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UNE CLASSE DE RESEAUX DE PETRI
POUR L'INTEGRATION
DES SYSTEMES DE PRODUCTION

Jean-Marie PROTH, Liming WANG and Xiaolan XIE

INRIA, Technopole Metz 2000,4, rue Marconi, 57070 METZ, France

Résume

Ce papier s'intéresse a l'intégration de modeéles représentant des modules (ou
sous-systémes) de fabrication. Une méthodology modulaire pour l'intégration
étant adoptée, nous définissons une classe de réseaux de Petri applicable a la
modélisation d'un large ensemble de systéemes de fabrication. Les réseaux de
Petri sont vivant, consistant et réversibles. Nous montrons également que
l'intégration de ces modules conserve ces pfopriétés qualitatives sous des
conditions peu restrictives. De plus, le modele global appartient également a la
classe de réseaux de Petri considérée. Les résultats obtenus dans cette
communication permettent d'éclairer les problemes de conception, de gestion
et de controle des systémes de production de grande taille.

Mots clefs: Systemes de fabrication, Réseaux de Petri, Intégration



A CLASS OF PETRI NETS FOR
MANUFACTURING SYSTEM INTEGRATION

Jean-Marie PROTH, Liming WANG and Xiaolan XIE

INRIA, Technopole Metz 2000,4, rue Marconi, 57070 METZ, France

Abstract

This paper addresses the problem of integration of Petri nets representing
manufacturing systems. A modular modelling methodology being adopted, we
define a class of Petri nets that characterizes a large sort of real-world
- manufacturing systems. These Petri nets are shown to have the properties of
liveness, consistency, and reversibility. We also show that the integration of
such Petri nets preserves these properties under fairly weak conditions.
Moreover the integrated Petri net belongs to the same Petri net class. The
results obtained in this paper are expected to shed light on the design,
management and control of large scale manufacturing systems where
complexity problems are bound to rise and can be dealt with from the point of
view of modular modelling and integration.

Keywords: Manufacturing systems, Petri nets, Integration



L INTRODUCTION

A major concern, when modelling a manufacturing system by means of Petri
nets, is to check whether the Petri net model has desired qualitative properties
such as liveness, boundedness, reversibility, and consistency. These desired
properties characterize the dynamic behaviour of a well-designed system. For
instance, in the Petri net model of a manufacturing system, the liveness
ensures that blocking will never occur, the boundedness guarantees that the
number of in-process parts is upper bounded, the reversibility enables the
system to come back to its initial state from whatever state it reaches. We also
consider consistency, a structural property, which is a necessary condition for
the reversibility.

Due to the complexity of manufacturing systems, the size of their Petri net
models is usually very large. Classical property checking methods such as
coverability tree, invariant analysis and algebraic analysis hardly apply to
large-size Petri net models. '

There are two approaches for analyzing a large-scale Petri net model. The first
one is the reduction of Petri nets while preserving properties. Reduction rules
have been proposed [3, 8, 9]. The main disadvantage of this approach lies in the
difficulty of finding the reducible sub-Petri nets.

The second approach includes synthesis methods which build the models
systematically and progressively such that the desired properties are preserved
all along the design process. The basic idea is to adopt a design process which
preserves the desired properties in the model instead of checking properties
after modelling the system. Two synthesis approaches: top-down approach and
bottom-up approach, have been proposed.

The top-down approach begins with an aggregate model of the system which is
refined progressively to introduce more and more details. The basic refinement
is the substitution of a place or a transition by a so-called well-formed block [14,
15, 16]. Conditions, under which the desired properties are preserved, are
given. This approach is well suited to model systems composed of almost
independent sub-systems. However, this approach loses its efficiency in case of
strongly coupled sub-systems since it is impossible to find a small aggregate
model.
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The bottom-up approach (see [1, 5, 6, 7, 11, 12]) starts from sub-system models
(or module models) and integrate them by merging some places and/or
transitions. The disadvantage of the general bottom-up approach lies mainly in
the extreme difficulty of checking whether an integration preserves the desired
properties.

In this paper, we propose a specific bottom-up approach for modelling
manufacturing systems which preserves the qualitative properties of the
modules, these qualitative properties being those mentioned above.

This paper is organised as follows. In Section II we introduce some basics of
Petri nets. The definition of the class of Petri net modules considered in this
paper is presented in Section III and we call them Controllable-Output nets or
CO nets. Some structural and behavioural properties of these CO modules are
studied in Section IV. Section V is devoted to the issue of system integration,
from which some important results are obtained. As the CO modules are
inherently unbounded, while boundedness is highly desirable in practice, a
separate section, Section VI, is created to tackle this problem. Section VII
addresses the identification of CO modules. In Section VIII, the connection
between CO nets and CFIO-decomposable Petri nets [4] is given from
production management point of view. Section IX concludes the paper.

