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Abstract

We consider a general nonlinear time-delay system with state-delays as con-

trol variables. The problem of determining optimal values for the state-delays

to minimize overall system cost is a non-standard optimal control problem—

called an optimal state-delay control problem—that cannot be solved using

existing techniques. We show that this optimal control problem can be for-

mulated as a nonlinear programming problem in which the cost function is

an implicit function of the decision variables. We then develop an efficient

numerical method for determining the cost function’s gradient. This method,

which involves integrating an impulsive dynamic system backwards in time,

can be combined with any standard gradient-based optimization method to

solve the optimal state-delay control problem effectively. We conclude the

paper by discussing applications of our approach to parameter identification

and delayed feedback control.
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1. Introduction1

Time-delay systems arise in many real-world applications—e.g. evapo-2

ration and purification processes [1, 2], aerospace models [3], and human3

immune response [4]. Over the past two decades, various optimal control4

methods have been developed for time-delay systems. Well-known tools in-5

clude the necessary conditions for optimality [5, 6] and numerical methods6

based on the control parameterization technique [7, 8]. These existing opti-7

mal control methods are restricted to time-delay systems in which the delays8

are fixed and known. In this paper, we consider a new class of optimal control9

problems in which the delays are not fixed, but are instead control variables10

to be chosen optimally. Such problems are called optimal state-delay control11

problems.12

As an example of an optimal state-delay control problem, consider a13

system of delay-differential equations with unknown delays. This delay-14

differential system is a dynamic model for some phenomenon under con-15

sideration. The problem is to choose values for the unknown delays (and16

possibly other model parameters) so that the system output predicted by17

the model is consistent with experimental data. This so-called parameter18

identification problem can be formulated as an optimal state-delay control19

problem in which the delays and model parameters are decision variables,20

and the cost function measures the least-squares error between predicted21

and observed system output.22

Parameter identification for time-delay systems has been an active area23

of research over the past decade. Existing techniques for parameter identi-24

fication include interpolation methods [9], genetic algorithms [10], and the25

delay operator transform method [11]. These techniques are mainly designed26

for single-delay linear systems. In contrast, the computational approach27

to be developed in this paper, which is based on formulating and solving28

the parameter identification problem as an optimal state-delay control prob-29

lem, can handle systems with nonlinear dynamics and multiple time-delays.30

This computational approach is motivated by our earlier work in [12], which31
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presents a parameter identification algorithm based on nonlinear program-32

ming techniques. This algorithm has two limitations: (i) it is only applicable33

to systems in which each nonlinear term contains a single delay and no un-34

known parameters; and (ii) it involves integrating a large number of auxiliary35

delay-differential systems (one auxiliary system for each unknown delay and36

model parameter). The new approach to be developed in this paper does not37

suffer from these limitations. In particular, our new approach only requires38

the integration of one auxiliary system, regardless of the number of delays39

and parameters in the underlying dynamic model.40

Another important application of optimal state-delay control problems41

is in delayed feedback control. In delayed feedback control, the system’s42

input function is chosen to be a linear function of the delayed state, as op-43

posed to traditional feedback control in which the input is a function of the44

current (undelayed) state. Voluntarily introducing delays via delayed feed-45

back control can be beneficial for certain types of systems; see, for example,46

[13, 14, 15]. The problem of choosing optimal values for the delays in a de-47

layed feedback controller can be formulated as an optimal state-delay control48

problem.49

Our goal in this paper is to develop a unified computational approach50

for solving optimal state-delay control problems. A key aspect of our work51

is the derivation of an auxiliary impulsive system, which turns out to be52

the analogue of the costate system in classical optimal control. We derive53

formulae for the cost function’s gradient in terms of the solution of this im-54

pulsive system. On this basis, the optimal state-delay control problem can55

be solved by combining numerical integration and nonlinear programming56

techniques. This approach has proven very effective for the two specific ap-57

plications mentioned above—parameter identification and delayed feedback58

control.59

The remainder of the paper is organized as follows. We first formulate the60

optimal state-delay control problem in Section 2, before introducing the aux-61

iliary impulsive system and deriving gradient formular in Section 3. Section 462
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is devoted to parameter identification problems, and Section 5 is devoted to63

delayed feedback control. We make some concluding remarks in Section 6.64

2. Problem formulation65

Consider the following nonlinear time-delay system:

ẋ(t) = f (x(t),x(t− τ1), . . . ,x(t− τm), ζ), t ∈ [0, T ], (1)

x(t) = φ(t, ζ), t ≤ 0, (2)

where T > 0 is a given terminal time; x(t) = [x1(t), . . . , xn(t)]
⊤ ∈ R

n is66

the state vector ; τi, i = 1, . . . , m are state-delays ; ζ = [ζ1, . . . , ζr]
⊤ ∈ R

r is a67

vector of system parameters ; and f : R(m+1)n×R
r → R

n and φ : R×R
r → R

n
68

are given functions.69

System (1)-(2) is controlled via the state-delays and system parameters—

these must be chosen optimally so that the system behaves in the best pos-

sible manner. We impose the following bound constraints:

ai ≤ τi ≤ bi, i = 1, . . . , m, (3)

and

cj ≤ ζj ≤ dj, j = 1, . . . , r, (4)

