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Abstract— The existing Kalman filters for quaternion-valued
signals do not operate fully in the quaternion domain, and are
combined with the real Kalman filter to enable the tracking in
3-D spaces. Using the recently introduced HR-calculus, we
develop the fully quaternion-valued Kalman filter (QKF) and
quaternion-extended Kalman filter (QEKF), allowing for the
tracking of 3-D and 4-D signals directly in the quaternion domain.
To consider the second-order noncircularity of signals, we employ
the recently developed augmented quaternion statistics to derive
the widely linear QKF (WL-QKF) and widely linear QEKF
(WL-QEKF). To reduce computational requirements of the
widely linear algorithms, their efficient implementation are
proposed and it is shown that the quaternion widely linear
model can be simplified when processing 3-D data, further
reducing the computational requirements. Simulations using
both synthetic and real-world circular and noncircular signals
illustrate the advantages offered by widely linear over strictly
linear quaternion Kalman filters.

Index Terms— Extended Kalman filter, improperness,
quaternion augmented statistics, quaternion Kalman filters,
quaternion noncircularity, state space prediction, trajectory
tracking, widely linear model, wind modeling.

I. INTRODUCTION

THE Kalman filter is a standard tool in sequential state

space estimation, and has found application in a number

of areas, including space navigation [1], training of neural

networks [2]–[6], and sensor fusion [7]. The extended Kalman

filter enhances the scope of Kalman filtering to nonlinear

state and observation models. It has proven invaluable in, for

instance, nonlinear attitude estimation, and has also recently

been combined with the quaternion domain representation to

offer an effective way for solving 3-D attitude estimation

problems [8], [9].

Quaternions have been used for a long time in mathematics,

however, it is only recently that we have witnessed their resur-

gence in engineering and physics, where they have become

prominent in computer graphics [10] and orientation modeling

[11]–[15]. This is largely due to their ability to offer a compact

representation for orientation in a 3-D space that is conve-

nient, computationally efficient, and accurate. The quaternion

domain modeling has also found applications in the processing

of 3-D and 4-D rotational data, where the power of their

division algebra helps mitigate the problems associated with
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real vector spaces, such as the gimbal lock. This also makes

it possible to obtain the corresponding learning algorithms in

a more elegant form than those in R3 or R4, together with

rigorous physical interpretation, compact representations, and

closed form solutions. Other applications where quaternions

have attracted significant interest include color image process-

ing [16], source separation [17], [18], and spectrum estimation

algorithms for processing polarized waves [19].

The benefits of quaternions are conveniently illustrated in

spacecraft orientation tracking where the aim is to find the

mapping between the coordinate system on a reference-frame

r ∈ R3 and a local frame b ∈ R3 on the spacecraft body-

frame, such that b = Ar where r is a reference-frame vector,

b is the body-frame vector, and A is the attitude matrix (or

rotation matrix). Quaternions provide a convenient closed form

solution (Davenport’s q-method [20]) to this mapping, which is

generally referred to as Wahba’s problem [21]. This is largely

due to a more compact notation for rotations compared with

that obtained with a 3×3 matrix, resulting in fewer constraints

and a more mathematically tractable functional expression.

Numerous authors have used this quaternion representation to

track orientation in 3-D spaces [9], [22], [23], and for the

training of quaternion-valued neural networks for time series

prediction [24].

Existing quaternion Kalman filters are, however, not intrin-

sically quaternion valued as they use quaternions in the form of

a quadrivariate real ordered vector, that is, [qa, qb, qc, qd ] ∈ R

rather than using their natural representation q = qa + ıqb +

jqc + κqd ∈ H. It would therefore be analytically more

appropriate and practically more physically meaningful for

the algorithms to be derived directly in the quaternion domain,

rather than having to switch between quaternions and the reals.

This would also allow for a more intuitive approach to the

concept of circularity and widely linear modeling, key notions

for the optimal processing of the generality of quaternion-

valued signals. Such a fully quaternion Kalman filter would

not only be suited for orientation tracking but also for the

processing of general 3-D and 4-D processes, and as an

enabling tool in multidimensional learning systems.

One major obstacle in deriving a full quaternion Kalman

filter is the inability of standard second-order statistics to

capture full information in quaternion correlation matrices.

It has recently been shown that to fully utilize the second-

order statistical properties of quaternion-valued signals, three

pseudocovariance matrices must be used in addition to the

standard covariance matrix E[xxH ] [25], [26]; this is achieved

by employing the widely linear model. Conventional quater-

nion signal processing algorithms are strictly linear, and are

therefore only suitable for the processing of second-order
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circular (proper) signals.1 For orientation problems, a strictly

linear model is usually sufficient because this transformation

is described by a standard quaternion number. However, most

real-world signals are noncircular and should therefore be

processed using a widely linear model to capture complete

second-order statistics available. Furthermore, as shown in

this paper, the widely linear model is a prerequisite for the

development of extended Kalman filter.

In this paper, we develop a class of linear and widely

linear Kalman filters, that operate directly in the quaternion

domain, allowing for a unified treatment of both circular

and noncircular data. For the widely linear Kalman filter

an efficient implementation is also proposed, reducing the

computations by approximately a quarter. For nonlinear state

space models, the quaternion-extended Kalman filter (QEKF)

is introduced and is shown to be inherently widely linear. This

allows us to bridge the gap in the literature on 3-D and 4-D

Kalman filters and provide an algorithmic support for learning

systems that operate on vector sensor data.

The organization of this paper is as follows: in

Sections II and III, we briefly review the quaternion alge-

bra and quaternion gradient (HR-calculus) necessary for the

development of the quaternion Kalman filter. In Section IV,

we introduce the widely linear model and provide a more

efficient implementation for 3-D signals. In Section V, the

quaternion Kalman filter is derived. Section VI introduces the

widely linear quaternion Kalman filter while in Section VII

we provide its efficient implementation of the filter. To cater

for nonlinear state models, Section VIII presents the extended

quaternion Kalman filter. Section IX demonstrates the iso-

morophism that exists between the quaternion Kalman filter

and the real Kalman filter in R
4. In Section X, simulations on

both benchmark and real-world signals illustrate the tracking

capability of the algorithms derived.

II. QUATERNION ALGEBRA

Quaternions are a 4-D associative, noncommutative, normed

division algebra over the real numbers, defined as

{qr , qı , qj , qκ } ∈ R
4 → qr + ıqı + jqj + κqκ ∈ H (1)

where {ı, j, κ} are the imaginary units obeying the following

rules

ıj = κ jκ = ı κı = j

ı2 = j2 = κ2 = ıjκ = −1.

Consider a quaternion q = Sq + V q , where Sq = qr denotes

the scalar part of q and V q = ıqı + jqj +κqκ the vector part,

then the product of quaternions q1, q2 ∈ H can be written

as [27]

q1q2 = (Sq1 + V q1)(Sq2 + V q2)

= Sq1Sq2−V q1 • V q2+Sq2V q1+Sq1V q2+V q1×V q2

where the symbol “•” denotes the dot-product and “×”

the cross-product. The 3-D vector part V q is also called

1Second-order circular signals have rotation invariant probability
distributions.

a pure quaternion, while the inclusion of the real part Sq

gives a full quaternion. The algebraic structure of quaternions

therefore enables a unified processing of both 3-D and 4-D

vector processes. The quaternion conjugate, denoted by q∗, is

given by

q∗ = Sq − V q = qr − ıqı − jqj − κqκ (2)

and the norm ‖ q ‖ is defined as

‖ q ‖=
√

qq∗ =
√

q2
r + q2

ı + q2
j + q2

κ .