IL. SOME BASIC NOTIONS OF PETRI NETS

We use ordinary Petri net to model manufacturing systems. Transitions
represent operations in the system, places and the connecting arcs specify the
logical relationship and resource constraints among operations. A time
parameter is attached to each transition to model the duration of the
corresponding operation. When time parameter is not represented explicitly, it
is called an untimed model, which is what we make use of here since we

confine ourselves to qualitative properties of manufacturing systems.

An ordinary Petri net is a 4-tuple N=(P, T, F, Mg), where P and T are two
disjointed sets of nodes called respectively places and transitions.
Fc (PxT)U(TxP) is a set of directed arcs. My:P — IN is the initial marking,

where IN is the set of non-negative integers.
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The set of input (respectively output) transitions of a place p € P is denoted by °p
(respectively p°®). Similarly the set of input (respectively output) places of a

transition t € T is denoted by °t (respectively t°).

A transition te T is said to be enabled at Mgy if for all pe’t, Mgy(p)=1. A
transition may fire if it is enabled. The firing of a transition t at marking M
removes one token from each of its input places and put one token to each of its
output places, thus leads to a new marking, say M'. This process is denoted by
M[t>M'. If M' is not explicitly mentioned, the process is denoted by M[t>, which
means that t is firable at M. These notations are also extended to sequences of
firings, i.e., M[c > M', where ¢ is a sequence of transitions that brings M to M,

and M[oc >, if M' is not explicitly mentioned. The set of all markings reachable
from My is denoted by R(Mjy).

The structure of a Petri net is represented by its incidence matrix
C=l[cyli= L...,|P|, j=1,...,|T|, where

L i (tj,p)€F
cij= -1 if (Pi’tj)EF

0 otherwise

|A] is the number of elements in the set A.

A |T|x1 non-negative integer vector y such that Cy=0 and y # 0 is called a T-
invariant of the net. A T-invariant y is called minimal if there does not exist a
T-invariant x such that x<y. The set |ly]| = {t| y[t] > 0} of transitions is called the
support of T-invariant y, where y[t] is the entry corresponding to transition t.
|| is said to be minimal if it does not contain another T-invariant support. The
minimal T-invariant y corresponding to the minimal support |y| is called a
minimal support T-invariant. A Petri net is said to be consistent if and only if

there exists a positive T-invariant for this net. A Petri net is reversible if, for
each marking M in R(Mp), Mg is reachable from M, i.e., My e R(M).
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ITI. A CLASS OF MANUFACTURING MODULE

DEFINITION III-1: (CO net module—Controllable-Output net module)
A Petri net G= (PUR, T, F, Mg), where P and R are two disjointed sets of

process places and resource places, is called a controllable-output net module
(CO net module) if the following conditions hold:

H1l. (reFo(rt)eF, VieT, VreR

H2. M(r)=1, YreR

H3. The subnet G’=(P,T,F’,M{), where F is the restriction of F on
(PxT)U(T xP), is an acyclic graph without isolated nodes. M’ is the
restriction of My on P.

H4. The extremity nodes of G are transitions. Let T;, and T,,; be
respectively the set of input transitions and the set of output transitions,

i.e.
Ty = {tl't =@, te T}, Tout = {t't' =@, te T},
Note that due to H1 and H3, T}, and T,,; are subsets of transitions of G’.

HS5. The net G’ is covered by a set of T-invariants each of which is related to

a unique output transition, i.e., for all t € Ty, Iy, € INlTl, such that

Cy, =0, ")'l"nToul ={t}, and U"yl" =T.

Remark III-1: H1 and H2 together imply that resource placesr € R are implicit
places that are, informally speaking, those places whose markings are always
sufficient for the firing of their output transitions. According to [10], we know
that removing the implicit places does not change the behaviour of the net. As a
result, we only need to consider the net G’.

Remark III-2: Hypothesis H3 and H4 imply that any place is an internal node,
i.e., it is neither a sink place nor a source place. Furthermore, the set of input
transitions Tij, and the set of output transitions T,yt are disjointed, i.e.,

Tin " Tow =9 ..