where ai and bi are given constants such that 0 ≤ ai < bi, and cj and dj are70

given constants such that cj < dj.71

Any vector τ = [τ1, . . . , τm]
⊤ ∈ R

m satisfying (3) is called an admissible72

state-delay vector. Let T denote the set of all such admissible state-delay73

vectors.74

Any vector ζ = [ζ1, . . . , ζr]
⊤ ∈ R

r satisfying (4) is called an admissible75

parameter vector. Let Z denote the set of all such admissible parameter76

vectors.77

Any combined pair (τ , ζ) ∈ T ×Z is called an admissible control pair for78

system (1)-(2).79

We assume that the following conditions are satisfied.80
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Assumption 1. The given function f is continuously differentiable, and φ81

is twice continuously differentiable.82

Assumption 2. There exists a real number L1 > 0 such that for all ξi ∈ R
n,

i = 0, . . . , m, and ω ∈ R
r,

|f (ξ0, ξ1, . . . , ξm,ω)| ≤ L1(1 + |ξ0|+ |ξ1|+ · · ·+ |ξm|+ |ω|),

where | · | denotes the Euclidean norm.83

Assumptions 1 and 2 ensure that system (1)-(2) admits a unique solution84

corresponding to each admissible control pair (τ , ζ) ∈ T ×Z [16]. We denote85

this solution by x(·|τ , ζ).86

Our aim is to find an admissible control pair that minimizes the following

cost function:

J(τ , ζ) = Φ(x(t1|τ , ζ), . . . ,x(tp|τ , ζ), ζ), (5)

where Φ : Rpn × R
r → R is a given function and tk, k = 1, . . . , p are given

time points satisfying

0 < t1 < · · · < tp ≤ T.

Unlike the standard Mayer cost function commonly used in optimal control87

(which depends solely on the final state), the cost function (5) depends on the88

state at a set of intermediate time points tk, k = 1, . . . , p. These time points89

are called characteristic times in the optimal control literature [2, 17, 18]. As90

we will see, cost functions with characteristic times arise in parameter iden-91

tification problems, where the aim is to minimize the discrepancy between92

predicted and observed system output at a set of sample times.93

Our optimal state-delay control problem is defined formally below.94

Problem (P). Choose (τ , ζ) ∈ T × Z to minimize the cost function (5).95
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3. Gradient computation96

Although the optimal control of time-delay systems has been the subject97

of numerous theoretical and practical investigations [2, 8, 19, 5], most re-98

search has focussed on the simple case when the delays are fixed and known.99

The delays in Problem (P), however, are actually control variables to be100

determined optimally. Hence, Problem (P) differs considerably from most101

time-delay optimal control problems considered in the literature.102

The aim of this paper is to develop a computational method for solv-103

ing Problem (P). Our approach is based on the following key observation:104

Problem (P) can be viewed as a nonlinear optimization problem in which the105

decision vectors τ and ζ influence the cost function J implicitly through the106

governing dynamic system (1)-(2). Thus, if the gradient of J can be com-107

puted for each admissible control pair, then Problem (P) can be solved using108

existing gradient-based optimization methods, such as sequential quadratic109

programming (see [20, 21]). However, since J is not an explicit function of110

τ and ζ, deriving its gradient is not straightforward. The purpose of this111

section is to develop a numerical algorithm for computing the gradient of J .112

3.1. Gradient with respect to state-delays113

Define

ψ(t|τ , ζ) =







∂φ(t,ζ)
∂t

, if t ≤ 0,

f (x(t|τ , ζ),x(t− τ1|τ , ζ), . . . ,x(t− τm|τ , ζ), ζ), if t ∈ (0, T ].

Furthermore, define

∂f̄ (t|τ , ζ)

∂x
=

∂f (x(t|τ , ζ),x(t− τ1|τ , ζ), . . . ,x(t− τm|τ , ζ), ζ)

∂x
,

∂f̄ (t|τ , ζ)

∂x̃i
=

∂f (x(t|τ , ζ),x(t− τ1|τ , ζ), . . . ,x(t− τm|τ , ζ), ζ)

∂x̃i
,

where ∂

∂x̃i denotes differentiation with respect to the ith delayed state vector.114
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Consider the following impulsive dynamic system:

λ̇(t) = −

[

∂f̄ (t|τ , ζ)

∂x

]⊤

λ(t)−

m
∑

l=1

[

∂f̄ (t+ τl|τ , ζ)

∂x̃l

]⊤

λ(t + τl), (6)

λ(t−k ) = λ(t
+
k ) +

[

∂Φ(x(t1|τ , ζ), . . . ,x(tp|τ , ζ), ζ)

∂x(tk)

]⊤

, k = 1, . . . , p, (7)

λ(t) = 0, t ≥ tp. (8)

Let λ(·|τ , ζ) denote the solution of system (6)-(8) corresponding to the ad-115

missible control pair (τ , ζ) ∈ T × Z.116

The following result gives formulae for the partial derivatives of J with117

respect to the state-delays.118

Theorem 1. For each (τ , ζ) ∈ T × Z and i=1,. . . ,m,

∂J(τ , ζ)

∂τi
= −

∫ tp

0

λ⊤(t|τ , ζ)
∂f̄ (t|τ , ζ)

∂x̃i
ψ(t− τi|τ , ζ)dt. (9)

Proof. Let v : [0,∞) → R
n be an arbitrary function satisfying the following119

conditions:120

(i) v is continuous on the intervals (tk−1, tk), k = 1, . . . , p, where t0 = 0 by121

convention;122

(ii) v is differentiable almost everywhere;123

(iii) v has finite left and right limits at t = tk, k = 1, . . . , p, and a finite124

right limit at t = 0.125

Note that any discontinuity of v must lie in the set {t0, t1, . . . , tp}.126
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We may express the cost function J as follows:

J(τ , ζ) = Φ(x(t1), . . . ,x(tp), ζ)

= Φ(x(t1), . . . ,x(tp), ζ)

+

∫ tp

0

(

v⊤(t)f (x(t),x(t− τ1), . . . ,x(t− τm), ζ)− v
⊤(t)ẋ(t)

)

dt

= Φ(x(t1), . . . ,x(tp), ζ)−

p
∑

k=1

∫ tk

tk−1

v⊤(t)ẋ(t)dt

+

p
∑

k=1

∫ tk

tk−1

v⊤(t)f (x(t),x(t− τ1), . . . ,x(t− τm), ζ)dt,

where for simplicity we have omitted the τ and ζ arguments in x(·|τ , ζ).127

This notation will not cause confusion because τ and ζ are assumed to be128

fixed throughout this proof (in the sequel, we will also omit the τ and ζ129

arguments from ∂f̄(t|τ ,ζ)
∂x

, ∂f̄(t|τ ,ζ)

∂x̃i , and ψ(t|τ , ζ)).130

Applying integration by parts to the last integral gives

J(τ , ζ) = Φ(x(t1), . . . ,x(tp), ζ)

+

p
∑

k=1

∫ tk

tk−1

v⊤(t)f (x(t),x(t− τ1), . . . ,x(t− τm), ζ)dt

−

p
∑

k=1

{

v⊤(t−k )x(tk)− v
⊤(t+k−1)x(tk−1)

}

+

p
∑

k=1

∫ tk

tk−1

v̇⊤(t)x(t)dt.

(10)
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Consider the third term on the right-hand side of (10):

p
∑

k=1

{

v⊤(t−k )x(tk)− v
⊤(t+k−1)x(tk−1)

}

=

p
∑

k=1

v⊤(t−k )x(tk)−

p
∑

k=1

v⊤(t+k−1)x(tk−1)

=

p
∑

k=1

v⊤(t−k )x(tk)−

p−1
∑

k=0

v⊤(t+k )x(tk)

= v⊤(t−p )x(tp) +

p−1
∑

k=1

{

v⊤(t−k )− v
⊤(t+k )

}

x(tk)− v
⊤(t+0 )x(t0). (11)

Substituting (11) into (10) yields

J(τ , ζ) = Φ(x(t1), . . . ,x(tp), ζ) +

p
∑

k=1

∫ tk

tk−1

v̇⊤(t)x(t)dt

+

p
∑

k=1

∫ tk

tk−1

v⊤(t)f(x(t),x(t− τ1), . . . ,x(t− τm), ζ)dt

− v⊤(t−p )x(tp)−

p−1
∑

k=1

{

v⊤(t−k )− v
⊤(t+k )

}

x(tk) + v
⊤(0+)φ(0, ζ).

(12)

Define the state variation with respect to τi as follows:

Λi(t) =
∂x(t)

∂τi
, t ∈ [0, T ].

If t < τl, then x(t− τl) = φ(t− τl, ζ), and thus

∂

∂τi

{

x(t− τl)
}

=
∂

∂τi

{

φ(t− τl, ζ)
}

= −δli
∂φ(t− τl, ζ)

∂t
, (13)

where δli denotes the Kronecker delta function. On the other hand, if t ≥ τl,

then
∂

∂τi

{

x(t− τl)
}

= Λi(t− τl)− δliẋ(t− τl). (14)
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Combining (13) and (14) gives

∂

∂τi

{

x(t− τl)
}

= Λi(t− τl)χ[τl,∞)(t)− δliψ(t− τl), (15)

where χ[τl,∞) : R → R is the indicator function defined by

χ[τl,∞)(t) =







1, if t ≥ τl,

0, otherwise.

Now, in view of (15), we can differentiate (12) with respect to τi to obtain

∂J(τ , ζ)

∂τi
=

p
∑

k=1

∂Φ(x(t1), . . . ,x(tp), ζ)

∂x(tk)
Λi(tk) +

p
∑

k=1

∫ tk

tk−1

v⊤(t)
∂f̄ (t)

∂x
Λi(t)dt

+

p
∑

k=1

m
∑

l=1

∫ tk

tk−1

v⊤(t)
∂f̄ (t)

∂x̃l
Λi(t− τl)χ[τl,∞)(t)dt

−

p
∑

k=1

∫ tk

tk−1

v⊤(t)
∂f̄ (t)

∂x̃i
ψ(t− τi)dt− v

⊤(t−p )Λ
i(tp)

−

p−1
∑

k=1

{

v⊤(t−k )− v
⊤(t+k )

}

Λi(tk) +

p
∑

k=1

∫ tk

tk−1

v̇⊤(t)Λi(t)dt.

Thus,

∂J(τ , ζ)

∂τi
=

p−1
∑

k=1

{∂Φ(x(t1), . . . ,x(tp), ζ)

∂x(tk)
− v⊤(t−k ) + v

⊤(t+k )
}

Λi(tk)

− v⊤(t−p )Λ
i(tp) +

∂Φ(x(t1), . . . ,x(tp), ζ)

∂x(tp)
Λi(tp)

+

∫ tp

0

{

v̇⊤(t) + v⊤(t)
∂f̄ (t)

∂x

}

Λi(t)dt

+

m
∑

l=1

∫ tp

0

v⊤(t)
∂f̄ (t)

∂x̃l
Λi(t− τl)χ[τl,∞)(t)dt

−

∫ tp

0

v⊤(t)
∂f̄ (t)

∂x̃i
ψ(t− τi)dt.

