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In recent years several authors [ l ] , [2], [4], [13], [17], [18] have 
studied the special homological properties of ideals generated by the 
subdeterminants of a matrix or "determinantal" ideals. The question 
of whether the ideal of m + 1 by m + 1 minors of an r by 5 matrix is 
perfect if the grade is as large as possible, (r—m)(s — m), has re­
mained open, although the special cases m = 0, 1, and r—1 (r^s) are 
known. The general result is Corollary 4 of Theorem 1. For purposes 
of the induction argument used to prove the theorem it is necessary 
to consider a larger class of ideals somewhat complicated to describe. 

THEOREM 1. Let R be a commutative Noetherian ring with identity. 
Let M—{cij) be an r by s matrix with entries in R. Let H= (so, • • • , sm) 
be a strictly increasing sequence of nonnegative integers such that SQ = 0, 
sm = s, and m<r. Let n be an integer, O^nSs. Let I = lH,n = lHtn(M) 
be the ideal of R generated by the t + 1 by t + 1 minors of the first st col­
umns of M, l^t^m, and Cn, • • • , c\n. Let h be the least integer such 
that Shi^n. Suppose that the grade of {i.e. the length of the longest R-
sequence contained in) I is as large as possible, namely 

g = gH.n = rs — (r + s)m + h H m(m + 1) + $i + • • • + Sm-i. 

Then !#,«, is perfect in the sense of Rees, that is, the homological (or 
projective) dimension of R/I over R is also equal to g. 

COROLLARY 1. If !#,» has grade gH,n then it is grade unmixed, i.e. 
the associated primes of IH,n all have grade gH,n* 

COROLLARY 2. If R is Cohen-Macaulay (locally), and lH,n has grade 
gHtn> then In,n is rank unmixed, i.e. the associated primes all have rank 
(== altitude) gH,n; moreover, R/I is Cohen-Macaulay. 

COROLLARY 3. The rank of any minimal prime of In,n is at most gst,n 

(with no conditions on the grade of I). 

COROLLARY 4. When H= (0, 1, 2, • • • , m — 1, s) and n = 0, Iir.n is 
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the ideal ofm + 1 by m + 1 minors of M, and the foregoing results hold in 
this case. Here, g = (r—m)(s—m). 

In the terminology of [S], ideals of the form IH,U are generically 
perfect. They are even strongly generically perfect, i.e. they give rise 
to grade sensitive generalized Koszul complexes. See [7], [14], We 
are not indulging in unnecessary generality in considering the whole 
class In,n instead of just the ideals of Corollary 4. Our inductive 
proofs fail for any smaller class of ideals. 

THEOREM 2. Let K be a Noetherian domain. Let R~K[x] =K[xtj], 
where X — (xi3) is an r by s matrix of indeterminates over K. Then 
IH,TI(X) is a perfect radical ideal of grade gH,n- If n = stl l^t^m, then 
lH,n is prime. 

COROLLARY. If n = st, l^t^-m, and K is integrally closed, then 
K\x\/I is an integrally closed domain. 

By Proposition 4 of [5], Theorem 1 follows at once from Theorem 
2. In fact, we only need the cases where K is either the integers or a 
finite prime field. (The corollary to Theorem 2 is proved by reducing 
to the case where K is a field, so that R/I is Cohen-Macaulay, and, 
in particular, principal ideals are unmixed, and then demonstrating 
that the singular locus has sufficiently small dimension.) 

