Φ 0,

&m(2/> s w) = Bm(s n)yι/2Ks_1/2(2π \n\ y) .

Furthermore, B0(s; n) — an(s)/(2s — 1), where an(s) is the same coefficient

as occurs in the Eisensteίn series expansion, and

Bm(s n) = 2 2 S(m, n c)c"ιM2s_ι(Aπ(mn)ι/2c) .
c>0

Proof. We first note that Fn(z,s) — e(nx)y1/2ls_1/2(2π\n\y) is the sum

over all pairs (c, d), where c > 0 and ί ̂  t j e Γ, of

e(w(α - (α& + d)/|c« + d\2)/c)(y/\cz + d\ψ2ls_1/2(2π\n\y/\cz + d\2) .

If we call this last function e(na/c)f(cx + d,y,c), and use the fact that

d — dr + qc, where 0 < d < c and q is an integer, then

bm(y,s) = I [Fn(z,s) - e(nx)y1/2ls_ι/2(2π\n\y)]e(~mx)dx
Jo

= Σ Σ e(na/c) Σ Λcx + d + qc,y,c)e(-mx)dx
c>0 0<d<c g=-oo Jo

Λoo

= Σ S(m, n c) /(CΛ;, t/, c)e(-mx)ώ
O0 J-c*)

= Σ ^( m > ̂  9 c)G(v> n> m>c)
oo

If m = 0, a change of variables shows

G(3/, n, 0, c) = 127ml-1/2 ί°° exp (iax/(x2 + y2))(ay/(x2 + fW2ls.m{ay\{x2 + y2))
J - o o

= \2πn\'1/2 G0(y, a) , where a = 2π\n\/c2 .

Similarly, if m ψ 0, then

G(y\2πm\-\n,m,c) = |2^n|-1 / 2 |2πrn|-1 G ^ j S ) ,

where
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136 DOUGLAS NIEBUR

Gx(y9β) = J exp (ix(l + εβ/(x2 + y2)))

x (βy/(χ2 + y2)y/2is-m(βy/(χ2 + v2))dχ ,

β — 4π2\mn\/c2 and ε = mn/\mn\.

Let

wit) = V/2Is_1/2(t)

and

H(ayx,y) = exp (ίaxe/(x2 + y2))w(ay/(x2 + τ/2)) .

Since ^ " ( ί ) = ^ ( ί ) ( l + t~2(s — l)s), a computation shows

a2--—-H(a, x, y) = s(s - l)H(α, OJ, i/) - iεa H(a, x, y) ,
da2 dx

if ε2 = 1. Thus for 7 = 0,1,

G/2/, α) = J " eV*H(a, x, y)dx

satisfies

ĵ?fG_ + [ e J α _ s ( s _ i ) ] G = 0 .
da2

The formalities of differentiation under the integral and partial inte-

gration are easily justified for Res > 1. Since Gj(y,0) = 0, it follows

that

GQ(y,ά) = G0(y)as

and

Now,

G0(y) = l im a~sG0(y, a)
α->0

+ —)V ι Γ ys

= (2π)1/2(2ΐ/)1-s/(2s - l)Γ(s).

Also,
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NONANALYTIC AUTOMORPHIC FUNCTIONS 137

G,(y) = lim Γ(2s)a~sG1(y, a)

= 21/2~sΓ(2s)(r(s + —))"V Γ eHx2 + y2)'sdx

= y1/2Ks_1/2(y) .

This last equation follows from Basset's formula [7, p. 172]. Com-

bining the formulae proved above settles the validity of the theorem.

COROLLARY. Suppose s is an integer larger than 1. If n > 0 and

G_2s(z,ri) is the Poincare series ΣMΘΓOOXΓ e(nMz)(cz + d)~2s, then

G_2s{z,n) = e(nz) + π( — 1 ) S 2 (m/n)s-ι/2Bm(s; n)e(mz) .