Remark III-3: Hypothesis H5 implies that the net G’ is consistent. But a
consistent net does not display hypothesis H5 as shown in Figure 1(a). It is the

requirement of H5 that motivates us to term this class of Petri net modules as
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controllable-output net modules, since H5 requires that each output transition
of the module is related to at least one T-invariant the support of which does not
contain any other output transitions of the module. That is to say, the firing of
each output transition can be totally independent of the firings of other output
transitions. Thus the output of the systems represented by CO nets can be
controlled with great flexibility.

e

)
“I]\ p1

| uts
[
tzﬂ/ 02 —»l ;g

(c)

(b)

Fig. 1: CO nets (c) and non-CO nets (a),(b)

Figure 1 gives three Petri nets in which (¢) is a CO net, while (a), (b) are not
since the net (b) is not consistent, and (a) has only one T-invariant the support
of which contains both output transitions, thus H5 is violated. Note that for
simplicity resource places and connecting arcs are not shown in these Petri net
graphs. The reason that (c) is a CO net is that there exist two T-invariants
yt5=[1 0 1 1 1 0] andy4=[0 1 1 1 0 1], each concerning exactly one output

transition and the union of their supports covers all the transitions of the net.



IV. PROPERTIES OF CO NETS

In this section we investigate some structural and behavioural properties of CO
nets. Specifically we are interested in consistency, liveness, boundedness,
reversibility, which have been justified in the introduction.

As a result of remark III-1, we only need to consider CO nets G without any
resource places, i.e., R=. In this case G' is identical to G.

RESULT IV-1: A CO net G is consistent, if R = &.

PROOF: It is obvious from assumption H5.
Q.ED

RESULT IV-2: A CO net G is live, if R = &, no matter what the initial marking
is.

PROOF: Since G is an acyclic graph, we can relabel the transitions as ti, to,
.., tn (n is the number of transitions in G) such that Vt; e T, no path exists
from tj,x to t; (k=1,2,...,n-1), and the first transition(s), say ti, to, ..., ty (1<r<n)

are input transition(s).

In the following, we show by induction that

Vti eT, 30i € {tl,tz .... ti—l}*’ such that M[O’i ot; >, VM e (IN)'PI (4-1)
where A" is the set of all finite sequences (including empty sequence, denoted
by A) formed by the elements in the finite set A, and oot represents the

concatenation of a sequence ¢ with an element t.

(a) First, induction assumption holds for any input transition t; € {t},t5,...,t;},

i.e., 30 = A such that M[ogot; >, VM e (IN)IP,

(b) We then assume that claim (4-1) holds for any t; such that i<k<|T|. Consider
transition tk.i1, all the transitions which immediately precede tx,i, i.e.,the

.....

the way transitions have been re-labelled.
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" Thus if all the transitions of * (*t;,;) have been fired, it is possible to fire ti,1.

Furthermore, according to the induction assumption, the°(°tk+1),

.....

Mlogii oty > YMe (NP holds  if  op= O (0got), where
s€Ek+1

Exaa=1{j/t je° ("tx4+1)), and O stands for successive concatenation.

QED

We notice that another simple proof may be proposed. Since the net G does not
contain any siphon, it is live for any initial marking Mg according to [2]. As can

be noticed, this property holds for any acyclic Petri net without source place(s).
RESULT IV-3: A CO net G is not bounded, if R = &.

PROOQOF: This result is due to the existence of input transitions.
Q.E.D.

Furthermore since CO net is consistent, and the subnet structure is acyclic, we
claim that

RESULT 1IV-4: An CO net G is reversible, if R =&, whatever the initial
marking is.

PROOF: For any M € R(My)), the proof is as follows;
(a)3ceT such that My[o > M.

(b) Since G is consistent, then there exists positive |T| x1 vector x, such that
Cx=0.

(c) From (a) and (b), we have that there exists a positive integer k, such that
kx—-0 20, and kx -G # 0 where G is the firing count vector of G.

which yields |
(d) Mp=M+C(kx -G)
(e) From Theorem 16 in [10], (d) and (c) implies that Mg is reachable from M.
Q.E.D.
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In view of remark III-1, the above results can be extended to the general case,
ie.,, R#J.

RESULT 1IV-5: For a CO net G with any initial marking Mq(p) of process
places, i.e., p€eP,

(a) G is consistent.

(b) Gislive.

(¢) G is unbounded.

(d) G is reversible.

Remark IV-1: We would like to emphasize that in the proof of the above
properties of CO nets, only some assumptions are used. For liveness, only
acyclicity is used; for unboundedness, only the input-output characteristic of
CO net is used, while reversibility is the consequence of acyclicity and
consistency.