(16)
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Perform a change of variable in the second last integral term in (16):

∫ tp

0

v⊤(t)
∂f̄ (t)

∂x̃l
Λi(t− τl)χ[τl,∞)(t)dt

=

∫ tp−τl

−τl

v⊤(t+ τl)
∂f̄ (t+ τl)

∂x̃l
Λi(t)χ[0,∞)(t)dt

=

∫ tp−τl

0

v⊤(t+ τl)
∂f̄ (t+ τl)

∂x̃l
Λi(t)dt. (17)

Substituting (17) into (16) gives,

∂J(τ , ζ)

∂τi
=

p−1
∑

k=1

{∂Φ(x(t1), . . . ,x(tp), ζ)

∂x(tk)
− v⊤(t−k ) + v

⊤(t+k )
}

Λi(tk)

+

{

∂Φ(x(t1), . . . ,x(tp), ζ)

∂x(tp)
− v⊤(t−p )

}

Λi(tp) +

∫ tp

0

v̇⊤(t)Λi(t)dt

+

∫ tp

0

v⊤(t)
∂f̄ (t)

∂x
Λi(t)dt+

m
∑

l=1

∫ tp−τl

0

v⊤(t+ τl)
∂f̄ (t+ τl)

∂x̃l
Λi(t)dt

−

∫ tp

0

v⊤(t)
∂f̄ (t)

∂x̃i
ψ(t− τi)dt.

(18)

Recall that v is arbitrary. Choosing v = λ(·|τ , ζ) and substituting (6)-(8)131

into (18) completes the proof.132

3.2. Gradient with respect to system parameters133

We now turn our attention to the gradient of J with respect to ζj, j =

1, . . . , r. As before, let λ(·|τ , ζ) be the solution of the impulsive dynamic

system (6)-(8). Furthermore, for each j = 1, . . . , r, define

∂f̄ (t|τ , ζ)

∂ζj
=

∂f (x(t|τ , ζ),x(t− τ1|τ , ζ), . . . ,x(t− τm|τ , ζ), ζ)

∂ζj
.

Then we have the following result.134
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Theorem 2. For each (τ , ζ) ∈ T × Z,

∂J(τ , ζ)

∂ζj
=

∂Φ(x(t1|τ , ζ), . . . ,x(tp|τ , ζ), ζ)

∂ζj
+

∫ tp

0

λ⊤(t|τ , ζ)
∂f̄ (t|τ , ζ)

∂ζj
dt

+ λ⊤(0+)
∂φ(0, ζ)

∂ζj
+

m
∑

l=1

∫ 0

−τl

λ⊤(t + τl|τ , ζ)
∂f̄ (t+ τl|τ , ζ)

∂x̃l

∂φ(t, ζ)

∂ζj
dt.

(19)

Proof. Let v(·) be as defined in the proof of Theorem 1. Recall from equation

(12) that

J(τ , ζ) = Φ(x(t1), . . . ,x(tp), ζ) +

p
∑

k=1

∫ tk

tk−1

v⊤(t)f(x(t),x(t− τ1), . . . ,x(t− τm), ζ)dt

− v⊤(t−p )x(tp)−

p−1
∑

k=1

{

v⊤(t−k )− v
⊤(t+k )

}

x(tk) + v
⊤(0+)φ(0, ζ)

+

p
∑

k=1

∫ tk

tk−1

v̇⊤(t)x(t)dt,

(20)

where, as in the proof of Theorem 1, we omit the τ and ζ arguments for135

clarity.136

Differentiating (20) with respect to ζj gives

∂J(τ , ζ)

∂ζj
=

∂Φ(x(t1), . . . ,x(tp), ζ)

∂ζj
+

p
∑

k=1

∂Φ(x(t1), . . . ,x(tp), ζ)

∂x(tk)

∂x(tk)

∂ζj

+

p
∑

k=1

∫ tk

tk−1

v⊤(t)
∂f̄ (t)

∂x

∂x(t)

∂ζj
dt+

p
∑

k=1

∫ tk

tk−1

v⊤(t)
∂f̄ (t)

∂ζj
dt

+

p
∑

k=1

m
∑

l=1

∫ tk

tk−1

v⊤(t)
∂f̄ (t)

∂x̃l

∂x(t− τl)

∂ζj
dt− v⊤(t−p )

∂x(tp)

∂ζj

−

p−1
∑

k=1

{

v⊤(t−k )− v
⊤(t+k )

}∂x(tk)

∂ζj
+ v⊤(0+)

∂φ(0, ζ)

∂ζj

+

p
∑

k=1

∫ tk

tk−1

v̇⊤(t)
∂x(t)

∂ζj
dt.
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Thus,

∂J(τ , ζ)

∂ζj
=

∂Φ(x(t1), . . . ,x(tp), ζ)

∂ζj
+
{∂Φ(x(t1), . . . ,x(tp), ζ)

∂x(tp)
− v⊤(t−p )

}∂x(tp)

∂ζj

+

p−1
∑

k=1

{∂Φ(x(t1), . . . ,x(tp), ζ)

∂x(tk)
− v⊤(t−k ) + v

⊤(t+k )
}∂x(tk)

∂ζj

+

∫ tp

0

{

v̇⊤(t) + v⊤(t)
∂f̄ (t)

∂x

}∂x(t)

∂ζj
dt+

m
∑

l=1

∫ tp

0

v⊤(t)
∂f̄ (t)

∂x̃l

∂x(t− τl)

∂ζj
dt

+

∫ tp

0

v⊤(t)
∂f̄ (t)

∂ζj
dt+ v⊤(0+)

∂φ(0, ζ)

∂ζj
.