A. Quaternion Involutions

Of great importance for this paper are quaternion involu-

tions, which are similarity relations, or self-inverse mappings,

defined as2 [28]

q ı = −ıqı = qr + ıqı − jqj − κqκ

qj = −jqj = qr − ıqı + jqj − κqκ

qκ = −κqκ = qr − ıqı − jqj + κqκ (3)

and have the following properties (for inv3 �= inv2 �= inv1):

P1 : (q inv)inv = q for inv ∈ {ı, j, κ} (4)

P2 : (q1q2)
inv = q inv

1 q inv
2 (5)

P3 : (q1 + q2)
inv = q inv

1 + q inv
2 (6)

P4 : (q inv1)inv2 = (q inv2)inv1 = q inv3. (7)

Involutions can be seen as a counterpart of the complex

conjugate, as they allow the components of a quaternion

variable q to be expressed in terms of the actual variable q

and its partial conjugates q ı , qj , qκ , that is3

qr =
1

4
[q + q ı + qj + qκ ] qı =

1

4ı
[q + q ı − qj − qκ]

qj =
1

4j
[q − q ı + qj − qκ ] qκ =

1

4κ
[q − q ı − qj + qκ ].

(8)

B. Advantages of Quaternion Algebra Over 3-D Vector

Algebra

Compare the real mapping that rotates and scales a point

x ∈ R3 into a point y ∈ R3, to the quaternion mapping that

rotates and scales a point qx ∈ H into a point qy ∈ H

qy = qT qxq∗
T ∈ H ∼ y = Tx ∈ R

3. (9)

Remark 1: The mapping T ∈ R3×3 requires nine coeffi-

cients to relate two vectors in R3, however, physically only

four parameters are needed (two for the axis of rotation,

one for the scaling factor and one for the angle of rota-

tion). The four elements of a quaternion offer this physical

insight and compact representation, expressing straightfor-

wardly the axis of rotation, scaling factor, and angle of

rotation.

2Note that the quaternion conjugate is also an involution.
3Compare with the complex domain where the real and imaginary parts

of the complex numbers z = x + ıy are expressed by x = 1/2(z + z∗) and
y = 1/2i(z − z∗).
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Remark 2: When the mapping T describes a concatena-

tion of multiple rotations in the x , y, z directions (using

Euler angles), a degree of freedom (DoF) can be lost if any

two axes are aligned, resulting in the gimbal lock phenom-

enon. No such phenomenon exists in the quaternion domain,

where the quaternion transformation in (9) is expressed as

qy = qAqxq−1
A , where qA is a unit quaternion.

Remark 3: The quaternion rotation qT is better conditioned

than the real rotation matrix T, as the only requirement

imposed on qT is for it to be a unit quaternion, whereas T

must satisfy TT T = I and det(T) = 1. This has led to the

widespread use of quaternions in, e.g., spacecraft orientation

problems where they provide convenient closed form solutions

[8], [9], [29].

III. HR-CALCULUS

The rigorous calculation of quaternion gradient has so

far been a major stumbling block in the derivation of

quaternion-valued learning algorithms. This is mainly because

the Cauchy–Riemann–Fueter equation (differentiability con-

dition) for a quaternion function J with respect to a vector

parameter w, given by

∂ J

∂w∗
=

1

4

(
∂ J

∂wr

+ ı
∂ J

∂wı

+ j
∂ J

∂wj
+ κ

∂ J

∂wκ

)
= 0 (10)

imposes very strict constraints on quaternion functions,

permitting only differentiability of linear functions. This is

prohibitive to the development of quaternion adaptive filters,

however, for real-valued functions of quaternion variables,

we can use the duality that exists between the real vectors

and quaternions to circumvent these stringent conditions,

as exemplified in the recently developed HR-calculus [30],

an extension of the CR-calculus [31] in the complex domain.

The HR-calculus comprises eight partial derivatives, split into

two groups: the HR-derivatives
⎡
⎢⎢⎢⎢⎣

∂ f (q,q ı ,qj ,qκ )
∂q

∂ f (q,q ı ,qj ,qκ )
∂q ı

∂ f (q,q ı ,qj ,qκ )
∂qj

∂ f (q,q ı ,qj ,qκ )
∂qκ

⎤
⎥⎥⎥⎥⎦

=
1

4

⎡
⎢⎢⎣

1 −ı −j −κ

1 −ı j κ

1 ı −j κ

1 ı j −κ

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

∂ f (qr ,qı ,qj ,qκ )

∂qr
∂ f (qr ,qı ,qj ,qκ )

∂qi
∂ f (qr ,qı ,qj ,qκ )

∂qj
∂ f (qr ,qı ,qj ,qκ )

∂qκ

⎤
⎥⎥⎥⎥⎦

(11)

and the HR
∗-derivatives

⎡
⎢⎢⎢⎢⎣

∂ f (q∗,q ı∗,qj∗,qκ∗)
∂q∗

∂ f (q∗,q ı∗,qj∗,qκ∗)
∂q ı∗

∂ f (q∗,q ı∗,qj∗,qκ∗)
∂qj∗

∂ f (q∗,q ı∗,qj∗,qκ∗)
∂qκ∗

⎤
⎥⎥⎥⎥⎦

=
1

4

⎡
⎢⎢⎣

1 ı j κ

1 ı −j −κ

1 −ı j −κ

1 −ı −j κ

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

∂ f (qr ,qı ,qj ,qκ )

∂qr
∂ f (qr ,qı ,qj ,qκ )

∂qi
∂ f (qr ,qı ,qj ,qκ )

∂qj
∂ f (qr ,qı ,qj ,qκ )

∂qκ

⎤
⎥⎥⎥⎥⎦

(12)

where q inv∗ = (q inv)∗ for inv ∈ {ı, j, κ} are the conjugates of

the involutions in (3).

Remark 4: The HR
∗-derivative ∂ f (q∗, q ı∗, qj∗, qκ∗)/∂q∗

is equivalent to the quaternion derivative operator introduced

by Fueter [32], however, unlike the CRF derivative in (10), the

derivative ∂ f (q∗, q ı∗, qj∗, qκ∗)/∂q∗ also introduces a restric-

tion on the dependent variables that compose the function f (·),

namely that f (·) must be expressed as a function of the

involutions q∗, q ı∗, qj∗, or qκ∗.