V. SYSTEM INTEGRATION

In Section IV we studied some properties of CO nets, and obtained the result
that a CO net is consistent, live, and reversible, though not bounded. Usually
~several manufacturing modules are linked together to accomplish a certain
manufacturing function. Knowing that each module has the qualitative
properties introduced above, the problem is to select an integration process
which preserves these properties, i.e., which guarantees that the integrated
system still has these qualitative properties. We consider the integration
process in which all the CO net modules are linked together through a set Q of
places, called interface places.

DEFINITION V-1: (integrated system )
Consider a set of modules Gy, Gj,...,G,, where G; =(P, UR;, Tj, F, My;) with

input transitions Tiin and output transitions Tg,u[. A integrated system G is a
Petri net resulting from the integration of modules G}, G,, ..., G, via the set of
interface places Q and inter-module arcs I'

n n
UT;, UFuT)

=l 1=l

n
G:( UPiURiUQ,
i—1

where

I'=( 'Uchi)ut xQ)u(Qx 'GlTiin )
1= 1=
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We further make the following assumptions about interfaces:

H6. Each interface place is neither a source place nor a sink place.
H7. Each output transition of any module is connected to at most one
interface place, i.e.,

n .
t*|<1 Vie UTyy

1=1

A typical system satisfying H6 and H7 is shown in Figure 2.

R Yg

Yo

Fig. 2: A typical structure of system integration

DEFINITION V-2: ( system contraction )

System contraction is the process of transforming an integrated system into a
directed graph ( called contracted graph ) by contracting each module of the
system as a node, viewing each place qeQ and each transition

te{s/se T, UT.,, forall modules G; in the system} as a node, and preserving the

inter-module arcs.

The contracted graph of the system shown in Fig. 2 (a) is drawn in Figure 3.
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DEFINITION V-3 (acyclic system )
An acyclic system formed by modules Gj, Gy,..., G, via the set of interface

places Q and inter-module arcs I' is a system

Flur)

n n
G=( UPiURiUQ, UTi,
i=1 i=1 i=1

n

whose contracted graph is acyclic.

Fig. 3: A contracted graph

RESULT V-1:
An acyclic system G satisfying H6 and H7 is consistent.

PROOF:
From the definition of acyclic system, it is always possible to relabel the
modules as Gy, Gs, ..., G,, such that there are no directed paths from Gj to Gi if

)>i, 1,)=1,2,...,n.

For each module Gj, let {yl/VteTg,ul} be a set of T-invariants satisfying

assumption H5, i.e.,



13

U fyf=T
leT(')ut (5-1)
and
yi[t]1>0 and y,[s]=0 Vse T(i,u, —{t} (5-2)

The central idea of the proof consists in constructing a T-invariant Y>0 of the
integrated model. Clearly Y can be written in the following form

[YlT Y;;_r Y,T ]T where Y; is a vector whose components concern the transitions
of Gj.

Two conditions are to be considered. First, Y;>0 is also a T-invariant of G;j.
Second, the T-invariant Y should satisfy the balance equations for all interface
places Q, i.e.,

YY[s]= XY[s] forall qeQ

[ ]
s€ q seq

(5-3)

In the following we construct Y in a backward fashion. Computing firstly Yn,
we then construct Yn.1, Yn-2, ..., Y1 consecutively.

When computing Yj of module Gj, we first compute the components

corresponding to its output transitions. For this purpose, consider a positive

number x; for all t € T(i,u[ (1=1,2,...,n ) defined as follows,

1, ift*=0
2 Y[s]
seq” /. ift*=q

q

where q is the unique output place of t,

From the definition of Gj, each transition s € q° is an input transition of some of
the modules Gj;1, ..., Gn, which implies that Y[s] is known. Thus x{ is uniquely

determined.

The vector Y;jis thus defined as follows:
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X
Y. = t
i—

¥t
i [t]
teTou[ Yt

It is easily verified that Y;[t]=x; for all 1 e T}, due to relation (5-2).

Since all x;'s are positive real numbers, relation (5-1) implies that Y; is also a
T-invariant of G; and Y;>0.

We still need to prove that the vector Y satisfies the flow balance equation for
every interface place q €Q, i.e., equation (5-3). This is done as follows

SYsl= T {— SY[b= SYH
se’ q se’ q I Q| teq’ teq®

where the first equality is true since q is the unique output place of all t€® q.
Q.E.D.

Furthermore we have the following result:

RESULT V-2: An acyclic system G satisfying H6 and H7 is live, reversible, but
not bounded.