(21)

Perform a change of variable in the second last integral term in (21):
∫ tp

0

v⊤(t)
∂f̄ (t)

∂x̃l

∂x(t− τl)

∂ζj
dt =

∫ tp−τl

−τl

v⊤(t+ τl)
∂f̄ (t+ τl)

∂x̃l

∂x(t)

∂ζj
dt. (22)

Recall that x(t) = φ(t, ζ) for all t ≤ τl. Hence, from (22),
∫ tp

0

v⊤(t)
∂f̄ (t)

∂x̃l

∂x(t− τl)

∂ζj
dt =

∫ 0

−τl

v⊤(t+ τl)
∂f̄ (t+ τl)

∂x̃l

∂φ(t, ζ)

∂ζj
dt

+

∫ tp−τl

0

v⊤(t + τl)
∂f̄ (t + τl)

∂x̃l

∂x(t)

∂ζj
dt.

(23)

Substituting equation (23) into (21) gives,

∂J(τ , ζ)

∂ζj
=

∂Φ(x(t1), . . . ,x(tp), ζ)

∂ζj
+
{∂Φ(x(t1), . . . ,x(tp), ζ)

∂x(tp)
− v⊤(t−p )

}∂x(tp)

∂ζj

+

p−1
∑

k=1

{∂Φ(x(t1), . . . ,x(tp), ζ)

∂x(tk)
− v⊤(t−k ) + v

⊤(t+k )
}∂x(tk)

∂ζj

+

∫ tp

0

{

v̇⊤(t) + v⊤(t)
∂f̄ (t)

∂x

}∂x(t)

∂ζj
dt+

m
∑

l=1

∫ 0

−τl

v⊤(t+ τl)
∂f̄ (t+ τl)

∂x̃l

∂φ(t, ζ)

∂ζj
dt

+

m
∑

l=1

∫ tp−τl

0

v⊤(t + τl)
∂f̄ (t + τl)

∂x̃l

∂x(t)

∂ζj
dt+

∫ tp

0

v⊤(t)
∂f̄ (t)

∂ζj
dt+ v⊤(0+)

∂φ(0, ζ)

∂ζj
.

Choosing v = λ(·|τ , ζ) and substituting (6)-(8) into the above equation137

completes the proof of equation (19).138
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3.3. Solving Problem (P)139

On the basis of Theorems 1 and 2, we now present the following algorithm140

for computing the cost function (5) and its gradient at a given admissible141

control pair (τ , ζ) ∈ T × Z.142

Step 1. Solve the state system (1)-(2) from t = 0 to t = T to obtain x(·|τ , ζ).143

Step 2. Using x(·|τ , ζ), solve the impulsive system (6)-(8) from t = T to t = 0144

to obtain λ(·|τ , ζ).145

Step 3. Using x(tk|τ , ζ), k = 1, . . . , p, compute J(τ , ζ) via equation (5).146

Step 4. Using x(·|τ , ζ) and λ(·|τ , ζ), compute ∂J(τ ,ζ)
∂τi

, i = 1, . . . , m and ∂J(τ ,ζ)
∂ζj

,147

j = 1, . . . , r via equations (9) and (19).148

This algorithm can be integrated with a standard gradient-based opti-149

mization method (e.g. sequential quadratic programming) to solve Prob-150

lem (P) as a nonlinear programming problem. The state system (1)-(2)151

evolves forward in time (starting from an initial condition), while the aux-152

iliary system (6)-(8) evolves backwards in time (starting from a terminal153

condition). Thus, since the state and auxiliary systems evolve in opposite154

directions, and the auxiliary system depends on the solution of the state sys-155

tem, these two systems cannot be solved simultaneously. Instead, the state156

system is solved first in Step 1, and then the solution of the state system157

is used to solve the auxiliary system in Step 2. In practice, numerical inte-158

gration methods are used to solve the state and auxiliary systems. If, when159

solving the auxiliary system in Step 2, the value of the state vector is required160

at a point that does not coincide with one of the numerical integration knot161

points in Step 1, then an appropriate interpolation method must be used162

(e.g. Hermite or Lagrange interpolation). The integrals in the gradient for-163

mulae (9) and (19) can be evaluated using standard numerical quadrature164

rules.165

14



4. Application to parameter identification problems166

4.1. Problem formulation167

Consider the dynamic model (1)-(2). Suppose that τi, i = 1, . . . , m and ζj ,

j = 1, . . . , r are unknown parameters that need to be identified. Furthermore,

suppose that {(tk, ŷ
k)}pk=1 is a given set of experimental data, where ŷk ∈ R

q

is the system output observed at sample time t = tk. Here, the output y(t) ∈

R
q is assumed to be a given function of the state and model parameters:

y(t) = g(x(t|τ , ζ), ζ), t ∈ [0, T ], (24)

where g : Rn × R
r → R

q.168

The aim is to choose appropriate values for the unknown parameters τi,

i = 1, . . . , m and ζj, j = 1, . . . , r so that the predicted system output—

obtained by solving (1)-(2) and (24)—best fits the experimental data. This

leads to the following parameter identification problem:

min
(τ ,ζ)∈T ×Z

p
∑

k=1

∣

∣g(x(tk|τ , ζ), ζ)− ŷ
k
∣

∣

2
. (25)

