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Abstract 

Sulfur-based cathodes are promising to enable high energy density lithium-sulfur 

batteries; however, elemental sulfur as active material faces several challenges including 

undesirable volume change (~80%) when completely reduced and high dependence on liquid 

electrolyte wherein an electrolyte/sulfur ratio >10 µL mg-1 is required for high material 

utilization. These limit the attainable energy densities of these batteries. Herein, we introduce a 

new class of phenyl polysulfides C6H5SxC6H5 (4 ≤ x ≤ 6) as liquid cathode materials synthesized 

in a facile and scalable route to mitigate these setbacks. These polysulfides possess sufficiently 
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high theoretical specific capacities, specific energies, and energy densities. Spectroscopic 

techniques verify their chemical composition and computation shows that the volume change 

when reduced is about 37%. Lithium half-cell testing shows that phenyl hexasulfide 

(C6H5S6C6H5) can provide a specific capacity of 650 mAh g-1 and capacity retention of 80% 

through 500 cycles at 1C rate along with superlative performance up to 10C. Furthermore, 1,302 

Wh kg-1 and 1,720 Wh L-1 are achievable at a low electrolyte/active material ratio, i.e., 3 µL mg-

1. This work adds new members to the cathode family for Li-S batteries, reduces the gap between 

the theoretical and practical energy densities of batteries, and provides a new direction for the 

development of alternative high-capacity cathode materials. 

 

From waking up to alarms on a cellphone to getting around in electric cars, our everyday 

lives are progressively relying on rechargeable batteries. The dramatic advances in these systems 

have been the major driving force for scientists to explore new materials that enable batteries 

with higher specific energy and energy density. Society has been so far reliant on solid metal 

oxide cathodes for lithium-ion (Li-ion) batteries.1-2 However, the inherently low specific 

capacities of these materials limit the achievable specific energy.3-4 This roadblock led to the 

investigations into solid conversion cathodes such as elemental sulfur which offers an order of 

magnitude higher specific capacity thus improving the specific energy.5-6 Despite being a 

promising cathode material, an intrinsic volume change (~80%) occurring during conversion of 

sulfur to lithium sulfide necessitates cathode substrates that possess structural stability 

throughout the cycle life of the cell.5 In addition, complete conversion in ether electrolyte 

requires a high electrolyte/sulfur ratio, e.g., ≥10 µL mg-1, which significantly limits the specific 

energy of lithium-sulfur (Li-S) batteries.7-11 
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Research efforts aimed at accommodating this volume change have focused on designing 

cathode to physically flex during battery operation by employing sulfur wrapped cathodes12-13, 

confinement in core-shell structures14-15, flexible polymers and the like.16-17 Unfortunately, 

during long term cycling, these solutions result in microstructural changes in the cathode which 

negatively affect the performance.18 Furthermore, this effect is further exacerbated at higher 

sulfur loadings.19 An alternative strategy to cathode stabilization relies upon liquid sulfur-

containing compounds, where the volume change between the lithiated and delithiated materials 

is greatly reduced. Herein, we utilize a facile and scalable process to synthesize phenyl 

polysulfides namely phenyl tetrasulfide (PTS, C6H5S4C6H5, PhS4Ph), phenyl pentasulfide (PPS, 

PhS5Ph), and phenyl hexasulfide (PHS, PhS6Ph) in pure forms. In these compounds, a linear 

sulfur chain is bonded with two phenyl groups on the ends. Each polysulfide molecule can take 

several Li+ and e- when reduced; therefore, possess a high specific capacity and energy. The 

volume change when utilizing these materials is about 37% (see supporting for computation), 

which is less than half that of the sulfur cathode in Li-S batteries thus significantly reducing 

internal electrode stresses. This enables the cathode to accommodate the chemical transitions 

over a few hundred cycles while still maintaining mechanical integrity and ensuring electrical 

contact with the active material. In addition, this class of liquid cathode materials allows for high 

material utilization at low electrolyte/active material ratios (i.e., 3 µL mg-1) thus reducing the 

fraction of inactive cell components. These unique properties can be leveraged for developing 

lithium batteries with long cycle life and high energy density for practical applications. 

In this letter, these new polysulfides were synthesized in a facile and scalable route and 

their chemical composition was verified using different spectroscopic techniques. Their 

electrochemical, material and physical transformations occurring on the cathode in lithium half-
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cells were probed to understand their reduction processes in batteries. Furthermore, 

performances under high rate and also low electrolyte to active material ratios were evaluated, 

which shows their potential to overcome the intrinsic issues of sulfur cathodes. 