PROOF: Since G is an acyclic net without source and sink places and since it is
consistent, this result follows from remark IV-1 and result V-1.
Q.ED

From results V-1 and V-2, we notice that the integration preserves both
structural and behavioural properties of modules. This is not a surprise as we
can prove that the integrated model is itself a controllable-output net module
i.e., a CO net.

RESULT V-3:
The integrated system G satisfies assumptions H1—HS5.

PROOF:
First, we explicitly write G in the following form:
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n n n n
G=(PUR,T,F,M0), with P= UPiUQ, R= URi, T= .UTi, F= UFluI“ .

i=1 i=1 i=1 i=1
Clearly, G satisfies assumptions H1—H4. We now prove that assumption H5
also holds.

For this purpose, let Tin and Tout be respectively the set of input transitions and

n . n .
the set of output transitions of G. Obviously, we have Ty, € UTiy, Tow S UTou -

1=1 1=1
For each output transition t e T,,, let us construct a T-invariant Y; in a

similar way as the one used for constructing Y in the proof of result V-1, i.e.,

Yo i -t Yi, wWith
teT'u[ yl[ ]
f
1, ift=1
Xt =10, if t € Ty — {7}

1 e @
. 2 Y[s], ift =q

| 9)seq’

where Y ;, x¢, yt are respectively similar notations as Yj, xt, yt defined in the

proof of result V-1, and q is the unique output place of t.

As in the proof of result V-1, it can be shown that Y; is a T-invariant. Now let

us prove by induction that the following relation holds:

Y= XY, (54)
TGTout
or equivalently:
Yi = ZY’t,i, fori= 1,...,n (5-5)
TGTOUI

where Y is the T-invariant of G used in the proof of result V-1.

It is easy to show that (5-5) holds for i=n. Assume that it holds for all i=k+1,
k+2,...,n. Consider then the module Gk. From the definition of x,, and x¢, we

have
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k
ZXT,t = xl = 1, Vt € TOU[ ('\Toul
teTou[

Furthermore, by induction assumption, for all t e Tg‘m, such that t* =q,

X Yelsl X YIs]

_ SE€q _ S€q _
IXgp = X T T T Xt
te€Tout 1€Tout I QI q
since all transitions s € q° belong to modules Gk+1, Gk+2, ..., Gn as a result of

acyclicity. The above two relations imply that Y x., =x,, for all te TX,, which

yields that
_ Xte o _ Xt o —
XY= X X “w= X Y= Yk

Equation (5-4) is then proved. Since Y is a T-invariant and Y>0, we conclude

that Y; (V1 e T,y ) are T-invariants, that |[Y;|N Ty, = {1}, and that U||Y,|=T.
1€Tout

QED

VL K-FEASIBLE SEQUENCES

In Section IV, we have seen that a CO net is consistent, and that it is also live
and reversible no matter what the initial marking of the process places is.
Unfortunately it is not structurally bounded, while in practice boundedness is
highly desirable. This leads us to investigate the issue of boundedness control.

Let G=(N, My) be a CO net, and let L(G) = {0|M0[o > M}. We first define the

notion of k-feasible sequences and then give a necessary and sufficient
condition for the existence of k-feasible sequences for G.

We emphasize that the result is also applicable to any ordinary Petri nets.
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DEFINITION VI-1: ( k-feasible sequence )

A sequence o = 1)1;...T,; of L(G) is called a k-feasible sequence if Mj(p)<k, Vp e P
for any marking M; obtained by the firing of a sub-sequence 1173...7; of o, for
0<i<n.

DEFINITION VI-2: A subset L.(G) of L(G) is prefix-closed if for any sequence
c=pomeL.(G), HeL (G).

RESULT VI-1: For a CO net G, a prefix-closed subset L.(G) of L(G) is a set of k-

feasible sequences for some finite k if and only if there exists finite k'>0 such
that for any 6 € L.(G),

max [6[t] - ys[t] < k', for at least one T-invariant yg.
teT

PROOF:
a. Sufficient condition:
Since L¢(G) is prefix-closed, it is enough to show that any marking reachable
via an element of L.(G) is bounded by some finite k. Consider a marking M
reachable from My via a sequence 6 € L.(G). We have

M=My+Co

where G is the firing count vector of .
As 6 € L (G), there exists a T-invariant y; such that

olt) - <K
r{lglo[t] yolt]

Combining the above relations, we have
M(p) = Mo(p) + Cp (T — ) < Mo(p) +(|°p| + |p°

where Cpis the row vector of incidence matrix C corresponding to p. This

)k’, VpeP

implies:
M(p)<k, Vpe P, VMplo >M with o € L.(G),
where '
k = max{My(p)+(|*p| +|p" k")
peP

b. Necessary condition:
For all ceL (G), let o=17...7, (5,€T), Gi=71..Ti, 8 =Tj41--Tn)
Mylo; > M;. Obviously, o = g;s;, and o; € L (G). If My, ..., Mj are distinct, then
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o] = n < card(R,(Mg)) = (k + )P (6-1)

where R.(Mg) is the set of markings reachable from My via the sequences of
transitions of L.(G).