// / is an analytic automorphίc form for Γ of dimension 2s — 2,

that is, of weight 1 — s, with principal part Σ%=iane(—nz) at oo, then

f(z) = Σn=i ttnQniz), where

gn(z) = e(-nz) + \πnΓ1/2B0(s; ~n)/r(s - ±)

— τr(—1)*Σ (n/m)s~1/2Bm(s; —n)e(mz) .

Proof. The Fourier expansions of these functions are derived in

Chapters VIII and IX of [5], and this corollary is a restatement of those

results.

§ 3 . The Analytic Continuation

As we now show, Fn{z, s) has a meromorphic continuation to the

entire s-plane with poles located by the eigenvalues for D and the poles

of E(z,s). The continuation is another consequence of the theory

developed in [6].

Let Pv and Qv be the Legendre functions of the first and second

kinds, respectively. We shall be concerned with the point-pair invariant

ks(z, zr) - (l/2π)Q.-i (cosh d{z, z')).

A point-pair invariant is a function k(z, zf) on H x H such that

k(Tz, Tz') = k(z9 z
f) for all T e SL(2, R) hence, k(z, z') is a function of

d(z,z'). Each point-pair invariant defines an invariant integral operator

Lf(z)= f k(z,zf)f{zf)dzf .
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138 DOUGLAS NIEBUR

If u is a function on H such that Du + (1/4 + r2)u = 0 and if Lu is

defined, then Lu = h{r)u, where h is a function depending only on k.

The linear operation k >-» h is sometimes called the Selberg transform

of fc; see [4, §5.3]. For computational purposes we now show that this

transform is related to the Mehler transform [1, p. 175].

THEOREM 2. Suppose that k(z, zf) = fc(coshcZO, z')), k(t) is continu-

ous for 1 < t < oo, and t~1/2\k(t)\dt < oo. Tfee Selberg transform is

h(r) = 2ττ Γ k(t)P_m+ir(t)dt for real r ,

= J L Γ P_1/2+ir(t)r tanh (πr)h(r)dr for
2π Jo

ί < oo .

Proo/. If we put w(α? + î /) = ?/1/2+ir, then Du + (1/4 + r2)u = 0.

Thus,

λ(r) = ί fc«, zryuizf)dzr.
JίΓ

If we put Re 2' = sinh ^ sin Θ and Im 2' = cosh p + sinh p cos θ, then

= 2 k (cosh ^) sinh /? [cosh p + sinh ^ cos θ]~1/2+irdθdρ .
Jo Jo

An integral representation for P-1/2+ir (cosh p) in [1, p. 156] shows this

is equivalent to the formula for h given in the theorem. The formula

for k now follows from Theorem III in [3].

COROLLARY. // k8(z, zf) = (l/2π)Qs_1 (cosh d(z, z')), then the Selberg

transform of ks is

hs(r) = [(s - | ) 2 + r 2 ]" 1 for Re s > ± .

Proo/. As £->l, Qs_χ(ί) + | l o g | ( ί — 1) has a finite limit, and as

t—>oo, Qί_i(ί) = O(i~'), for (7 = Res. The corollary follows from the

theorem and equation (4) in [1, p. 170].

We now consider the integral operator

Lf(z)= f k{z,z')f(z')dz'

acting on U{0), With suitable conditions on k,
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f k(z,z')f(z')dz' = f K(z,z')f(z')dzf ,

where K(z, zf) — J^MeΓ k(z, Mzf). In terms of the transform h, it is pointed
out in [6] that the sum defining K will converge absolutely and uniformly
on compact subsets of H x H if h is an even analytic function for
| Imr | < 1/2 + ε, where ε > 0, and h(r) = O((l + M2)-1"6) in this strip.
As Selberg also points out, this kernel K(z, z') then has an eigenfunction
expansion :

where {%}JL0 is a maximal orthonormal set of real eigenfunctions in
U(0), and Duj + (1/4 + r))uj = 0. This information leads to