Remark 5: The HR- and HR
∗-derivatives can be used in

a similar way to the R- and R∗-derivatives in the complex

domain [33]. For instance, to perform a direct HR differen-

tiation of a function written in terms of q∗, it must first be

written in terms of q , q ı , qj , and qκ , using the substitution

q∗ =
1

2
(q ı + qj + qκ − q). (13)

Similarly, to differentiate a function of q using the

HR
∗-derivatives, we can substitute for q using

q =
1

2
(q ı∗ + qj∗ + qκ∗ − q∗). (14)

This way, the HR-calculus provides a tool for differentiating

quaternion functions directly rather than employing partial

derivatives with respect to the real-valued qr , qı , qj , qκ , as

is current practice (within the pseudogradient).

Remark 6: The derivatives in (11) and (12) have the imagi-

nary unit vectors placed on the left-hand side of the real partial

derivatives ∂ f /∂qr , ∂ f /∂qı , ∂ f /∂qj , and ∂ f /∂qκ (termed the

left-HR- and left-HR
∗-derivatives). The unit vectors could

equally well have been placed on the right-hand side of

the real partial derivatives, giving rise to the right-HR- and

right-HR
∗-derivatives.

IV. WIDELY LINEAR MODEL

Another stumbling block that has been detrimental to a more

widespread use of quaternions in learning systems has been

that the standard strictly linear solutions are only optimal for

a very restrictive class of so called circular data (or strictly

linear systems), for which the powers in all the quaternion

components are equal. The recent introduction of quaternion

augmented statistics [26] has highlighted that for a general

(improper) quaternion vector x, second-order estimation based

solely on the covariance matrix Rqq = E[xxH ] is inadequate,

and to fully capture the second-order statistics the pseudoco-

variances G = E[xxı H ], L = E[xxj H ], and T = E[xxκ H ] are

also needed. To introduce an optimal second-order estimator

for the generality of quaternion signals, consider first the mean

square error (MSE) estimator of a real-valued scalar y from

an observed real vector x, that is ŷ = E[y | x]. For jointly

Gaussian x and y, the optimal solution is a strictly linear

estimator, given by

ŷ = hT x (15)

where h and x are, respectively, the coefficient and regressor

vector. For the standard complex domain MSE, the same

form is assumed but this time with h and x complex valued.

However, in terms of the real and imaginary parts of the

complex variables, we have

ŷr = E[yr |xr , xı ] ŷi = E[yi |xr , xı ]

and since xr = x + x∗/2 and xi = x − x∗/2ı , the complex

widely linear model is given by [34]

ŷ = E[y |x, x∗] ⇒ y = hT x + gT x∗

that is, it comprises both the strictly linear part hT x and

the conjugate part gT x∗, where g is a coefficient vector.
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Similarly, the existing strictly linear quaternion model is also

given by (15), with h and x quaternion valued. Observe that,

for all the components

ŷη = E[yη |xr , xı , xj , xκ ] η ∈ {r, ı, j, κ}

and using the involutions in (3), we have, e.g., xa = 1/4

(x + x ı + xj + xκ), leading to

ŷr = E[yr |x, xı , xj , xκ ] ŷı = E[yı |x, xı , xj , xκ ]

ŷj = E[yj |x, xı , xj , xκ ] ŷκ = E[yκ |x, xı , xj , xκ ]

which can be merged as

ŷ = E[y |x, xı , xj , xκ ].

In other words, to capture the full second-order information

available, we should use the quaternion widely linear model

y = uT x + vT xı + gT xj + hT xκ = wT q (16)

where the augmented coefficient vector w = [uT, vT, gT, hT ]T

and the augmented regressor vector q = [xT, xıT, xjT, xκT ]T .

Current statistical signal processing solutions in H are

strictly linear, with most of the algorithms drawing upon the

covariance matrix R = E[qqH ]. However, as shown in (16),

to be able to model both the second-order circular (proper)

and second-order noncircular (improper) signals, we need to

employ the augmented covariance matrix, given by [26]

Rqq∗ =

⎡
⎢⎢⎣

R G L T

Gı Rı Tı Lı

Lj Tj Rj Gj

Tκ Lκ Gκ Rκ

⎤
⎥⎥⎦ (17)

where R = E[xxH ], G = E[xxı H ], L = E[xxj H ] and

T = E[xxκ H ].

Remark 7: For the second-order circular signals (proper),

the pseudocovariance matrices G, L, and T vanish. A signal

that obeys this structure has a probability distribution that

is rotation invariant with respect to all the six pairs of axes

(combinations of ı , j , and κ) [25], [26].

Remark 8: The processing in R
4 would require 10 covari-

ance and cross-covariance matrices, as opposed to four in the

quaternion domain, and would not model the signal noncircu-

larity straightforwardly.

A. Widely Linear Model for 3-D Signals

For many Kalman filtering applications, the aim is to track

a 3-D quantity, as is the case in aeronautics. The widely

linear model in (16) is the only rigorous model for general

noncircular 3-D signals [35], and to reduce its computational

complexity, we show that it is overparameterized and provide

a simplified solution. To arrive at the more parsimonious form,

we start from the linear model in (15) in its scalar form

(i.e., ŷ = hx ∈ H) and, using the duality between quaternions

and real numbers, it can be rewrite in R
4 as

⎡
⎢⎢⎣

ŷr

ŷı

ŷj

ŷκ

⎤
⎥⎥⎦ = Hx =

⎡
⎢⎢⎣

ur uı uj uκ

−uı ur −uκ uj

−uj uκ ur −uı

−uκ −uj uı ur

⎤
⎥⎥⎦

⎡
⎢⎢⎣

xr

xı

xj

xκ

⎤
⎥⎥⎦ ∈ R

4.

For the strictly linear model above, observe that the matrix H

has only four out of the possible 16 DoF needed to describe the

transformation from x to ŷ. If the signal x is 3-D (i.e., a pure

quaternion), then the first column of H vanishes and matrix

H reduces to a 4 × 3 matrix. Hence, to fully describe the

transformation between the 3-D vector x and the 4-D vector y,

12 DoF are needed. We next show that for 3-D signals, only

three of the four terms that constitute the widely linear model

are needed to obtain the required 12 DoF. Indeed, consider the

reduced widely linear model for the 3-D data, given by

ŷ = ux + vxı + gxj ∈ H (18)

and rewrite it in R3 as

⎡
⎢⎢⎣

ŷr

ŷı

ŷj

ŷκ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ur uı uj uκ

−uı ur −uκ uj

−uj uκ ur −uı

−uκ −uj uı ur

⎤
⎥⎥⎦

⎡
⎢⎢⎣

xr

xı

xj

xκ

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

vr vı vj vκ

−vı vr −vκ vj

−vj vκ ur −vı

−vκ −vj uı vr

⎤
⎥⎥⎦

⎡
⎢⎢⎣

xr

xı

−xj

−xκ

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

gr gı gj gκ

−gı gr −gκ gj

−gj gκ gr −gı

−gκ −gj gı gr

⎤
⎥⎥⎦

⎡
⎢⎢⎣

xr

−xı

xj

−xκ

⎤
⎥⎥⎦ .