Otherwise, assume that M;j=M;j (i<j), clearly the counting vector of D = Tisl-Tj

is a T-invariant, and ol = 6;sj € Lo (G). Moreover,
5 =0 + D (6-2)
Repeating the above reasoning, we obtain a set of sequences r(l),...,r(h) whose

counting vectors are T-invariants, and a set of sequences c(l),...,o(h) € L:.(G),
such that

o = gU+D 4 ((G+D (6-3)
which implies that

TRy h——
g=cM 4 50 (6-4)
j=1

h)

Furthermore, o\ is a sequence such that the markings obtained along the

firing of o™ are distinct markings. Similar to (6-1), we have

|W < card(Ry(Mg)) = (k + )P (6-5)

Combining (6-4) and (6-5), we have

0<G-y<(k+DPl -1y (Ip is a [P|x1 identity matrix)

h——
with y= $r). The fact that y is also a T-invariant leads to the conclusion.
j=1

Q.ED

From the above proof we claim that we can always take k' to be card(R.(My)).

However a tighter bound can be obtained from the following relation

)k’

k = max (Mo(p)+ (| +|p"

peP

which implies:
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Furthermore in terms of vector norm, the above result can be equally stated as
follows,

RESULT VI-1 (second formulation): For a CO net G, a prefix-closed subset
L.(G) of L(G) is a set of k-feasible sequences for some finite k if and only if there

exists finite k'> 0 such that for any ¢ € L.(G), [ - yq|_ Sk, for at least one T-

invariant ygs.

VIL IDENTIFICATION OF CO NET

From Section IV, we know that a CO net G has the properties of liveness,
consistency, and reversibility. Thus given a Petri net, it would be nice if we
could find out whether it is a CO net or not. This brings to the issue of CO net

identification.

It is not difficult to check whether a given Petri net satisfies conditions H1—H4
in the definition of CO net (definition III-1). Conditions H1 and H2 can be
checked place by place. We then remove the resource places. If the resulting
net contains neither sink nor source place and if it does not contain any
isolated node, condition H4 is satisfied. Condition H3, i.e. acyclicity, can thus be
checked by using any graph theory-based approach.

In order to settle the problem of identifying H5, let us re-examine this
condition. H5 means that for each output transition t of a given Petri net G
satisfying H1—H4, there exists a T-invariant y; of the acyclic Petri net G'
obtained by removing the resource places, such that the support of y; contains,
apart from other non-output transitions, one and only one output transition,
that is t. Moreover the support of such T-invariants for all the output
transitions of G' covers all the transitions in G'. From this re-examination, we
conclude that (7-0) must hold if H5 is satisfied:

2ydsl2 1, VseT
leToul
Cy, =0 Vie T, (7-0)

ys]=0 Vs e Ty, —{t)
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In the following we first investigate some features of H5, then propose two
algorithms to identify it.

VII-A: SOME NECESSARY AND SOME SUFFICIENT CONDITIONS FOR H5
We denote by (t1, t2), when no confusion may arise, a non-oriented path joining
t1 and tg . Such a path is said to be simple if each place belonging to this path

has exactly one input and one output transition.

For example, Figure 4 shows a general situation in which a simple non-
oriented path occurs. The simple non-oriented path (ti, t2) is t1p1tgpat4p3atspate.
Directed dotted lines represent the possible interaction of (t1, t2) with the rest of
the net.

\
\
\ p
\ p 4/
1 /
2

Fig. 4. A simple non-oriented path

RESULT VII-1: If a given acyclic Petri net G' satisfies H5 then there does not
exist simple non-oriented path linking two output transitions.

PROOF: Consider a place p with a unique input transition t and a unique
output transition t’. It is clear that y[t]=y[t’], for any T-invariant y. As a result,
for any two output transitions ti, t2 connected through a simple non-oriented
path, y[ti]=yl[t2], for any T-invariant y, which implies that any T-invariant
support containing one of the two transitions contains also the other one. This
shows that H5 cannot be satisfied if there exists a simple non-oriented path
connecting two output transitions. Q.E.D.
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Remark VII-2: The insufficiency of the condition given in result VII-1 can be
shown by the Petri net G' in Figure 5, which has no simple non-oriented path
in it, and which does not fulfill H5 either.