 

Results and Discussion 

Bis(aryl) polysulfides such as phenyl polysulfides and benzyl polysulfides have been 

synthesized commonly through the reaction of the corresponding thiols with sulfur 

monochloride,20-22 reaction of corresponding aryl halides with alkali polysulfides,23-24 and also 

the base-catalyzed reaction of thiols with elemental sulfur25 among others.26 These techniques 

rely on a variety of solvents, catalysts and non-ambient conditions and result in a mixture of 

reaction products thus requiring further extraction/purification steps before obtaining the final 

products in pure form. Herein, we introduce a solvent-free and catalyst-free technique to 

synthesize phenyl polysulfides that yields the required product in a single step. The reaction 

involves the simple mixing and stirring of the starting thiol, i.e., benzenethiol (PhSH) with 

elemental sulfur in the appropriate stoichiometric ratio as visualized along with the equation in 

Figure 1a. The high acidity of the thiol group facilitates the ring-opening of the cyclo-octasulfur 

leading to the formation of phenyl polysulfanes (PhSxH).25 The instability of these high order 

polysulfanes results in intermolecular condensation and elimination of H2S gas leading to the 

formation of the required order of phenyl polysulfide.25-26 The presence of H2S can be detected 

through the blackening on exposure of lead acetate test strips (shown in Figure 1a) and can also 

be observed in the bubbling of the reaction mixture (supporting Figure S1). The H2S evolution 

greatly subsides in 1 hour and ceases at about 5 hours. Continuous agitation until 6 hours 

removes almost all the dissolved gas leaving behind the oily polysulfide liquid. Furthermore, 
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upon scaling, the H2S released can be collected from the reaction vessel and the sulfur can be 

recovered from it using the Claus process thus regenerating the starting material and mitigating 

the toxic impact of H2S. 

Two equivalents of PhSH react with 3 equivalents of sulfur to yield phenyl tetrasulfide 

(PTS, PhS4Ph). Similarly, 4 equivalents of sulfur give phenyl pentasulfide (PPS, PhS5Ph) and 5 

equivalents result in phenyl hexasulfide (PHS, PhS6Ph) which are shown in Figure 1b. As 

expected, the density of these liquids almost linearly increases with polysulfide order. This 

results in the gravimetric specific capacity and volumetric capacity density increase with the 

order of phenyl polysulfide as summarized in Figure 1c. PHS has a specific capacity of 774.5 

mAh g-1 and a capacity density of 1,022.4 mAh mL-1 which are, respectively, nearly 4 times and 

twice that of state-of-the-art cathode materials used in Li-ion batteries.27 On collating the energy 

increase with polysulfide order as described by Figure 1d, we see that all the three polysulfides 

have a higher specific energy than metal oxide cathode materials, while PPS and PHS are able to 

surpass them in terms of energy density. This comparison of theoretical capacity and energy 

values clearly establishes the great promise this class of materials hold in surpassing the current 

cathode materials used in Li-ion batteries. 

Upon their synthesis, different spectroscopic techniques were used to corroborate the 

composition of the polysulfides. Firstly, Fourier Transform Infrared (FTIR) spectroscopy was 

conducted to confirm the conversion of thiol to polysulfide. The S-H bond stretch, ν(SH), is 

typically present in the 2500-2600 cm-1 range as shown in the IR spectrum in Figure 2a.28 This is 

evident in the spectrum of PhSH whereas this peak is absent in the spectra of PTS, PPS, and PHS 

marking the conversion of the thiol into corresponding polysulfides. Characteristic peaks of the 

phenyl polysulfide bonds are visible in the 400-550 cm-1 region (supporting Figure S2). Here, 
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weak peaks attributed to S-S bond stretching mode can be seen in 480-500 cm-1 band along with 

the stronger peak at about 470 cm-1 owing to the out-of-plane deformation of the phenyl rings 

due to the presence of polysulfide linkages.29-30 Next, on establishing the conversion to 

polysulfides, we ascertain their order through Ultraviolet-Visible (UV-Vis) spectroscopy. The 

spectra for equimolar solutions in chloroform of the synthesized polysulfides along with that of 

the commercially available phenyl disulfide (PDS) as a reference were collected as shown in 