This problem is clearly a special case of Problem (P). Hence, it can be solved169

using the computational approach outlined in the previous section.170

A similar (but less general) parameter identification problem was recently171

considered in reference [12]. In [12], the method proposed for computing the172

cost function’s gradient involves solving mn + nr + n differential equations.173

Using the algorithm in Section 3.3, only 2n differential equations need to174

be solved. Thus, our new method is ideal for online applications in which175

efficiency is paramount.176

4.2. Example: Zinc sulphate purification177

We now demonstrate the applicability of our approach to a realistic pa-178

rameter identification problem. Specifically, we consider the industrial pu-179

rification process described in [2, 8]. In this process, zinc powder is added180
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to a zinc sulphate electrolyte to encourage deposition of harmful cobalt and181

cadmium ions. This is a key step in the production of zinc.182

The concentrations of cobalt and cadmium ions in the electrolyte evolve

according to the following differential equations:

V ẋ1(t) = Qx0
1 −Qx1(t− τ)− α1u(t)x1(t− τ) + β1x2(t− τ), (26)

V ẋ2(t) = Qx0
2 −Qx2(t− τ)− α2v(t)x2(t− τ) + β2x1(t− τ), (27)

and

x1(t) = 3.3× 10−4, x2(t) = 4.0× 10−3, t ≤ 0, (28)

where x1 is the concentration of cobalt ions; x2 is the concentration of cad-183

mium ions; and u and v are control variables that correspond to the amount184

of zinc powder added to the reaction tank. Furthermore, V is the volume185

of the reaction tank (V = 400); Q is the flux of solution (Q = 200); α1 and186

α2 are unknown model parameters; β1 and β2 are given model parameters187

(β1 = 16.67, β2 = 710.7); and x0
1 and x0

2 are, respectively, the concentrations188

of cobalt and cadmium ions at the inlet of the reaction tank (x0
1 = 6× 10−4,189

x0
2 = 9× 10−3).190

Reference [8] considers system (26)-(28) with a given time-delay of τ = 2.

Here, we suppose that τ is an unknown model parameter that needs to be

identified. We assume that the terminal time is T = 8. Furthermore, we set

the input variables u and v as equal to the optimal control functions obtained

in [8]:

u(t) =

8
∑

l=1

σl
1χ[γl−1,γl)(t), t ∈ [0, 8], (29)

v(t) =

8
∑

l=1

σl
2χ[γl−1,γl)(t), t ∈ [0, 8], (30)

where the switching times γl and the control values σl
1 and σl

2, l = 1, . . . , 8191

are listed in Table 1.192
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Table 1: Control values and switching times for control functions (29) and (30).

l 1 2 3 4 5 6 7 8

γl 1 2 3 4 5 6 7 8

σl
1 (×105) 1.08 1.57 1.24 1.56 1.59 1.43 1.25 1.25

σl
2 (×105) 5.20 4.70 4.97 4.60 4.53 4.64 4.74 4.62

The system output is the concentration of cadmium ions:

y(t) = x2(t). (31)

Given system (26)-(28) and (31), and control input functions (29) and (30),193

our goal is to identify the model parameters α1 and α2 and the state-delay194

τ .195

To generate the observed data for this parameter identification problem,

we consider system (26)-(28) with the following data:

τ = τ̂ = 2, α1 = α̂1 = 7.828× 10−4, α2 = α̂2 = 2.823× 10−4.

The corresponding output trajectory y(·|τ̂ , α̂1, α̂2) = x2(·|τ̂ , α̂1, α̂2) acts as

our reference trajectory. We define the sample times to be tk = k/2, k =

1, . . . , 16. Thus, the observed output is

ŷk = x2(tk|τ̂ , α̂1, α̂2), k = 1, . . . , 16.

Our parameter identification problem is now defined as follows: Choose τ ,

α1, and α2 to minimize

J(τ, α1, α2) =

16
∑

k=1

∣

∣y(tk|τ, α1, α2)− ŷk
∣

∣

2
=

16
∑

l=1

∣

∣x2(tk|τ, α1, α2)− x2(tk|τ̂ , α̂1, α̂2)
∣

∣

2

subject to the dynamic system (26)-(28).196

This problem cannot be solved using the identification method in [12],197

which is only applicable when each nonlinear term in the system dynamics198
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Table 2: Numerical convergence of the cost values for the example in Section 4.2.

Initial guess Cost value at ith iteration

Run τ 0 α0
1 α0

2 i = 0 i = 10 i = 20 i = 50

1 0.0 0.0 0.0 9.264×10−5 1.514×10−6 3.690×10−9 2.525×10−11

2 0.5 0.5 0.5 7.360×1054 1.905×10−5 2.150×10−7 3.202×10−13

3 1.0 0.0 1.0 1.537×1020 1.330×10−7 9.813×10−10 1.290×10−10

4 1.0 1.0 1.0 3.392×1033 2.126 3.900×10−3 2.535×10−11

5 3.0 1.0 1.0 8.085×1013 4.841×10−6 7.072×10−9 8.882×10−11

contains a single delay and no unknown parameters (the third term on the199

right-hand side of (26) violates this requirement). We solve the parame-200

ter identification problem using a Matlab program that integrates the SQP201

optimization method with the gradient computation algorithm described in202

Section 3.3. Computational results for different initial guesses are shown in203

Table 2. The convergence of the output trajectory for the initial guess τ = 3,204

α1 = 1, and α2 = 1 (run 5) is displayed in Figure 1. This figure shows the205

output trajectory at two intermediate iterations of the optimization process,206

as well as the final (converged) trajectory. In Table 2 and Figure 1, τ i, αi
1,207

and αi
2 are the values of τ , α1, and α2 at the ith iteration of the SQP opti-208

mization process (i = 0 refers to the initial guess). We see from Table 2 and209

Figure 1 that the system trajectory converges quickly to the observed data,210

even when the initial trajectory is far from the reference trajectory.211
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Figure 1: Numerical convergence of the output trajectory for run 5 in Section 4.2.