THEOREM 3. Let w and s be complex numbers with real parts larger
than 1 and let z, zr e H. Let ks(z, zf) = (l/2π)Qs^ (cosh d(z, z')) and hs(r)
= [(s — 1/2)2 + r2]"1. // {Uj}j=0 is a maximal orthonormal set of real
functions in U{0) such that Duj + (1/4 + rtyuj = 0, then

Σ
MBΓ

= Σ

^ [hs(r) - hw(f)]E(z, ~ + ir)E(z', 1 - ir^dr+

Moreover, the sum and integral on the right side of the equation con-
verge absolutely and uniformly on compact subsets of H x H and they
are meromorphic in s for Res > 1/2 with poles at 1/2 ± irjt

Proof, Since

hs(r) - hw(r) = (w- s)(w + s - l)[(β - i)2 + r2Y'[(w - | ) 2 + r2]"1 ,

the first statement of the theorem follows from the discussion preceding
the theorem. To prove the convergence properties we first suppose that
w > s > 1. Since [ks(z, z') — kw(z, z')~\ is continuous in z and z', the discus-
sion preceding the theorem shows that Σ^er [ks(z,Mz) — kw(z,Mz)] is con-
tinuous for zeH. Since the eigenvalues 1/4 + r) are nonnegative, the
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140 DOUGLAS NIEBUR

functions

FN(z) = Σ [hs(rj) - hw(rj)] \uj(z)\2

io

±.\\\ 1 + ir)\dr

2 ]
form an increasing sequence of continuous functions which converges to
the continuous function ΣMeΓ [ks(z,Mz) — kw(z,Mz)]. Hence, the con-
vergence is uniform on compact subsets of H.

Now suppose Rew > 1 and S is a compact subset of {s: Res > 1/2,
s Φ 1/2 + ίrm, m Φ /}. Then for all s e S, there is a constant A, such that
\hs(r) — hw(r)\ < A[h2(r) — h3(r)] for all real r or all r in {rm: 0 < irm <

1/2, m ^ /}. From this inequality and Schwarz's inequality, one easily
sees that

Σ lh,(rm) - (K(rJ]um(z)um(z')

and

[hs(r)-hw(r)]E(z, i + ir)E(z', i - r)
-oo \ ώ / \ 2t /

dr

converge uniformly for s e S and (z, zf) in any compact subset of H x H.
Since each eigenvalue has finite multiplicity, each point 1/2 + irj in the
interval (1/2,1] is a pole. This proves all statements in the theorem.

COROLLARY. Let G(s) = Σ « r [ks(z,Mz') — kw(z,Mz')] for Res > 1,
Re w > 1, and (z, z')eH x H. Then G has a meromorphίc continuation
to the entire plane and G(s) - G(l - s) = E(z, s)E(z', 1 - s)/ (2s — 1). T&e
poles of G(s) in the region 1/2 < Re s are at the points 1/2 ± irj and
the residue of (2s — l)G(s) at 1/2 + irό is Uj^Ujiz') if rs Φ 0 and
2uJ(z)uj(z/) if r$ = 0.

Proof. Let /(?,s) = fc,(i(l/2 - f)) - fctt(i(l/2 - ?)). Then / is an-
alytic in ξ except at s, 1 — s, w9 and 1 — w it has the residue (1 — 2s)"1

at s and (2w — I)"1 at w; and f(ξ,s) = /(f, 1 — s). From the theorem,

= Σ fd
j \2

4ττfc Ji/2-io
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NONANALYTIC AUTOMORPHIC FUNCTIONS 141

It also follows from the theorem that the sum on the right is meromor-
phic in the s-plane with poles and residues as stated in the corollary.
To effect the continuation of the integral, we alter the path of integration.