We point out that ideals of minors occur as the "Fitting invariants" 
of a module and in various geometric contexts, e.g. as the ideals of 
"determinantal loci" [16]. The ideals IH,O or, briefly, / # , arise in the 
solution of the second main problem of invariant theory (see [19, 
Chapter II]) for certain representations of products of GL(t, K), K 
a field of characteristic 0, t varying. Tha t is, for each H, IH is the ideal 
of relations on a set of generating invariants for such a representation. 
Specifically, let Ut be a / + 1 by ^ matrix of indeterminates, 1 ^ / 
^m — 1, let Um be an r by m matrix of indeterminates, and let Vt be a 
t by St—St-i matrix of indeterminates, 1 ^t^m. Define an action of 
G— H ^ i GL(/, k) on K[u, V] as follows: given (yli, * • • , Am) in Or, 
let it act by taking the entries of Ut into the corresponding ones of 
At+iUpA^1, 1 St'è.m — 1, the entries of Um into those of UmA^1, and 
the entries of Vt into those of AtVtf l^t^m. This determines an 
automorphism of K[u, v]. Consider the matrix X obtained by con­
catenating the product matrices UmUm~i • • • UiVi, UmUm-\ • • • 
U2V2, • • • , UmUm-.iVm-i, and UmVm. The entries of X generate the 
ring of invariants of this action, and the ideal of relations on the 
entries of X is precisely IH(X). 

In the special case where I is the ideal of all m + 1 by ra + 1 minors, 
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matters can be made much simpler. Let U and V be r by m and m by 
s matrices of indeterminates, respectively, and define an action of 
GL(m, K) by U*->UA~\ V*~+AV. The entries of UV generate the 
ring of invariants, and the ideal of relations on the entries of X = UV 
is precisely the ideal of m + 1 by m + 1 minors of X. 

Our original proof of Theorem 2 (which required that K contain the 
rationals) utilized the fact that a product of copies of GL(/, K) is 
linearly reductive (as a linear algebraic group) for fields K of charac­
teristic 0. We proved facts about the ideal structure in K[X]/IH by 
"lifting" the question to K\uy v]. The existence of the Reynolds oper­
ator implies that ideals expanded from the ring of invariants and then 
contracted back contract to themselves, making this procedure pos­
sible. See [6, pp. 116, 146, and 156] or [ l l , pp. 24-30]. This gave a 
proof of Theorem 1 when R contains the rationals. To get the general 
result, we sought and finally found arguments independent of invari­
ant theory. 

However, our original technique suggests that the theory of linear 
algebraic groups may have deep implications for the study of homo-
logical properties of ideals. I t is natural to examine other representa­
tions of the classical groups on polynomial rings, and to ask whether 
the rings of invariants are Cohen-Macaulay (which is equivalent to 
asking whether the ideals of relations occurring are perfect). We have 
some special results of this type in addition to Theorem 2. 

Our proof of perfection in Theorem 2, unlike that given for the 
maximal minor case in [4], does not depend on constructing an ex­
plicit resolution of R/L Instead, it has some connection with the 
original proof of the maximal minor case given in [2]. We first show 
inductively that the ideals In,n{X) are all radical. We next exhibit a 
generic point for ///,n if n = sti proving primality in this case. The 
proof of perfection then proceeds by Noetherian induction. If n = s, 
we can reduce r by one and change n to 0. If n = st, Km, x = xi,n+i is 
not a zero divisor on 7//,n, and the perfection of In,n follows from that 
of lHtn-\"(x) — In%n+\* For n^St, any t9 we show that J^,n = PP\Ç, 
where P , Q and P + Q are larger ideals of the form /#',»', and the grade 
of P + Q is one more than the grades of PC^Q, P and Q (which are 
equal). The result then follows from an easy homological lemma 
which asserts that under these circumstances, if P , Q and P + Q are 
all perfect then so is P H Ç . The details will appear in [8]. 

Finally, we note that the ideals /#,„ are not, in general, complete 
intersections (cannot be generated by P-sequences) : in fact, the 
generating sets specified are often minimal. If ƒ is the ideal of maximal 
minors of X = (#y)i the ring K[x]/I is not even Gorenstein (see [3]), 
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Moreover, the "type" of ideal occurring in Corollary 4 differs as m 
varies. E.g. it is not difficult to show (by examining first Betti num­
bers) that, in general, the grade 4 ideal of 3 by 3 minors of a 4 by 4 
matrix is not the grade 4 ideal of r by r minors of an r by r+3 matrix 
for any r. 
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