Figure 2b. The peak wavelength (λ, in nm) increases as we move from PDS to PHS.31 The plot 

of peak wavelength as a function of square root of polysulfide order (n, i.e. number of sulfur 

atoms) shown in inset Figure 2b follows a linear trend as expected of phenyl polysulfide thus 

validating the order of the synthesized polysulfides.32 

In addition, in order to confirm the purity of the synthesized polysulfides, electron impact 

mass spectrometry (EI-MS) was performed. The mass spectrum in Figure 2c has the parent ion 

peak at a m/z of 281.96 corresponding to the molar massfor PTS. Other daughter fragmentation 

peaks corresponding to that of PhS3Ph (phenyl trisulfide, m/z = 250), PhS2Ph (phenyl disulfide, 

m/z = 218), PhSS· (phenyl perthiolate radical, m/z = 141) and PhS· (phenyl thiolate radical, m/z 

= 109) are also evident.20 The absence of peaks beyond m/z of 288 (supporting Figure S3) 

supports the clean formation of PTS. The mass spectrum in Figure 2d confirms the presence of 

PPS (m/z = 313.98) along with its fragments which include PTS. Trace amounts of PHS (m/z = 

345.95) is also formed as evidenced by supporting Figure S4. The peak for a m/z of 345.92 in 

Figure 2e asserts the formation of PHS along with trace amounts of PhS7Ph (phenyl heptasulfide, 

m/z = 377.89) indicated by supporting Figure S5. The spectroscopic data above substantiates the 

synthesis of the polysulfides as mainly governed by the equation in Figure 1a. 
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The synthesized polysulfides were subject to electrochemical testing using CR-2032 coin 

cells. The cathode consisted of commercially available carbon nanotube (CNT) paper discs that 

function as the polysulfide reservoir, conductive substrate as well as the current collector as used 

in several studies.33-34 The cyclic voltammogram in Figure 3a shows three distinct reduction 

peaks in the cathodic scan which are present for all three polysulfides. The first peak at 2.4 V 

corresponds to the breakage of the central S-S bonds which increases with the polysulfide order 

owing to the lowering of their bond energy.35 The following reduction of the lithium polysulfides 

which occurs at 2.2 V is mediated by the formed phenyl persulfide and phenyl sulfide radicals.34, 

36-38 This is followed by conversion of lithium polysulfides (Li2Sx, 2 ≤ x ≤ 4) to lithium sulfide 

(Li2S) and the formation of lithium thiophenolate (PhSLi) at 2 V.39 The anodic scan illustrates 

that the charging reaction occurs in two steps. Majority of the conversion occurs at 2.3 V 

followed by the reversal to phenyl polysulfides at 2.43 V. 

Alongside this, the examination of the voltage profiles of the three polysulfides upon 

galvanostatic cycling at C/2 (Figure 3b) reveals the first discharge plateau occurs at 2.35 V for 

PHS and PPS whereas it is a sloping region until 2.25 V for PTS. This is followed by a sloping 

second plateau at 2.15 V for PTS and 2.2 V for PPS and PHS. The lower order lithium 

polysulfides formed at this stage (Li2Sx, 2 ≤ x ≤ 4) transition to Li2S at the 2 V plateau. We can 

see that, the higher voltage characteristic organopolysulfide transitions that occur above 2 V 

contribute to nearly 320 mAh g-1. This equates to 62%, 52%, and 45% of the total capacity for 

PTS, PPS, and PHS, respectively, which is markedly different from the 25% obtained through 

the 2.4 V higher order polysulfide transition in Li-S batteries.40 The two electron-withdrawing 

phenyl rings attached to the sulfur chains elevate the electrochemical potential of sulfur; 

therefore it is beneficial for improving specific energy of lithium batteries. Additionally, the 

Page 7 of 20

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



8 

 

resonance in thiophenolate ion stabilizes it thus forming stable discharge products. This 

fundamentally changes the reaction mechanism compared to other organosulfur compounds.  

Following this, the physical and chemical transitions occurring at the cathode were 

probed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning 

electron microscopy (SEM). XRD pattern of the discharged cathodes in supporting Figure S6 

exhibits the broadened (220) and (311) peaks for Li2S and no characteristic peaks for PhSLi for 

all three polysulfides. This signals the formation of a near amorphous form of Li2S and non-

crystalline form of PhSLi on cell discharge, indicating a uniform mixing of Li2S and PhSLi in 

the discharged electrode. On recharge, only the peaks for the bare CNT paper can be seen 

(supporting Figure S7) signaling the conversion of the solid discharge components to liquid 

phenyl polysulfides. To confirm the presence of PhSLi owing to its absence in XRD, we turned 

to XPS of the discharged cathode of PHS (Figure 3c). The presence of the doublet with S 2p3/2 

peak at 161.6 eV asserts the presence of PhSLi while the doublet with S 2p3/2 at 160.2 eV 

corroborates the Li2S observed through XRD. Additionally, to capture the morphological 

transitions, SEM was performed. The micrograph of the discharged cathodes of PHS (Figure 3d), 