Upon absorbing the negative signs in the vector x into the

coefficient matrices, we can rewrite the above as

⎡
⎢⎢⎣

ŷr

ŷı

ŷj

ŷκ

⎤
⎥⎥⎦ = Hx =

⎡
⎢⎢⎣

ur + vr + gr uı + vı − gı

−uı − vı − gı ur + vr − gr

−uj − vj − gj uκ + vκ − gκ

−uκ − vκ − gκ −uj − vj + gj

uj − vj + gj uκ − vκ − gκ

− uκ + vκ − gκ uj − vj − gj

ur − vr + gr −uı + vı + gı

uı − vı − gı ur − vr − gr

⎤
⎥⎥⎦

⎡
⎢⎢⎣

xr

xı

xj

xκ

⎤
⎥⎥⎦ .

For x a pure quaternion, the first column of H vanishes while

the remaining 12 terms in H are linearly independent, and are

described by

ur + vr − gr = H22 uı + vı − gı = H12

ur − vr + gr = H33 − uı + vı + gı = H34

ur − vr − gr = H44 uı − vı − gı = H43

and

−uj − vj + gj = H42 uκ + vκ − gκ = H32

uj − vj + gj = H13 − uκ + vκ − gκ = H23

uj − vj − gj = H24 uκ − vκ − gκ = H14.

Observe that now the 12 equations above are linearly

independent and therefore the reduced widely linear model

is sufficient to model 3-D data (pure quaternions).
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V. QUATERNION KALMAN FILTER

Following on the derivation of the Kalman filter in the

complex domain [36], we assume that the quaternion state

xk ∈ Hn×1 evolves according to the following model:

xk = Akxk−1 + Bkuk + wk (19)

where Ak ∈ Hn×n is the state transition matrix, Bk ∈ Hn×n is

the control input matrix for the control input uk ∈ H
n×1, and

wk ∈ Hn×1 is the state noise.

The state xk cannot be observed directly but we can measure

the quantity zk ∈ Hm×1 that relates to the state xk through

zk = Hxk + vk (20)

where H ∈ Hm×n is the observation matrix and vk ∈ Hm×1

is the measurement noise. Both the model noise and measure-

ment noise are zero mean and Gaussian, with properties

wk ∼ N (0, Qk) (21)

vk ∼ N (0, Rk). (22)

Since in the real-world noise normally comprises of a number

of independent sources, by the central limit theorem this is a

reasonable assumption.

The a priori state estimate x̂k|k−1 ∈ Hn×1 (the estimate of

the state xk before obtaining the new measurement) can be

obtained from the state model

x̂k|k−1 = Ak x̂k−1|k−1 + Bkuk (23)

where x̂k−1|k−1 is the previous state estimate.

Using the measurement zk , the estimate x̂k|k−1 can be

improved to obtain the a posteriori state estimate x̂k|k ∈ H
n×1,

given by

x̂k|k = x̂k|k−1 + Kk

(
zk − Hx̂k|k−1

)
(24)

where zk − Hx̂k|k−1 is the innovation term (the error between

the estimate and the measurement). The aim is to find the

Kalman gain Kk that minimizes MSE E[eH
k|kek|k ], where the

error is given by

ek|k = xk − x̂k|k = xk −
[
x̂k|k−1 + Kk(zk − Hx̂k|k−1)

]
.

Minimizing the error E[eH
k|kek|k ] is equivalent to minimizing

the trace of the error covariance Pk = cov(ek|k) = E[ek|keH
k|k ].

This allows us to write MSE as

E[eH
k|kek|k ] = T r [cov(xk − (x̂k|k−1 + Kk(zk − Hx̂k|k−1)))].

Substituting for zk , we have

E[eH
k|kek|k ] = Tr

[
cov

(
xk −

(
x̂k|k−1

+ Kk(Hxk + vk − Hx̂k|k−1)
))]

= Tr
[
cov

[
(I − KkH)(xk − x̂k|k−1 − Kkvk)

]]

and using the property cov(Ax) = E[(Ax)(Ax)H ] =

AE[xxH ]AH (the Hermitian is commutative in the quaternion

domain), we arrive at

E[eH
k|kek|k ] = T r

[
(I − KkH)cov(xk − x̂k|k−1)(I − KkH)H

+ Kkcov(vk)K
H
k

]
.

Denoting the a priori error covariance matrix cov(xk − x̂k|k−1)

by Pk|k−1, we can now write

E[eH
k|kek|k] = T r

[
(Pk|k−1 − KkHPk|k−1)(I − KkH)H

+ KkRkKH
k

]

= T r
[
Pk|k−1 − KkHPk|k−1 − Pk|k−1HH KH

k

+ KkSkKH
k

]
(25)

where Sk is independent of Kk and is given by

Sk = HPk|k−1HH + Rk . Upon calculating all the derivatives

(found using HR-calculus) with respect to Kk and setting to

zero, we obtain

∂ E[eH
k|kek|k ]

∂Kk

=
∂Tr [KkHPk|k−1]

∂Kk

−
∂Tr [Pk|k−1HH KH

k ]

∂Kk

+
∂KkSkKH

k

∂Kk

= 0 (26)

where the partial derivatives can be written as (observe that

these derivatives are different to what would be obtained in

the complex domain)

(SkKH
k )T −

1

2
(KkSk) = (HPk|k−1)

T −
1

2
Pk|k−1HH . (27)

The following decomposition is important for the derivation:

((SkKH
k )T )∗ = (SkKH

k )H = KkSH
k = KkSk

((HPk|k−1)
T )∗ = (HPk|k−1)

H = PH
k|k−1HH = Pk|k−1HH

allowing us to obtain a solution to (27) in the form

(SkKH
k )T = (HPk|k−1)

T (since this also implies −1/2KkSk =

−1/2Pk|k−1HH ), finally giving

Kk = Pk|k−1HH S−1
k . (28)

Therefore, the a priori error covariance matrix Pk|k−1 can

be solved recursively as

Pk|k−1 = cov
[
xk − x̂k|k−1

]

= AE
[
ek|k−1eH

k|k−1

]
AH +2AE

[
ek|k−1wk

]
+E

[
wkwH

k

]
.

(29)

The assumption made that the noise is white means that ek|k−1

is uncorrelated with w(k) and so we can simplify the above

expression as

Pk|k−1 = APk−1|k−1AH + Qk . (30)

To obtain a recursive expression for Pk|k (used in obtaining

Pk|k−1), observe that from (25) the matrix Pk can be written as

Pk = Pk|k−1−KkHPk|k−1−Pk|k−1HH KH
k +KkSkKH

k . (31)

Substituting for Kk in the above, the last two terms on the

right cancel out, giving

Pk|k = Pk|k−1 − KkHPk|k−1. (32)

This completes the derivation of the strictly linear quaternion

Kalman filter, which, unlike the existing approaches, is derived

directly in the quaternion domain, and is given in Algorithm 1.
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Algorithm 1 Quaternion-Valued Kalman Filter

Model output

x̂k|k−1 = Ak x̂k−1|k−1 + Bkuk (33)

Pk|k−1 = AkPk−1|k−1AH
k + Qk (34)

Measurement output

Sk = HPk|k−1HH + Rk (35)

Kk = Pk|k−1HH S−1
k (36)

x̂k|k = x̂k|k−1 + Kk[zk − Hx̂k|k−1] (37)

Pk|k = [I − KkH]Pk|k−1 (38)