5. Application to delayed feedback control212

5.1. Problem formulation213

Consider the following continuous-time control system:

ẋ(t) = f(x(t),u(t)), t ∈ [0, T ], (32)

x(t) = φ(t), t ≤ 0, (33)

where x(t) ∈ R
n is the state and u(t) ∈ R

r is the control input. System (32)-214

(33) does not contain any delays. Such undelayed systems are usually much215

easier to control than time-delay systems. Nevertheless, it has been shown216

that introducing delays to an undelayed system can be beneficial, especially217

for chaotic systems [13, 15, 22].218

Delayed feedback control is one way of deliberately introducing delays to

an undelayed system. In delayed feedback control, the control function u(t)

is defined as follows:

u(t) =K0x(t) +K1x(t− τ1) + · · ·+Kdx(t− τd), (34)

whereK i ∈ R
r×n, i = 0, . . . , d are feedback gain matrices and τi, i = 1, . . . , d

19



are time-delays. Substituting (34) into (32)-(33) yields the following closed-

loop system:

ẋ(t) = f̃
(

x(t),x(t− τ1), · · · ,x(t− τd), ξ
)

, t ∈ [0, T ], (35)

x(t) = φ(t), t ≤ 0, (36)

where ξ ∈ R
rn(d+1) is a vector containing the elements of the feedback gain

matrices and

f̃
(

x(t),x(t− τ1), . . . ,x(t− τd), ξ
)

= f
(

K0x(t) +K1x(t− τ1) + . . .+Kdx(t− τd)
)

.

The aim here is to choose the delays and feedback gain matrices in (34) to

stabilize the closed-loop system (35)-(36). Thus, we consider the following

optimization problem:

min
τ ,ξ

|x(T )− x∗|2 + |ẋ(T )|2,

where x(·) is the solution of (35)-(36) and x∗ is a desired equilibrium point.219

This problem can be solved effectively using the computational approach220

outlined in Section 3.221

5.2. Example 1: Inverted pendulum222

We consider the problem of controlling the position of a single-link rota-

tional joint in robotics (a type of inverted pendulum system). The dynamics

of the rotational joint are described as follows:

ÿ(t)−
g

L
y(t) = u(t), t ∈ [0, T ], (37)

with initial conditions

ẏ(t) = 0, y(t) = 1, t ≤ 0, (38)

where y denotes the angular displacement of the inverted pendulum, g is the223

acceleration due to gravity (g = 9.8ms−2), L is the length of the pendulum224

(L = 0.4m), and u is the external torque force.225
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In the absence of velocity measurements, the inverted pendulum system is

difficult to stabilize using position feedback control [22]. Thus, it is necessary

to instead consider the following delayed feedback controller:

u(t) = ay(t− τ1) + by(t− τ2), (39)

where τ1 and τ2 are position delays, and a and b are parameters. We use the

same values for a and b as given in [22]:

a = −63.73, b = 36.76. (40)

The second-order system (37)-(38), with u defined by (39), can be easily

transformed into the following system of first-order differential equations:

ẋ1(t) = x2, t ∈ [0, T ], (41)

ẋ2(t) = ax1(t− τ1) + bx1(t− τ2) +
g

L
x1(t), t ∈ [0, T ], (42)

with initial conditions

x1(t) = 1, x2(t) = 0, t ≤ 0. (43)

Exponential stability conditions for system (41)-(42) were established in [22].

Here, we apply the computational method described in Section 3 to determine

optimal values for the position delays so that the system becomes stable at the

origin. Our optimal control problem can be stated as follows: Given system

(41)-(42) with initial conditions (43) and parameter values (40), choose the

position delays τ1 and τ2 to minimize the objective function

J = x1(T )
2 + x2(T )

2, (44)

where the terminal time T is chosen to be 20 seconds. As in Section 4.2,226

we solved this problem using a Matlab program that implements the com-227

putational approach described in Section 3.3. The optimal time-delays are228

τ1 = 0.1134 and τ2 = 0.2458. To compare, reference [22] reports optimal229

time-delays of τ1 = 0.143 and τ2 = 0.286. Figure 2 shows the angular dis-230

placement under our optimal feedback controller and the optimal feedback231

controller in [22]. Note that our controller stabilizes the system quickly with232

less oscillations than the controller in [22].233
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Figure 2: Optimal angular displacement for the closed-loop inverted pendulum system

5.3. Example 2: Chen chaotic system234

We now consider the problem of stabilizing the so-called disturbed Chen

chaotic system, which is defined as follows:

ẋ(t) =







−θ1 θ1 0

θ2 − θ1 θ2 0

0 0 −θ3






x(t) +







0

−x1x3

x1x2






+ ω(t), t ∈ [0, T ], (45)

with initial conditions

x(0) = [2,−3, 1]⊤, t ≤ 0, (46)

where ω(t) is a bounded exogenous disturbance and θ1, θ2, and θ3 are model

parameters. Here, we assume that the disturbance and model parameters

are as given in [23]:

ω(t) = [0.2x1(t),−0.2x2(t),−0.2x3(t)]
⊤, θ1 = 1, θ2 = 2, θ3 = 3. (47)

Our aim is to stabilize the chaotic system (45)-(46) at the origin. Thus, the

objective function is

J = |x(T )|2 + |ẋ(T )|2, (48)
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where the terminal time is T = 0.5. We design a delayed feedback controller

in the following form:

u(t) = [K1x1(t− τ), K2x2(t− τ), K3x3(t− τ)]⊤, (49)

where K1, K2, K3 are feedback gains and τ is the state-delay. Our optimal235

control problem can be stated as follows: Given the system (45)-(46), with236

disturbance and parameters values defined by (47), and the feedback control237

(49), choose the state-delay and the feedback gains to minimize the objective238

function (48).239

We solved this problem using the same Matlab program that was used

to solve the examples in Sections 4.2 and 5.2. The optimal delayed feedback

control is

u(t) = [−48.26x1(t− 0.0071),−47.81x2(t− 0.0071),−47.86x3(t− 0.0071)]⊤.