PPS (supporting Figure S8), and PTS (supporting Figure S9) all show the discharged products 

uniformly coated in what appears like a sheath over the CNT core. The lithium thiophenolate 

mediated discharge mechanism seems to assist in the spatially homogeneous distribution of 

discharge products. This uniform distribution of the discharge products in the CNT matrix as 

detected by the inset energy dispersive X-ray (EDX) ensures adequate electron transfer pathways 

and maximizes electrolyte penetration. It also enables excellent polysulfides confinement which 

results in high Coulombic efficiency (CE) and material utilization.41-42 The complete reversal to 

liquid polysulfides upon charge is revealed by the pristine nature of the CNT seen after washing 
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the charged electrode (supporting Figure S10). In addition, the similar discharge voltage profiles 

observed in several cycles (1st, 250th, and 500th) further confirm that the recharged product is 

electrochemically identical to the original phenyl polysulfide (supporting Figure S11). 

Subsequently, these polysulfides were tested at 1C rate to capture the long-term cycling 

behavior of these materials (Figure 3e). PTS delivers 514 mAh g-1 which corresponds to 90% 

material utilization. It is able to retain 65% of its initial capacity after 300 cycles. Meanwhile, 

PPS delivers 612 mAh g-1 which corresponds to 89.6% material utilization in the first cycle and 

also retains 75% this capacity post 300 cycles. The most stable of the polysulfides however, is 

PHS with an initial capacity of 650 mAh g-1 (84% utilization) and a retention of 80% through 

500 cycles. This increased cycling stability from PTS to PHS could be due to the increase in 

molecular size thus preventing its shuttle. Despite starting out with a low initial CE of ~98%, all 

polysulfides stabilize quickly and have an average CE of over 99.5%. In addition to confinement 

of the phenyl polysulfides in the CNT pores as stated above, limiting the formation of long chain 

lithium polysulfides, and the sulfur concatenation mediated by the thiophenolate ion could all 

contribute to minimized shuttle effect and thus the high CE. Furthermore, excellent reversibility 

and sustenance of the same reaction pathway throughout the cycling of the phenyl polysulfides 

can be confirmed through the consistency observed in the voltage profile for PHS over 500 

cycles (supporting Figure S11). This exemplary performance serves to cement the advantage of 

limiting the overall volume change at the cathode. 

In addition to cycle life, high rate performance was also evaluated. PHS cathode was 

tested at various rates ranging from C/2 to 10C as in Figure 4a. PHS can deliver about 700 mAh 

g-1 at low rates like C/2 and also manage to deliver 448 mAh g-1 and 409 mAh g-1 at high rates 

like 6C and 10C, respectively. This demonstrates a material utilization of over 50% even at such 
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high rates. The cell is able to cycle in <12 minutes at 6C and a little over 6 minutes at 10C. 

Moreover, the increase in overpotential, i.e., 0.35 V from C/2 to 10C is modest (supporting 

Figure S12), showing the excellent power performance of this material. To put this in a practical 

perspective we turn to Ragone plots wherein the interplay between energy and power is 

appropriately highlighted. The gravimetric Ragone plot in supporting Figure S13 shows that, at a 

material level, over 1500 Wh kg-1 can be obtained under low demands such as 800 W kg-1. 

However, even under pressing demand scenarios (13 kW kg-1), a high specific energy of 725 Wh 

kg-1 can be obtained. Even on a volumetric basis (supporting Figure S14) 800Wh L-1 can be 

achieved at a power demand corresponding to 13 kW L-1. 

Many recent works have rightly shown that low electrolyte to active material ratios are a 

critical aspect of materials design for true high energy density sulfur-based batteries.7-10 Keeping 

in mind that a high loading cathode with minimal electrolyte is essential for achieving high cell 

level specific energy, we tested a high loading (9 µL or 11.9 mg) of PHS which comprised 68% 

of the cathode’s mass with a 3 µL mg-1 electrolyte ratio at C/10 rate. As seen in Figure 3d, this 

cathode can yield 7.6 mAh cm-2 of areal capacity which is much higher than that of commercial 

Li-ion cells.43 Stable cycling is achieved for 50 cycles with 82% capacity retention. The observed 

fading is attributed to aggressive electrolyte consumption and failure of lithium anode 

