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A Class of Quadrature Formulas*

By Ravindra Kumar

Abstract. It is proved that there exists a set of polynomials orthogonal on [ — 1, 1] with

respect to the weight function

(1) wii)/it - x)

corresponding to the polynomials orthogonal on [—1, 1] with respect to the weight func-

tion w. Simplified forms of such polynomials are obtained for the special cases

W(t) = (1

(2) = (1

= ((1

and the generating functions and the recurrence relation are also given. Subsequently, a

set of quadrature formulas given by

(3) /' (1 + ,r'/2(l - r)'-,/2(l + a2 + 2at)-'f(t)dt = ± Hkf(,k) + £„(/)
'"' *-i

for (p, q) = (0, 0), (0, 1) and (1, 1) is established; these formulas are valid for analytic

functions. Convergence of the quadrature rules is discussed, using a technique based on

the generating functions. This method appears to be simpler than the one suggested by

Davis 12, pp. 311-312] and used by Chawla and Jain [3]. Finally, bounds on the error

are obtained.

1. Introduction. Szegö [1] has pointed out the possible existence of orthonormal

polynomials in [—1,1] corresponding to weight functions of the kind

(4) w/p

where w is given by (2) and p is a polynomial satisfying certain conditions in [-1,1].

A suitable choice for p is found to be

(4') p{t) = 1 + a2 + 2at

which further suggests the existence of polynomials orthogonal on [—1,1] with

respect to the weight function (1).

In this paper, a theorem is established which shows that the polynomials

orthogonal on [-1,1] with regard to (1) are linear combinations of the polynomials

which are orthogonal on [-1,1] with regard to w. Particular cases of w given in (2)

are of special interest and they are dealt with in detail in the following sections.
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770 RAVINDRA KUMAR

Finally, the corresponding quadrature formulas are developed and their conver-

gence is discussed by a different method. This method, depending on the use of

generating functions, is a simplification of the one used in [3]. Certain lemmas are

proved which are subsequently used to find bounds on the error in formulas (3).

2. Derivation of Formulas. Let w be a fixed positive, integrable function defined

on [—1,1] and let {\pn} be the polynomials that are orthogonal on [—1,1] with regard

to the weight function w. Then

(5) JT' w{t)sh.{t)trdt = 0,       r = 0, 1, ..., n - 1.

We propose to find the polynomial </>„ of degree n in t such that

(6) Jf> Z^L^tydt = o,        r = 0, 1, ...,«- 1,

where x is a constant such that |jc| > 1.

From (6) we have

j\ wfrfofr)' t~*'' dt = 0,       r = 0, 1, ...,«- 2,

(7) =* JT' w{t)4>„{t)trdt = 0, r = 0, 1, ..., n - 2,

=* J' wíO^ÍO^M (ft = 0, r = 0, 1, ...,«- 2.

By expressing <£,, in the form 2"=o Qstys and substituting in (7), we see that, since

a„ # 0, we may write

(8) spn = 4>n - a„\f/n-x

where a„ is some constant depending on n.

Introduction of (8) in (6) with r = 0 and a little manipulation gives

(9) a„ = In/ln-x,

(10) in=j\^-xUt)dt.

We have thus established the following result

Theorem 1. Given a set of polynomials {»//„} such that

j_. w{t)xpm{t)xpn{t)dt = 0,        m # n,

there is defined a set of polynomials {<£>„} given by

<Í>n = sp„ - a„xp„-x

such that

/_', J^<t>m{t)4>n(t)dt = 0,        /«#«,

where
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In=j_^xUt)dt,       \x\>l

The following particular cases follow from above.