VI. WIDELY LINEAR QUATERNION KALMAN FILTER

The Kalman filter derived in the previous section is optimal

for strictly linear models or for circular data. To account

for the noncircularity associated with real-world data, the

Kalman filter must propagate the augmented state estimates

and augmented covariance matrix. Following on (16) and (19),

to incorporate the widely linear model we can rewrite the state

and observation equations as

xa
k = Aa

k xa
k−1 + Ba

k ua
k + wa

k

za
k = Haxa

k−1 + va
k (39)

where the augmented state vector xa
k = [xT

k, xıT
k , x

jT
k , xκT

k ]T, the

augmented state noise vector wa
k = [wT

k , wıT
k , w

jT

k , wκT
k ]T, the

augmented observation noise vector va
k = [vT

k , vıT
k , v

jT
k , vκT

k ]T,

while the augmented state transition matrix and observation

matrix are, respectively, given by

Aa
k =

⎡
⎢⎢⎣

A1 A2 A3 A4

Aı
2 Aı

1 Aı
4 Aı

3

A3 A
j
4 A

j
1 A

j
2

Aκ
4 Aκ

3 Aκ
2 Aκ

4

⎤
⎥⎥⎦

Ha =

⎡
⎢⎢⎣

H1 H2 H3 H4

Hı
2 Hı

1 Hı
4 Hı

3

H
j
3 H

j
4 H

j
1 H

j
2

Hκ
4 Hκ

3 Hκ
2 Hκ

1

⎤
⎥⎥⎦ . (40)

Note that the augmented block matrix structures in

Ha and Aa
k (the subscript k is dropped in the partitioned

matrix for ease of representation) are necessary for the model

in (39) to hold. Using the widely linear model described

above, the widely linear quaternion Kalman filter algorithm

becomes a generic extension of the quaternion Kalman filter

described in (34) and (38), and provides a unified treatment of

both the second-order circular and noncircular data, with the

subscript a emphasizing the fact that all vectors and matrices

are augmented. The widely linear quaternion-valued Kalman

filter (WL-QKF) is summarized in Algorithm 2.

Observe from (39) that the widely linear quaternion Kalman

filter is not only able to model the noncircularity of the state

model and observation model via the widely linear Aa
k and Ha ,

but also the noncircularity of the state and observation noise

via the augmented covariance matrices Qa
k and Ra

k .

Algorithm 2 Widely Linear Quaternion-Valued Kalman Filter

(WL-QKF)

Model output

x̂a
k|k−1 = Aa

k x̂a
k−1|k−1 + Ba

k ua
k (41)

Pa
k|k−1 = Aa

k Pa
k−1|k−1Aa H

k + Qa
k (42)

Measurement output

Sa
k = HaPa

k|k−1Ha H + Ra
k (43)

Ka
k = Pa

k|k−1Ha H Sa−1

k (44)

x̂a
k|k = x̂a

k|k−1 + Ka
k [za

k − Ha x̂a
k|k−1] (45)

Pa
k = [I − Ka

k Ha]Pa
k|k−1 (46)

Remark 9: Even for strictly linear state or observation

model, the widely linear Kalman filter can still offer better

performance than its strictly linear counterpart if the noise is

noncircular. This is in contrast to the widely linear quaternion

recursive least squares [37], which can only cater for the

noncircularity of the model and not explicitly for the noise

noncircularity.

VII. EFFICIENT IMPLEMENTATION OF THE QUATERNION

WIDELY LINEAR KALMAN FILTER

Observe that matrices Aa
k and Ha

k in (40) are overparame-

terized since only one quarter of the entries are needed to fully

describe each matrix. We shall next make use of this property

to simplify each of the six equations describing the quaternion

widely linear Kalman filter.

1) Equation (41):

x̂a
k|k−1 = Aa

k x̂a
k−1|k−1 + Ba

k ua
k . (47)

Upon partitioning each matrix and array into its components

we have

⎡
⎢⎢⎣

x̂k|k−1

x̂ı
k|k−1

x̂
j
k|k−1

x̂κ
k|k−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

A1k A2k A3k A4k

Aı
2k Aı

1k Aı
4k Aı

3k

A
j
3k A

j
4k A

j
1k A

j
2k

Aκ
4k Aκ

3k Aκ
2k Aκ

4k

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x̂k−1|k−1

x̂ı
k−1|k−1

x̂
j
k−1|k−1

x̂κ
k−1|k−1

⎤
⎥⎥⎦ . (48)

Observe that there is only one linearly independent row above,

and so (41) can be simplified into

x̂k|k−1 = A1k x̂k−1|k−1 + A2k x̂k−1|k−1 + A3k x̂k−1|k−1

+ A4k x̂k−1|k−1

= AαT
k x̂a

k−1|k−1 (49)

where AαT
k = [A1k, A2k, A3k, A4k].

Remark 10: The advantage of using this representation is

twofold. The output has only one quarter of the terms and so

less memory is needed in the implementation (this is also the

case for matrix Aα
k as compared with Aa

k ). Secondly, this form

is four times less computationally intensive.
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2) Equation (42):

Pa
k|k−1 = Aa

k Pa
k−1|k−1Aa H

k + Qa
k . (50)

To simplify the above, we start from the definition of Pa
k|k−1,

that is

Pa
k|k−1 = E[ea

k|k−1ea H
k|k−1] = E

⎡
⎢⎢⎢⎣

⎡
⎢⎢⎣

ek|k−1

eı
k|k−1

e
j
k|k−1

eκ
k|k−1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ek|k−1

eı
k|k−1

e
j
k|k−1

eκ
k|k−1

⎤
⎥⎥⎦

T
⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣

P1k|k−1 P2k|k−1 P3k|k−1 P4k|k−1

Pı
2k|k−1 Pı

1k|k−1 Pı
4k|k−1 Pı

3k|k−1

P
j
3k|k−1 P

j
4k|k−1 P

j
1k|k−1 P

j
2k|k−1

Pκ
4k|k−1 Pκ

3k|k−1 Pκ
2k|k−1 Pκ

1k|k−1

⎤
⎥⎥⎦ (51)

where P1k|k−1 = E[ek|k−1

(
ek|k−1

)H
], P2k|k−1 = E[ek|k−1(

ek|k−1

)ı H
], P3k|k−1 = E[ek|k−1

(
ek|k−1

)j H
], and P4k|k−1 =

E[ek|k−1

(
ek|k−1

)κ H
].

Note that the product of two matrices with the augmented

block matrix structure as above also has an augmented block

matrix structure. Thus, only the first row of the product need

to be computed to express the whole matrix. To formalize this

product, we introduce the operator fwl (·) that reconstructs a

block matrix from its first row. The terms comprising Pa
k|k−1

can now be calculated as

Pα
k|k−1 = Aα fwl

(
Pα

k−1|k−1Aa H
k

)
+ Qα

k (52)

where Pα
k|k−1 = [P1k|k−1, P2k|k−1, P3k|k−1, P4k|k−1] and

Qα
k = [Q1k, Q2k, Q3k, Q4k].

Remark 11: This form requires a quarter of the mathemat-

ical operations and only one quarter of the terms need be

stored.