(supporting Figure S15). At an active material level, PHS can offer an impressive specific energy 

of 1,302 Wh kg-1 and an energy density of 1,720Wh L-1 based on the first cycle. To highlight the 

improved performance of PHS over sulfur cathodes when operating under low-electrolyte, i.e., 

lean conditions, PHS cells were compared to solid lithium polysulfide-based cells with the same 

substrate and theoretical cathode capacity were tested at three electrolyte-to-sulfur ratios namely 

3, 5, and 10 µL mg-1. Inspection of the first cycle voltage profile (supporting Figure S16) of 3 µL 
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mg-1 based cell shows failure to operate normally while the cell with 5 µL mg-1 exhibits high 

overpotentials. Only at 10µL mg-1 did sulfur cells achieve first cycle performance comparable to 

the PHS, but penalties to overpotential and capacity remained. Assessment of cycling behavior 

(supporting Figure S17) of these cells clearly shows failure at 3 µL mg-1 and rapid degradation at 

5 µL mg-1. Even at 10 µL mg-1 only 69% of sulfur can be utilized. For reference, 80% of PHS 

can be utilized even at 3 µL mg-1 cycling conditions. Moreover, the CE of the operating sulfur 

cells (supporting Figure S18) is 89% compared to that of PHS at 99%. This superior cycling 

performance of PHS coupled with a reduced inactive electrolyte fraction translates to nearly 100 

Wh kg-1 higher specific energy than the sulfur system at a cell level as conveyed in supporting 

Figure S19. While this work only serves to demonstrate the potential of this class of materials, 

further engineering and optimization could certainly enable much higher specific energies from 

these batteries. 

 

Conclusion 

In summary, we demonstrate that high purity phenyl polysulfides can be synthesized in a 

facile, low cost, one-pot route that is scalable. These polysulfides are high-sulfur-content 

compounds with high theoretical capacities in the order of PHS > PPS > PTS and high energy 

densities. They exhibit long high discharge voltage plateaus due to the electron-withdrawing 

phenyl rings attached to the sulfur chains and each polysulfide has its own characteristic voltage 

profile. In Li half cells, they show excellent cyclability up to 500 cycles due to reduced volume 

expansion in the cathode along with superior rate performance. Importantly, high-order PHS 

shows respectable performance under lean electrolyte operation, which outperforms lithium 

polysulfide cathode in terms of material utilization, Coulombic efficiency, and specific energy. 
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These multifaceted advantages provide the motivation for further exploration of this class of 

materials towards a truly high energy density sulfur-based battery system. 

 

Supporting Information  

Supporting Information Available: experimental details, volume change calculations along with 

additional materials characterization and electrochemical data. This material is available free of 

charge via the Internet at http://pubs.acs.org 
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Figure 1. (a) Equation along a visual representation of the phenyl polysulfide synthesis process. 

Lead acetate based test strip was used to confirm the H2S evolution. (b) Optical image of the 

liquid polysulfides along with their properties. (c) Theoretical specific capacities (mAh g-1) and 

capacity densities (mAh mL-1) of the different polysulfides and their (d) theoretical specific 

energies (Wh kg-1) and energy densities (Wh L-1). 

 

 

 

 

 

 

 

Page 16 of 20

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



17 

 

 

Figure 2. (a) FTIR spectrum of benzenethiol (Ph-SH) and the synthesized phenyl polysulfides. 

(b) UV-Vis spectra of equimolar solutions of different phenyl polysulfides along with that of 

phenyl disulfide (PDS) as reference. Inset of (b) shows the linear increase in peak λ as a function 

of number of sulfur atoms. EI-MS spectrum of (c) phenyl tetrasulfide (PTS), (d) phenyl 

pentasulfide (PTS), and (e) phenyl hexasulfide (PHS). 
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Figure 3. (a) Cyclic voltammetry (CV) of the phenyl polysulfide cathodes performed at 0.05 mV 

s-1. (b) Voltage profile of the polysulfide cathodes cycled at C/2. (c) Sulfur 2p XPS spectrum of 

the PHS cathode in the discharged state. (d) SEM of the PHS cathode in the discharged state 

along with its inset EDX mapping and (e) long term cycling performance of the polysulfides at 

1C. The cycling rate was based on active material mass in the cathode with 1CPTS = 570 mA g-1, 

1CPPS = 683 mA g-1, and 1CPHS = 775 mA g-1. 
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Figure 4. (a) Rate performance of PHS cathode and (b) performance of high loading, low 

electrolyte/PHS ratio cell cycled at C/10. The cycling rate was based on active material mass in 

the cathode with 1CPTS = 570 mA g-1, 1CPPS = 683 mA g-1, and 1CPHS = 775 mA g-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 19 of 20

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



20 

 

Table of Contents Figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 20 of 20

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60