Fig. 5: A Petri net not satisfying H5 but without simple non-oriented path

We notice that the Petri net in Figure 5 is not consistent. Requiring that G' be
consistent, we get the following sufficient condition.

RESULT VII-2: A given acyclic Petri net G' satisfies H5 if G' is consistent, and
if each minimal T-invariant support contains one and only one output
transition.

PROOF: For each output transition t, let y?),yfz), s yEr‘) be the set of minimal

T-invariants related to t. Consider the following T-invariant

n .
yi= 2yd

i=1
Since each minimal T-invariant support contains one and only one output

transition, we have y[s]=0, Vse Ty, —{t}. Thus |ly|0Tou = {t}. Furthermore

Ully¢] is equivalent to the union of all minimal T-invariant supports. Since G'

is consistent, it is equal to T, i.e., Uly|=T .
lETou[

Q.E.D.

Remark VII-3: The fact that the above condition is not necessary is shown in
Figure 1(c). The incidence matrix C of the Petri net in Figure 1(c) is



Obviously this net is consistent. There are two minimal T-invariants whose
supports contain t5. They are

yls=[2 1 0 11 0,andyf=[1 0 1 11 0].

The two minimal T-invariants whose supports contain tg are

yey=[1 2 01 0 1,andyfy=[0 1 1 1 0 1]
while there also exists another minimal T-invariant

Y(5.6) = [O 0 3 21 1]
the support of which contains both t5 and tg.

The sufficient characterization of H5 given in result VII-2 is not obvious to
recognize. A sufficient characterization of H5 from graph-theoretical point of
view can be obtained as follows .

RESULT VII-3: If a given acyclic Petri net G' is consistent and the following
holds:

<1

HS: ViteT, |t

Then G' satisfies H5.

PROOF: From result VII-2, it is necessary to prove that each minimal T-
invariant support contains one output transition. To prove this, it is enough to
show that any T-invariant support containing at least two output transitions is
not a minimal support.

For this purpose, consider a T-invariant y such that y[t;]> 0, y[t;]1>0, for
t;,ty € Toy- Since G' is acyclic, it is possible to relabel the places p1, p2,..., Pm
with m =|P| such that there is no directed path from p; to p; if i>j.

Let us introduce a subset of transitions T = {te T|y(t]> 0}. We construct a T-

invariant y* whose support is smaller than T*. This will conclude the proof.

Let
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yItyl=1Land y[t]=0 Vte Ty -{4) (7-3)

Starting from pm, then pny.1, ..., p1, we consider their input transitions and

determine the value y‘[t] as follows:

0, ifteT

yW=i_1 _ 5y, ifreT’ (74)
PiNT |sep;®

with p; =t* which can be uniquely determined as a result of assumption HS8.

Clearly for any place p; without output transitions belonging to T*, we have
y [t]=0 Vie*p;Up;*

which implies

Ty ltl= Ty =0 (7-5)

te’ p; tep;*®

For any place p; such that at least one output transition belonging to T*: there

exists at least one input transition of p; belonging to T, i.e., |'p-l N T‘l >0. From

relation (7-4), we have

Ty = Xy,

te’ pinT sep;®

which implies that

Ty ld= Xy'ls] (7-6)

te® p; sep;*
asy [t]=0, VteT.
Relations (7-5) and (7-6) imply that y* is also a T-invariant. Furthermore we

have y*[tz] =0, and y*[t] =0 VieT .Thus "y*" C T - {tp}.
Q.ED
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VII-B: IDENTIFICATION ALGORITHM

When checking H5 for a given acyclic Petri net G', we can first make use of
result VII-1 to see if there exists a simple non-oriented path in G'. If not,
results VII-2 and VII-3 can be further utilized to check H5. In this subsection,
we propose two algorithms to tackle the identification problem. We notice that a
natural way to realize (7-0) is to solve a linear programming problem as done
in the following algorithm.

[Algorithm VII-1]
Input: Incidence matrix C of the given Petri net

Output: sufficient condition for H5

Step 1: Solve the following problem (PL1)

min ¥ Ty,ls] (PLI-1)
seT teToy
s.t. 2ysl2l VseT (PL1-2)
lEToul
Cy=0 Vvt € Tou (PL1-3)
yit]1=0 V1t e Ty —{t) (PL1-4)

Step 2: If PL1 has a solution, then " H5 is satisfied ", otherwise, "H5 is not
satisfied”
[ End of Algorithm VII-1]

Remark VII-4: In the above algorithm, the constraints of the linear
programming problem PL1 are just the requirements of (7-0). The correctness
of the algorithm is obvious.