3) Equation (43):

Sa
k = HaPa

k|k−1Ha H + Ra
k . (53)

Following the same approach as that for (42), since Sa assumes

the form ⎡
⎢⎢⎣

S1k S2k S3k S4k

Sı
2k Sı

1k Sı
4k Sı

3k

S
j
3k S

j
4k S

j
1k S

j
2k

Sκ
4k Sκ

3k Sκ
2k Sκ

4k

⎤
⎥⎥⎦ (54)

this allows us to write

Sα
k = Hα fwl

(
Pα

k|k−1Ha H
)

+ Rα
k (55)

where Sα
k = [S1k, S2k, S3kS4k], Hα = [H1, H2, H3, H4], and

Rα
k = [R1k, R2k, R3k, R4k].

Remark 12: This form requires a quarter of the math-

ematical operations and only one quarter of the memory

requirement.

4) Equation (44):

Ka
k = Pa

k|k−1Ha H Sa−1

k . (56)

Knowing that Ka has an augmented block matrix structure

we can follow the same approach as above and to arrive at a

m more compact form given by

Kα
k = Pα

k|k−1 fwl

(
HαH Sa−1

k

)

where Kα
k = [K1k, K2k, K3k, K4k]. The matrix inverse oper-

ation is computationally very intensive, however, we can

take advantage of the structure of matrix Sa to simplify this

expression. The inverse of S has the same structure as S, and

can therefore be written as

Sa−1

k = Ca =

⎡
⎢⎢⎣

C1 C2 C3 C4

Cı
2 Cı

1 Cı
4 Cı

3

C
j
3 C

j
4 C

j
1 C

j
2

Cκ
4 Cκ

3 Cκ
2 Cκ

4

⎤
⎥⎥⎦ . (57)

By applying the block inversion lemma twice onto the

matrix S, the matrices C1, C2, C3, and C4 can be evaluated as

C1 = (U1 − VU3)
−1 (58)

C2 = −C1V (59)

C3 = −(C1O1 + C2O3) (60)

C4 = −(C1O2 + C1O4) (61)

where

V = U2U−1
4 (62)[

U1 U2

U3 U4

]
= Sa − OSc (63)

[
O1 O2

O3 O4

]
= O = SbS−1

d (64)

[
Sa Sb

Sc Sd

]
= Sa

k . (65)

Remark 13: The above approach to obtain the matrix

inverse requires half the operations needed for inverting the

whole of matrix Sa .

5) Equation (45):

x̂a
k| = x̂a

k|k−1 + Ka
k [za

k − Ha x̂a
k|k−1]. (66)

This can be simplified to

x̂k|k = x̂k|k−1 + Kα
k (za − Haxa

k ) (67)

where Kα
k = [K1k, K2k, K3k, K4k].

6) Equation 46:

Pa
k|k = [Ia − Ka

k Ha]Pa
k|k−1. (68)

We can simplify this to

Pα
k|k = [[I, 0, 0, 0] − Kα

k Ha]Pa
k|k−1. (69)

Algorithm 3 summarizes the efficient implementation of the

quaternion widely linear Kalman filter.

VIII. WIDELY LINEAR QUATERNION EXTENDED

KALMAN FILTER

For nonlinear systems, the state transition and the obser-

vation equations are nonlinear and are modeled using the

extended Kalman filter, given by

xk = f [xk−1] + wk (84)

zk = h[xk] + vk (85)

where f [·] and h[·] are, respectively, the nonlinear state and

observation functions. For their approximations, the extended

Kalman filter uses the first-order Taylor series expansions
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Algorithm 3 Efficient Implementation of the Quaternion

Widely Linear Kalman Filter

Model output

x̂k|k−1 = AαT
k x̂a

k−1|k−1 (70)

Pα
k|k−1 = Aα

k fwl

(
Pα

k−1|k−1Aa H
)

+ Qα
k (71)

Measurement output

Sα
k = Hα fwl

(
Pα

k|k−1Ha H
)

+ Rα
k (72)

Kα = Pα
k|k−1 fwl

(
HαH Ca

)
(73)

x̂k|k = x̂k|k−1 + Kα
k (za

k − Haxa
k|k−1) (74)

Pα
k|k = [[I, 0, 0, 0] − Kα

k Ha]Pa
k|k−1 (75)

where

C1 = (U1 − U2U−1
4 U3)

−1 (76)

C2 = −C1U2U−1
4 (77)

C3 = −(C1O1 + C2O3) (78)

C4 = −(C1O2 + C1O4) (79)

U =

[
U1 U2

U3 U4

]
= Sa − OSc (80)

O =

[
O1 O2

O3 O4

]
= SbS−1

d (81)

while the superscript α in Mα denots the augmented array of

matrix M.

Mα = [M1, M2, M3, M4]. (82)

The superscript a in Ma defines the augmented matrix of

matrix M, given by

Ma =

⎡
⎢⎢⎣

M1 M2 M3 M4

Mı
2 Mı

1 Mı
4 Mı

3

M
j
3 M

j
4 M

j
1 M

j
2

Mκ
4 Mκ

3 Mκ
2 Mκ

4

⎤
⎥⎥⎦ =

[
Ma Mb

Mc Md

]
(83)

where fwl (M
α) = Ma for any matrix M.

(TSEs) around the current state estimate. Calculating the

quaternion derivative requires the function to be analytic in

the CRF sense, however, this also imposes very strict condi-

tions as only linear functions are analytic in the quaternion

domain. Although nonlinear functions are not differentiable

in the Cauchy–Riemann–Fueter sense, by exploiting the iso-

morphism between the quaternion domain H and real domain

R4, the HR-calculus allows for nonanalytic functions to be

differentiated [30]. This also guarantees the existence of the

first-order quaternion TSE of a nonanalytic quaternion func-

tion, which assumes the form

f (q + dq) = f (q) +
∂ f

∂q
dq +

∂ f

∂q ı
dq ı +

∂ f

∂qj
dqj +

∂ f

∂qκ
dqκ

(86)

where for analytic functions the involution derivatives vanish.

Remark 14: Because quaternion nonlinear functions are

nonanalytic (a consequence of CRF condition), the first-order

Taylor series in (86) will always be widely linear, due to the

presence of the terms dq ı , dqj , and dqκ . Therefore the QEKF

is always widely linear. This is in contrast to the complex

domain where the extended Kalman filter can be strictly linear

if the nonlinear function is analytic [38].