(50)

Using the MISER optimal control software [24], we also computed the optimal

undelayed feedback control:

u(t) = [−45.47x1(t),−61.84x2(t),−20.64x3(t)]
⊤. (51)

The optimal state variables under controls (50) and (51) are shown in Fig-240

ure 3. Note that for this system, delayed feedback control stabilizes the241

system quicker than the traditional feedback control.242

6. Conclusion243

In this paper, we have considered a novel optimal control problem in244

which the delays in a nonlinear time-delay system are control variables to be245

determined optimally. Such problems, which are called optimal state-delay246

control problems, arise in parameter identification and delayed feedback con-247

trol. Our main contribution is a new computational method for determining248

the gradient of the cost function in an optimal state-delay control problem.249

This method requires less numerical integration than the existing method in250
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Figure 3: Optimal states of the Chen chaotic system in Section 5.3

[12], and is therefore much faster. Furthermore, unlike the method in [12],251

our new method is applicable to systems with nonlinear terms containing252

more than one state-delay. We have restricted our attention in this paper253

to systems with time-invariant (constant) time-delays. Our future work will254

involve combining the techniques in this paper with the control parameter-255

ization method [25, 26] to solve optimal state-delay control problems with256

time-varying delays. Such problems arise in the control of crushing processes257

[19] and mixing tanks with recycle loops [27].258
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tion of plants with multiple delays and internal feedbacks using genetic292

algorithm, Proceddings of the 3rd International Symposium on Commu-293

nications, Control and Signal Processing, 12-14, March, 2008: 425-429.294

[11] Y. Orlov, L. Belkoura, J. P. Richard, M. Dambrine, Adaptive identifica-295

tion of linear time-delay systems, International Journal of Robust and296

Nonlinear Control, 2003, 13(9): 1099-1239.297

[12] R. Loxton, K. L. Teo, V. Rehbock, An optimization approach to state-298

delay identification, IEEE Transactions on Automatic Control, 2010,299

55(9): 2113-2119.300

[13] A. Ahlborn, U. Parlitz, Stabilizing unstable steady states using multiple301

delay feedback control, Physical Review Letters, 2004,93: ID 264101.302

[14] C. A. S. Batista, S. R. Lopes, R. L. Viana, A. M. Batista, Delayed feed-303

back control of bursting synchronization in a scale-free neuronal network,304

Neural Networks, 2010, 23(1): 114-124.305

[15] J. Lavaei, S. Sojoudi, R. M. Murray, Delay-based controller de-306

sign for continuous-time and hybrid applications, Technical Re-307

port, California Institute of Technology, 2010 (available online at308

http://caltechcdstr.library.caltech.edu/173).309

[16] N. U. Ahmed, Dynamic Systems and Control with Applications, World310

Scientific, Singapore, 2006.311

[17] R. C. Loxton, K. L. Teo, V. Rehbock, Optimal control problems with312

multiple characteristic time points in the objective and constraints, Au-313

tomatica, 2008, 44(11): 2923-2929.314

26



[18] R. B. Martin, Optimal control drug scheduling of cancer chemotherapy,315

Automatica, 1992, 28(6): 1113-1123.316

[19] J. P. Richard, Time-delay systems: An overview of some recent advances317

and open problems, Automatica, 2003, 39(10): 1667-1694.318

[20] D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, third ed.,319

Springer, New York, 2008.320

[21] J. Nocedal, S. J. Wright, Numerical Optimization, 2nd edition, Springer,321

2006.322

[22] D. Zhao, J. Wang, Exponential stability and spectral analysis of the in-323

verted pendulum system under two delayed position feedbacks, Journal324

of Dynamical and Control Systems, 2012, 18(2): 269-295.325

[23] H. Xu, Y. Chen, K. L. Teo, R. Loxton, An impulsive stabilizing control of326

a new chaotic system, Dynamic Systems and Applications, 2009, 18(2):327

241-250.328

[24] L. S. Jennings, M. E. Fisher, K. L. Teo, C.J. Goh, MISER3: Solving329

optimal control problems—an update, Advances in Engineering Software330

and Workstations, 1991, 13(4):190-196.331

[25] Q. Lin, R. Loxton, K. L. Teo, Y. H. Wu, A new computational method332

for a class of free terminal time optimal control problems, Pacific Journal333

of Optimization, 2011, 7(1): 63-81.334

[26] Q. Lin, R. Loxton, K. L. Teo, Y. H. Wu, Optimal control computation for335

nonlinear systems with state-dependent stopping criteria, Automatica,336

to appear.337

[27] J. Y. Dieulot, J. P. Richard, Tracking control of a nonlinear system338

with input-dependent delay, Proceedings of the 40th IEEE Conference339

on Decision and Control, 2001(4): 4027-4031.340

27