Let C be a rectalinear path which starts at 1/2 — ioo and connects
1/2 - ioo, 1/2 - iB, A - iB, A + ίB, 1/2 + iB and 1/2 + ioo, where
A > max {Re s, Re w) and B is a positive number which is chosen so that
no poles of the integrand lie on C. Now suppose {aj}f=1 are the poles
of E(z,ξ)E(z'91 - ξ) for 1/2 < Ref < 1 and |Imf| < B. Then

L- f(ξ, s)E(z, ξ)E(z', 1 - ξ)dξ
4;rt Ji/2-i»

= —E(z, s)E(z', 1 - 8)1 (2s - 1) - —E(z, w)E(z', l-w)/(2w- 1)

Λ- ί f(ξ>

- ~ Σ
2 y=

The right side is a meromorphic function #0) for | Im s \ < B and
|Res — 1/2| < A — 1/2, and in this region

g(s) - 0(1 - 8) = E(z, 8)E(z't 1 - s)/(2s - 1) .

Since A and B can be arbitrarily large, the corollary is proved.
The connection between the functions Fn(z,s) and the kernel con-

sidered in the previous theorem will now be shown.

THEOREM 4: Suppose Re s > 1, Re w > 1, and (z, z')eH x iϊ. Lei

G(z,zf,8,w) =

where k(z, zr) = (l/2τr)Qs_1 (cosh d(^, «0) If y> ϊϊiax {Im M^ :MeΓ},
—nth Fourier coefficient

- iy, z'9 s, w)e(nx)dx

is yι-sE(z',s)j(2s - 1) - y1-wE(z/,w)/(2w - 1) if n = 0,

if n Φ 0.

Proof. Suppose k(z,z;) = ks(z,z') — kw(z,zr). Then because the sum
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142 DOUGLAS NIEBUR

defining G converges absolutely and uniformly,

Λl oo Λl

G(x + iy, zr, s, w)e(nx)dx = Σ Σ k(x + m + iy, Mz')e(nx)dx
JO MBΓoo\Γ m=-oo J o

= Σ k(χ + iVf Mz/)e(nx)dx .
MGΓCO/Γ J-co

Suppose Ms' = u + iv. Then

cosh d(z,Mz') = 1 + [(x - u)2 + (y -

= [(a? - *02 + 2/2 +

Thus we must evaluate

( * ) Γ Qs-ι((x2 + y2 + v2)/2yv)e(n(x + u))dx .
J —oo

From equation (47) in [2, p. 49], we have

Ks_lβ(y\t\)Is_m{vΓ
J - o

for y > v > 0 and Re s > 0. By the Fourier inversion formula, the inte-

gral (*) is 2πe(nu)(yv)1/2Ks_ί/2(2π\n\y)Is_1/2(2π\n\v) if n Φ 0 and y > v > 0

and Re s > 0. Since (*) is continuous in n, we let n —» 0 and find that

Γ Qs-ι((x2 + y2 + v2)/2yv)dx = 2πy1~svs/(2s - 1) ,
J -oo

if /̂ > v > 0 and Re s > 1/2. Thus the theorem follows from the defi-

nitions of E(z,s) and Fn(z,s).

THEOREM 5. Let zf eH and y > max {Im Mx: M e Γ}. Suppose that

the eigenf unctions referred to in Theorem 3 have the Fourier expansion

Uj(z) = Σm=-oo cm(j)yι/2Kir.(2π\rn\y)e(mx). Then for Res > 1 and Rew > 1,

K,-v2@π\n\y)Fn(z',s) - Ks_ι/2(2π\n\y)Fn(z',w)

= Σ ίUrj) - K(rj)]c_nm
υ2Kirβπ\n\y)uj(z')

+ -— J ^ lhs(r) - hw(r)]a_n(± + ir^Kίr(2π\n\y)E(z\ 1 - ir^dr.