Upon expanding f [·] around x̂k−1|k−1 and h[·] around

x̂k|k−1 using the first-order Taylor series in (86), the state and

measurement equations become

xk = Akxk−1 + Bkxı
k−1 + Ckx

j
k−1 + Dkxκ

k−1 + wk + dk

yk = Exk−1 + Fxı
k−1 + Gx

j
k−1 + Hxκ

k−1 + wk + lk

where

dk = f (x̂k−1|k−1) − Ak x̂k−1|k−1 − Bk x̂ı
k−1|k−1

−Ck x̂
j
k−1|k−1 − Dk x̂κ

k−1|k−1

lk = h(x̂k|k−1) − Ex̂k|k−1 − Fx̂ı
k|k−1 − Gx̂

j
k|k−1

−Hx̂κ
k|k−1

A, B, C, D =
∂ f

∂x
ϕ
k−1

|xϕ
k−1=x̂

ϕ
k−1|k−1

for ϕ ∈ {1, ı, j, κ}

E, F, G, H =
∂h

∂x
ϕ
k

|xϕ
k =x̂

ϕ
k|k−1

for ϕ ∈ {1, ı, j, κ}

Observing that both the linearized process and observation

equations are widely linear, the state and observation model

of the extended Kalman filter can now be written as

xk = Fa
k xa

k−1wa
k + da

k (87)

yk = Haxa
k−1 + wa

k + lak (88)

where da
k = [dT

k, dıT
k , d

jT
k , dκT

k ]T, lak = [lT
k, lıTk , l

jT
k , lκT

k ]T

Fa
k =

⎡
⎢⎢⎣

Ak Bk Ck Dk

Bı
k Aı

k Dı
k Cı

k

C
j
k D

j
k A

j
k B

j
k

Dκ
k Cκ

k Bκ
k Aκ

k

⎤
⎥⎥⎦ (89)

Ha =

⎡
⎢⎢⎣

E F G H

Fı Eı Hı Gı

Gj Hj Ej Fj

Hκ Gκ Fκ Eκ

⎤
⎥⎥⎦ . (90)

The WL-QEKF is summarized in Algorithm 4.

IX. DUALITY BETWEEN THE QUATERNION- AND

REAL-VALUED KALMAN FILTER

Following on the definition of quaternions in (1), a one-to-

one mapping exists between the points in H and R4. For the

quaternion vector q = qa + ıqb +jqc +κqd ∈ Hn , this duality

is described by
⎡
⎢⎢⎣

q

qı

qj

qκ

⎤
⎥⎥⎦

︸ ︷︷ ︸
qa∈H4n

=

⎡
⎢⎢⎣

I ıI jI κI

I ıI −jI −κI

I −ıI jI −κI

I −ıI −jI κI

⎤
⎥⎥⎦

︸ ︷︷ ︸
Jn∈Hn×n

⎡
⎢⎢⎣

qr

qi

q j

qk

⎤
⎥⎥⎦

︸ ︷︷ ︸
qr ∈R4n

(97)

where I is the identity matrix and J describes the invertible

mapping J : R4 → H (where J−1 = 1
4

JH ). Using this
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Algorithm 4 Widely Linear Quaternion-Extended Kalman

Filter

Model output

x̂a
k|k−1 = f a

k [x̂a
k−1|k−1] + Ba

k ua
k (91)

Pa
k|k−1 = Fa

k Pa
k−1Fa H

k + Qa
k (92)

Measurement output

Sa = HaPa
k|k−1Ha H + Ra

k (93)

Ka = Pa
k|k−1Ha H Sa−1

(94)

x̂a
k|k = x̂a

k|k−1 + Ka[za
k − ha[x̂a

k|k−1]] (95)

Pa
k|k = [I − KaHa]Pa

k|k−1 (96)

isomorphism, we can obtain a dual real quadrivariate version

of the augmented quaternion state and measurement model in

(39), in the form

xr
k = Ar

kxr
k−1 + Br

kur
k + wr

k

zr
k = Hr xr

k−1 + vr
k (98)

where xr
k = J−1

n xa
k , zr

k = J−1
m za

k , Fr
k = J−1

n Fa
k Jn ,

Hr = J−1
m HaJn , wr

k = J−1
n wa

k , and vr
k = J−1

n va
k while the error

covariance matrix are related by Pr
k = J−1

n Pa
k J−H

n . We can now

obtain an expression relating the MSEs of the quaternion and

real-valued Kalman filter in the form

T r(Pr
k) = Tr(J−1

n Pa
k J−H

n )

= Tr(Pa
k J−H

n J−1
n )

=
1

4
T r(Pa

k ). (99)

Because of the redundant information in the augmented

pseudocovariance matrix Pa
k [see (51)], the MSE for the widely

linear Kalman filter is (1/4)Tr(Pa
k ) and not T r(Pa

k ), thus

giving the same MSE as the real quadrivariate Kalman filter.

Remark 15: It follows from (99) that the performance of

the widely linear quaternion Kalman filter is identical to that

of the real Kalman filter. The duality between H and R4 only

exists for widely linear models, reflecting the fact that strictly

linear models are suboptimal, and are thus suitable only for a

very restrictive class of circular data.

Remark 16: When the underlying signal generating model

is strictly linear, both the real Kalman filter and WL-QKF are

over-parameterized and the quaternion Kalman filter provides

better convergence performance.

X. SIMULATIONS

To illustrate the advantages offered by widely linear quater-

nion Kalman filters over their strictly linear counterparts, we

considered the following scenarios: 1) filtering of a quaternion-

valued signal from noisy measurements where the state model

is known and the first- and second-order statistics of both state

and measurement noise are also known; 2) multiple step ahead

prediction of a nonstationary 3-D wind field; and 3) estimating

the position of a target using bearings-only measurements.

Fig. 1. Performance comparison between QKF and WL-QKF for the AR(4)
process in (101), under varying degrees of noncircularity of the state and
observation noise. (a) Noncircular observation noise. (b) Noncircular state
noise.

A. Filtering of an Autoregressive Process

In the first experiment, the state model was described

by a fourth-order quaternion autoregressive process, AR(4),

given by

xk = 1.4xk−1 −0.7xk−1 +0.04xk−1 −0.05xk−1 +wk (100)

where the driving noise wk was quadruply white zero

mean Gaussian noise with the variance and pseudovariance

defined as

E[wkw
∗
n ] = αδk−n E[wkw

ı∗
n ] = βδk−n

E[wkw
j∗
n ] = γ δk−n E[wkw

κ∗
n ] = ηδk−n

where δ is the discrete Dirac delta function. In the first

experiment, the state xk was observed in the presence of

additive quaternion-valued white noise vn of varying degree

of circularity,4 that is

zk = xk + vk . (101)

In the second experiment, the state xk was observed through

a nonlinearity, given by

zk = arctan(xk) + wk . (102)

The quantitative performance measure was the prediction gain

Rp = 10log(σ 2
y /σ 2

e ). where σ 2
y and σ 2

e are, respectively, the

powers of the input signal and the output error. Fig. 1 compares

the performances of the QKF and its widely linear counterpart,

the WL-QKF, for the signal in (101). Fig. 1 shows the results

for a circular state noise and an observation noise of varying

degree of a circularity, while in Fig. 1 the observation noise

was circular and the state noise noncircular. Conforming with

the analysis, for both sets of experiments, when the noises

were circular, the strictly linear and widely linear QKF had

the same prediction gain. However, for noncircular noises, the

QKF was inferior to the WL-QKF, as it did not cater for

the full second-order statistics of the noises. This was also

reflected by the performance of the QKF being independent

of the noise noncircularity. Fig. 2 compares the performances

of the QEKF and WL-QEKF for the nonlinear signal in

(102). Similarly to the results for the linear observation model

in the previous experiment, we observe that the WL-QEKF

4The noncircularity measure rs = β + γ + η/3α, where rs ∈ [0, 1] and
the value rs = 0 indicates a circular source while rs = 1 indicates a highly
noncircular source.
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Fig. 2. Performance comparison between QEKF and WL-QEKF for the
AR(4) process in (102), observed through output nonlinearity, for varying
degrees of noncircularity of the state and observation noise. (a) Noncircular
observation noise. (b) Noncircular state noise.