3. Case I. Let w{t) = (1 - t2) l/2 so that \p„ = Tn is the Chebyshev polynomial

of degree n of the first kind. Let

x =- V¿ia + I/a),    a being real,

so that \x\ > 1, whatever a. With this, (10) gives

(ll) 4-*£tTt£>>*

The generating function for Chebyshev polynomials can be written as

1 1 - w2 1       °°
Ï ,      ,, \    2 = k + 2 T.{t)W,        w  < 1.
2 1 — 2tw + W¿        I      n=l

With w = — l/a, this becomes

1 2

I + a2 + 2at      a2 - I [I + I.i-OVTW],     W>i.
Inserting this in (11), using the orthogonality property of the Chebyshev polynomi-

als and the result

f_x{l-t2r/2Tn2{t)dt = \,       n>l,

we get

/„ = (-1)V"+I • -^-r   and   a. = ±- = -~.
a1 - 1 /„-i a

Thus, from (8), we get

p„=a- (¡>n=aT„+Tn_1,      n £ 1, \a\ > 1.

It is easy to prove that the corresponding orthonormal polynomials are

<12) P*=(al~T'        P*n = (l),2[aT„+T„-xl    n>l,

which satisfy the orthonormality condition

(13) J' (l - t2yl/2{l +a2 + 2at)-lpm{t)p*n{t)dt = ÔM„,       a # 1, m, n > 0,

and the recurrence relation

(14) /Cn(0 = 2//tf(/)-/C-i(i),       ">2.

The generating function for the Chebyshev polynomials can be written as

1 1 — w2 x 1 °° Io0

51—,,  ^  2= 2 ' w"r„(/) = , + wj wBz;+1(/) = -± + 2 *"£(/).
2 1 - 2/vv + w*       „=o 2 „=o 2      „=o
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772 RAVINDRA KUMAR

This gives

1       1 -
i(a + w) = a\\ + w 2o w"W)J + w["5 + JS w"ï(0]

(15)    2l-2tw + w2

= °-^+ Ï w"+1[aTn+l{t) + Tn{t)l

Insertion of (12) in (15) and a little manipulation leads to the generating

function (16) for the polynomials (12)

Polynomials (12) give rise to the quadrature formulas

(17) f\ (1 - t2yxl2{l +a2 + 2atVf{t)dt = ¿ HJ(tk) + En{f)
J-> k=X

which are exact for all polynomials of degree < 2« — 1. The weight coefficients and

the error term in (17) are calculated through standard methods to be given by

(18) Hk = -2l[p*+l(tk)p*%)],

and

(i9) Ejj) = (2n)!22„-v/(2n)(n    -K Í < 1,

where the prime denotes the derivative and {tk) are the zeros of the «th degree

polynomial p*.

4. Case II. Let w{t) = (1 - t2)l/2 so that \p„ = U„ is the Chebyshev polynomial

of degree n of the second kind. Following the procedure of Section 3, relations (12)

to (14) become

(20) qo* = (2A),/2,        q: = (2A)1/2[at/„ + Un-x\    n > I,

(21) j[.{l-t2)vV+a2+2at)-lqm{t)q*{t)dt = ômn,    a±l,m,n>0,

(22) q:+x{t) = 2tq*n{i) - qtx{i),       n > 2.

The generating function for q* can similarly be written as

(23) i    VI    » = a + Vf 2 w-'^.W.
1 - 2íw + w¿ y 2 n=0

The corresponding quadrature formula is given by

(24) Ç (1 - ,*)'/*(! + a2 + 2atT1f{t)dt = ¿ ft/fo) + £„(/),
y-l A:— 1

where

(25) »*=-2/[fl;+1(íJt)í*'(íJt)l,
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(26) E"{f) = {2n)n^a2f™{a        _1 < è < l'

and {i*} are the zeros of q* .

5. Case III. With w{t) = ((1 - t)/{l + t))Vl and orthonormal polynomials r*,

the corresponding results are as follows:

rt = ~{a - 1),   r*it) = -L(2<« + a + I),

(27) ^ ^

r„* = 4-[at/„ + (1 + a)U„-x + U„-2],       n>2.