Moreover, Fn(z, s) has a meromorphίc continuation to the entire s-piane

its only poles in the region 1/2 < Res are in {1/2 ± irj}j=0 and s = 1 is

not a pole and finally, Fn(z, s) — Fn(z, 1 — s) — a_n(s)E(z, 1 — s)/(2s — 1).
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Proof. The first statement is a consequence of Theorems 3 and 4.
Theorem 4 and the corollary to Theorem 3 show that Ks_1/2(2π\n\y)Fn(z',s)
has poles only in {1/2 ± i r , }^ if R e s > l / 2 . But Ks_1/2(2π\n \y) has
zeros only on the line s = 1/2 + ir, and for any such s we may choose
y so that Kir(2π\n\y) is not zero. The point s = 1 is not a pole, for if
rά = (l/2)i, then uό is a harmonic automorphic form in U{0). Thus %
is constant and cn(j) — 0 for n Φ 0, and hence the first statement of the
theorem shows that no pole is at s = 1. The functional equation follows
from the corollary to Theorem 3.

To conclude this section, we point out that Theorems 1 and 5 show
that there is a representation for ]Γjc>0 c~ιS(m,n\ c)M2s^(4:π(mny/2/ c) which
has a meromorphic continuation to the entire s-plane. It is hoped that
this representation will shed new light on the growth of the Fourier
coefficients of modular forms.

§4 The Fourier Coefficients of Analytic Automorphic Functions

As an application of the preceding theory we give a construction for

all automorphic functions and cusp forms of weight one.

THEOREM 6. Suppose f is an analytic automorphic function with

principal part J^ξ=1ane(—nz) at oo. Then f(z) = a0 + Σn=i anF-n(z> 1)

Proof. Theorem 5 implies that Fn(z, 1) is a harmonic automorphic
function and its Fourier expansion is given by Theorem 1, where Z?m(l n)
= lims_1+ Bm(s; m). Thus f(z) — Σζ=1 anF_n(z, 1) is a bounded automor-
phic function in 2 which is also harmonic. Hence, it is constant, which
proves the theorem.

THEOREM 7. For n>l, let

Gn(z) = einz) - π Σ BJ1 n) \m/n\1/2e(mz) .
m = l

Then Gn is a cusp form of weight 1 and the set {Gn}™=1 spans the space

of such forms.

Proof. Using Theorems 1 and 5, we see that for n > 1, F_n(z, 1)
is the sum of an analytic function fn and the complex conjugate of an
analytic function gn, where
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/„(*) = e{-nz)l2π\nr + B0(l; -n)

and

gn(z) = -e(nz)/2π\n\1/2 + -1 Σ \P-J.U -»>

Note that the conjugate of B_m(l; —n) is Bm(l;ri), since [B_m(s; —n)Y

= Bm(s n) for Re s > 1. Thus -i\n\"2Gn{z) = g'n{z)

If the operator d/dx + i(d/dy) is applied to the equation F_n(Mz, 1)

= F_n(z, 1), the resulting equation is equivalent to Gn(Mz)(d/dz)Mz =

G^O). Thus Gw is a cusp form of weight 1.

To show that {Gn} is a spanning set for the space ^ of all cusp

forms of weight 1, we let h be the dimension of the subspace spanned

by {Gn}ζ=ί. Let IN be the space spanned by {F_n(z, l)}n=i and An be the

space of automorphic functions that are in 7^. For sufficiently large Λf,

the Riemann-Roch theorem implies that dim IN/AN = dim <&. But our

previous arguments show that h > dim IN/AN. Thus h = d i m ^ .

Q.E.D.

THEOREM 8. Let {Gn}Z=1 be the set of functions defined in Theorem 7.

Then 2]?-i anF-n(z> 1) is an analytic automorphic function if and only if

Proof. As shown in the proof of Theorem 7, Σn=i a

nF-n(z> 1) is the

sum of an analytic function / and the conjugate of an analytic function

g. It also follows from the proof of Theorem 7 that g is constant if

and only if Σln=i ann
ι/2Gn(z) — 0. Since g is analytic in H if and only if

g is constant, the theorem is proved.
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