Remark VII-5: We can see that using algorithm VII-1 it is straightforward to
arrive at a conclusion for the identification problem. However the disadvantage
that goes along with this straightforwardness is that the whole computational
load is centred on one step, step 1.

In order to circumvent the drawback of algorithm VII-1, we propose the
following algorithm VII-2, in which we make use of "divide and conquer"
method and approach the whole problem recursively. At each iteration, we try
to find out the maximal support T-invariant concerning only one given output
transition. When all such T-invariants for all the output transitions are found
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and summed up, it is sufficient to make a conclusion for the satisfiability of H5.
The trick of searching the maximal support T-invariant at each iteration

accelerates undoubtedly the speed of calculation.

{Algorithm VII-2]

Input: Incidence matrix C of the given Petri net
Output: satisfiability of H5

Declaration: y, ytare |T| x1 matrices

Step 1: For each t € T, solve the following problem (PL2)

max Y z; (PL2-1)

7€T
s.t. 2y <yl7l] VteT (PL2-2)
z; <1 VteT (PL2-13)
Cy, =0 (PL2 - 4)
yi[s]=0 Vs € Ty —{t} (PL2-5)
2,20, y[7]20 V7eT (PL2-6)

Step 2: set y:= Yy,
teTOll[

Step 3: if y>0, then " H5 is satisfied ", otherwise " H5 is not satisfied "
[End of Algorithm VII-2]

Remark VII-6: In the above algorithm, the functions of constraints PL2-5, and
PL2-4 are respectively the same as the constraints PL1-4, and PL1-3 in
algorithm VII-1. The only difference is in constraints PL2-3 and PL2-2 which
manifest the fact that we try to find out, at each iteration, the maximal support
T-invariant. These two constraints together with the objective function PL2-1
ensure that for each output transition t the corresponding T-invariant ;)btained
by solving PL2 is a maximal support T-invariant.

VIIL CO NETS AND PRODUCTION MANAGEMENT

It is interesting to recall another class of Petri nets called CFIO-decomposable
Petri nets [4]. A CFIO-decomposable Petri net is a Petri net that can be
decomposed into a set of consistent CFIOs. A CFIO net is defined to be a
structurally conflict-free Petri net with input and output transitions but
without source and sink places. The notion of CFIO-decomposable Petri net
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was used to deal with non-cyclic manufacturing system management. As such
a Petri net model representing a non-cyclic manufacturing system is
decomposed, if it can, into a set of consistent CFIOs, then a collection of
(minimal) T-invariants whose sub-nets cover the whole net are derived from
the set of CFIOs. These (minimal) T-invariants are further utilized to
formulate an optimization problem whose solution gives a planning over a
horizon.

Although CFIO-decomposable Petri nets are similar to CO nets, they form
different Petri net classes. CFIO-decomposable Petri nets and CO nets can be
reduced to the same class of Petri nets if we introduce additional constraints to
both classes, namely:

(1) We define the CFIO-decomposable Petri nets as in [4], but we also require
that "NC is a connected acyclic CFIO net with a unique output
transition”.

(i1) We consider the class of CO nets which can be covered by a set of T-
invariants each of which is related to a conflict-free subnet with a unique
oufput transition.

The class of Petri nets obtained by applying these constraints is not restrictive
" as far as manufacturing systems are concerned. Furthermore, this class of
Petri nets allows us to solve the management and the integration problems.

IX. CONCLUDING REMARKS

This paper is part of our work on building a sound modular methodology for
modelling and analysing manufacturing systems as described in the
introduction. It focuses on the system integration. For this purpose we defined
a class of Petri net modules called Controllable-Output nets ( CO nets ) which
were proved to be live, consistent and reversible. The most important result is
that the integration of the CO net modules preserves all these properties. As a
matter of fact, it was also proved that the integrated net is itself a CO net.

Future research is multi-fold. First the integration of decomposable Petri net
modules as defined in [4] will be considered. Another important point to be
addressed is to relax the constraints on the resource places. For example,
resources places corresponding to buffers and transportation facilities do not
satisfy assumption H1.
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The further step of the future research concerns the material flow coordination
between the modules. This clearly involves quantitative analysis and the
ultimate goal is to derive a quantitative evaluation of the integrated system.
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