(28) /_', (rrr)' *(1 + fl2 + ^o-1 *?(')*•(')<* = &.,    a * 1, «, « > o,

(29) **+i(0 = 2/**(0 - tfiW,       ">!•

(30) ^ + (1 + «V + vv2 = fl + 2a?vv + (l+a)w + {it)x/2 I ^(,^2
1 — 2iw + wz n=0

The relations corresponding to (17), (18) and (19) are

(31) /_', (Itt)^1 + é + M^fiïdt = í Hkf(tk) + £„(/),

(32) Hk = -V[r*+1{tk)r*'{tk)],

(33) E„{f) = (_is_^(€),       -!<€<!,

where {4} are the zeros of ^*.

We now discuss the convergence of the quadrature rules.

6. Case I. Let L be a closed contour enclosing the interval [-1,1] in the z-plane

and let the zeros of the polynomials p*n be denoted by {t¡}". Application of the

residue theorem to the contour integral

1    r     fiz)dz

riJL2mJL(z-t)p*(z)

gives

(34) fu) - y _pM       f(t \ + -L( flÖPWdz
KM) f(t) - à (/ - U)pV{ti)m + 2mih (z - 0/tfW

assuming that/(z) is regular within L.

Multiplying both sides of (34) with (1 - /2)~1/2(1 + a2 + 2a/)"', integrating with

regard to ? on [-1,1] and interchanging the order of integration on the right-hand

side, we get

(35)     x',(,-,i)4')^+2.,)=l.ft/"')+w)
where
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/,M = » f   _P*n{t)dt_

K    ' *      rf'fe)J-' (/ - 0(1 - i2)1/2(l + a2 + lat)

and

F(n = _L( ñzL c_p*^dt_a,
*"U >      tohpHz)]-. (z _ ,)(1 _ /2)./2(1 +a2 + 2ai)Z-

This is the quadrature formula (3) with {p, q) = (0,0) for analytic functions

with abscissas t¡ and weights /x,.

The error of the quadrature formula can be written as

where

t-ic,\ n*(7, - ] f _P*^dt_
(38} Q"{Z) - 2 J-. Cr^/2)'/2(z-0(l+a2 + 2a0

is a single-valued function for all z in the plane with the interval [-1,1] deleted.

The mapping z = j(£ + £~')>£ = pe'e (0 < d < 2-n) is now introduced which

maps the exterior of the unit circle |£| = l conformally onto the z-plane with the

interval [—1,1] deleted. The circle |£| = p ip > 1) is mapped onto an ellipse ep with

foci at z = ±1 and semi-axes j(p + p"1) and \{p - p~l).

7. A Lemma for Q*{z). Relation (38) with tj = £"' now becomes

1   J y"^      ^-'(1 - ?2)1/2(1 + a2 + 2a/)(l -2TJ/ + T,2)'

Relation (16) with tj for w gives

¡rib - (.„«i-v)^+fi ?,'*,p"i(4
Inserting this in (39) and using the orthonormality property of the polynomials

p*, we get

0*(z) = _^_„»+■ = _V2^_e-
Qn()   (i - t,2)(« + v)v    {i - i/e){a + i/nr

Hence, for z on ep, we have

^"U)|-(l-l/p2)(a-l/p)P (p2-l)(flp-l)P

We have thus proved the following lemma.

Lemma. For z on e„,

m ««I £ (p.-ot-I)"'"''
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8. Convergence of the  Quadrature Formula.  Since,  for z on  e„,   T„{z) =

m" + F"), we have

\T„{z)\ > a{p" - p-")   and    |£-,(z)| < \{p^ + p1"").

Also

pt{z) = {2/n)l/2[aTn{z) + Tn^)}-

Therefore

(41) \p*n(z)\ > (2A)1/2 • \ • [a{pn - p-) - (p-1 + p1-)].

From (37), by selecting the contour as an ellipse ep (p > 1), it follows that

Let

(43) M(p) = max|/(z)|    and   /(ep) = length of ep.
z£ep

Inserting (40), (41) and (43) in (42), we get

21M' p2~n

\E.(f)\ <
(p2-l)(ap-l)a(p"-p-) + (p"-'-p'-")-

Thus, the following result has been established.

Theorem 2. Let  f &Aiep) and let p > 1. Then

21M p2-"
(44) |£„(/)| <

(p2 - l)(ap - 1) a{p" - p-) + (p-' - p'-)

9. Case II. Corresponding to {p, q) = (1,1) in formula (3), relations (35) to (39)

are revised as follows:

(45) /-'l(|^0^ = g^) + W)-
1       /•'        (1 - t2)V2q;{t)        ,

(46) * - ¿w •>- (/- oo +-1 + to)*

(47) En{f) = -.JL-^-dz,

^ onz) -1 r1 (1 - '2>'/2?*^
(4g) ô"(z)~2J-.(z-0(l+a2 + 2aO'

i 1 + a2 + 2ai 1 - 2-qt + 172 '(49) C. (*) = 1 J_, .,   ,... i^^—-

where /, are the zeros of q*.

Inserting (23) with n for w in (49) and using the orthonormality property of the

polynomials q*, we get
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«« = V2 ín¡ - V 2 ̂
which proves the following lemma.

Lemma. For z on ep,

W ie;(z)1<yf-iLL.

10. Bounds on Error. Since

l*i - *2| > Ikihkll    and   <7„*(z) = {2/ir)l/2[aUn{z) + i/„_,(z)]

we have

|9;(z)| >{2Ml'2[a\Un{z)\-\Un-x(z)\].

Now, for z on e„,

t/„(z) = (r+l-r-1)/«-rl).

Therefore

UM >P    MP-x       and     i4-,(z)  S^L^..
P + P P - P

Hence

From (47), we have

Inserting (50), (51) and (43) in (52), we get, on simplification, the following

result:

Theorem 3. LetfEAie)andletp> 1. Then

(53,     lu/)l_<™^(^)_(^))-'

w/îeve A/(p) and l(ep) are given by {A3).

11. Case III. Corresponding to {p. q) = (0,1) in formula (3), relations (35) to

(39) are revised as follows:

,'/2

<54) Í-x(t+Í)   (l+a2 + 2a<rif{')dt = îvJ(ti) + E„ifl

~2at)'

(55) J_ fl /l-'Y72 r*U)dt
y    ' **      **'(/,-)■'-' \1+'/    (t-t,)(l+a> +
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(56) E||(/) = _J£___Ö?Z)

lf'/l -^'/2 r*{t)
dt,<"> «w-î/',(r^) (r-,)(. + „> + *>

where /, are the zeros of rn* {t),

CM) n*( \ n/l-t\l/2       r„*{t) dt

(58) Ô^) = W4tT7J    l+a2 + 2at\-2r1t+ll2-

Introduction of (30) in (58), with r/ for w, and the use of orthonormality property

of the polynomials r„*, we get

~n+l f-n+1

«W  =  W^wi^.   ,      2 = W/2^^^
a + (1 + a)Tj + T)2      v 7    a¿2 + (1 + a)¿ + 1'

which proves the following lemma:

Lemma. For z on e„,

(59) |ß*(z)| < {v?2    2      f"+' (« > 1).
ap¿ — (1 + a)p + 1

12. Bounds on Error. Since

I*. + zt\ > \\zx\-\z2\\    and    r*(z) = {m)-l'2[aUn{z) + {(1 + a)U„-x(z) + l/fl_2(z)}]

we have

k*(z)| > (W)-'/2[a|i/„(z)| - {(1 + a)\Un-x{z)\ + |t/„_2(z)|}].

Now, for z on £p,

t/„(z) = (r+i-r"-,)/(i-r').

Therefore

p + p

n" + n~" n"~l + o""+l
|i7„_,(z)| < tZL^    and    |t/„_2(z)| < p      + P_,    .

P - P P - P

Hence

(60) |r„*(z)| > („)Ma9 p_,     - (1 + a)^±^ - p     + P_,    1.
L    p+p' p-p p-pJ

From (56) we have

ttA> |r„*(z)|

Inserting (59), (60) and (43) in (61), we get, on simplification, the following

result:
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Theorem 4. Let f&Aie) and let p > 1. Then

A/(p)/(£p)p-"+'

(62) ^'~«P2-(1+«)P+1

■w^)-M^)-(^)r-
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