Fig. 3. Multistep ahead prediction of real-world 4-D wind data using QKF
and WL-QKF.

outperformed the QEKF when either the observation noise

or state noise were noncircular. However, unlike the previous

experiment, for noncircular state noise, the performance of

the strictly linear QEKF was dependent on the degree of

noncircularity.

B. Multistep Ahead Prediction

The performances of the QKF and WL-QKF were next

investigated for the multistep ahead prediction of a real-world

noncircular and nonstationary 4-D wind field.5 Fig. 3 shows

the prediction performance in terms of the MSE for both the

QKF and WL-QKF. Observe that, owing to its ability to utilize

all the second-order information available, the WL-QKF was

able to capture the underlying dynamics of the wind signal

better than the QKF. This confirms that the wind signal is

inherently noncircular (as shown in Fig. 4) and so should

be processed using the widely linear Kalman filter. This is

also true for most real-world scenarios, including orientation

tracking in aeronautics.

C. Bearings-Only Tracking

In the bearings-only tracking problem, the aim is to esti-

mate the position of an object based only on noisy bearings

5The wind speed measurements in the North, East, and vertical direction
formed the imaginary part of the quaternion while the temperature was
incorporated in the real part to form a full quaternion. The data set was
recorded using the WindMaster, a 3-D Gill Instruments ultrasonic anemometer,
which was resampled at 5 Hz for simulation purposes.

Fig. 4. Geometric view of the wind signal noncircularity via the six scatter
plots of quaternion components. (a) qr vs qi . (b) qr vs q j . (c) qr vs qk .
(d) qi vs q j . (e) qi vs qk . (f) q j vs qk

measurements of the object from one or more sensors.

Bearings-only tracking is useful in military applications, for

example, in submarine tracking by passive sonar. Since the

range of the target must be estimated from bearings mea-

surements, the problem is inherently nonlinear. To estimate

the position (xk , yk , zk) and velocity (ẋk , ẏk , żk) of a target

using a system of L observers located at (x0
i,k , y0

i,k , z0
i,k ) for

i = 1, . . . , L, the WL-QEKF can be used with the state and

observation model described as follows.

1) xk = [ı xk + j yk + κzk, ı ẋk + j ẏk + κ żk].

2) Matrices F and B are defined as

F =

[
1 T

0 1

]
B =

[
T 2

2
T

]

where T is the sampling interval.

3) yk are the noise corrupted bearing measurements and

h[xk] is a nonlinear defined as

h[xk] =

⎡
⎢⎢⎢⎢⎣

θ1, k + ıθ L
2 +1,k + jφ1,k + κφ L

2 +1,k

θ2,k + ıθ L
2 +2,k + jφ2,k + κφ L

2 +2,k

...

θ L
2 ,k + ıθL ,k + jφ L

2 ,k + κφL ,k

⎤
⎥⎥⎥⎥⎦

where

θi,k = arctan
yk − y0

i,k

xk − x0
i,k

φi,k = arctan
zk − z0

i,k

((xk − x0
i,k)

2 + (yk − y0
i,k)

2)
1
2

are, respectively, the azimuth and elevation angles.

4) wk = ẍk + j ẍk + κ ẍk is the zero mean noncircular

state noise (accounting for the target accelerations) and

vk = [v1,k v2,k . . . vL ,k] is the zero mean.

The function h[xk] is nonholomorphic and therefore the

first-order approximation using the quaternion Taylor series is

widely linear. To illustrate the necessity of the widely linear

model, we simulated a scenario where two static sensors are

located at (−1200, 1300, 0) and (1000, 1500, 100). The sam-

pling interval of T = 0.1 was used and the target was made

to have an initial position of (200, 100, 300) and velocity
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Fig. 5. Bearings-only tracking using the WL-QEKF. (a) Trajectory of an
object tracked in a 3-D space. (b) MSE performance.

(2, 1, 0.5). The statistics of the state and observation noise

were as follows:

wk = N (10, 10, 10, 10)

vk = N (0.001, 0.001, 0.001, 0.001).

Fig. 5(a) shows the trajectory of the target and the position

estimated by the WL-QEKF. The MSE shown in Fig. 5 shows

that the WL-QEKF achieved a better MSE performance than

the QEKF, for both the position and velocity estimation of the

target. This conforms with Remark #14 where we showed that

due to quaternion nonlinear functions always being nonholo-

morphic, the extended Kalman filter must always be widely

linear since the first-order quaternion Taylor series is also

always widely linear.

XI. CONCLUSION

The quaternion Kalman (QKF) filter and its widely linear

counterpart (WL-QKF) have been introduced for the process-

ing of 3-D and 4-D signals in the quaternion domain. In this

way, both second-order circular (proper) and noncircular

(improper) are catered for, giving a natural solution in a divi-

sion algebra where the data reside, as opposed to the existing

approaches, which use the duality that between H and R
3 to

convert the quaternion quantities into real vectors. Both strictly

linear and widely linear Kalman and extended Kalman filters

have been developed, which was made possible by the recently

introduced HR-calculus. We have also illuminated that owing

to the widely linear nature of the first-order quaternion Taylor

series, the QEKF is in general widely linear, an issue that

has so far prevented its development. The proposed class

of quaternion Kalman filters fully operate in the quaternion

domain where the data reside, and are a generic extension of

their real- and complex-valued counterparts, simplifying into

the existing widely and strictly linear complex solutions when

operating on 2-D data [38]. The duality with the quadrivariate

real Kalman filters and some computational issues have also

been addressed. Simulations have shown that for a range of

signals, for which either the state model is widely linear

or the noises are noncircular, the WL-QKF filter, and the

WL-QEKF offer better performance over their strictly linear

counterparts.

APPENDIX A

PROOF FOR THE FIRST-ORDER QUATERNION

TAYLOR SERIES

The Taylor series of a real quadrivariate function

u(qa, qb, qc, qd) is given by [39]

u(qr , qı , qj , qκ) = u(qr0, qı0, qj0, qκ0) +

∞∑

n=1

1

n

[
�qr

∂

∂qr

+ �qı
∂

∂qı

+ �qj
∂

∂qj
+ �qκ

∂

∂qκ

]n

u(qr0, qı0, qj0, qκ0)

(103)

where �qη = qη − qη0, for η = {r, ı, j, κ}. Using the identity

⎡
⎢⎢⎢⎢⎣

∂ f
∂qr
∂ f
∂qı
∂ f
∂qj
∂ f
∂qκ

⎤
⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎣

∂ f
∂q
∂ f
∂q ı

∂ f
∂qj

∂ f
∂qκ

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎣

1 ı j κ

1 ı −j −κ

1 −ı j −κ

1 −ı −j κ

⎤
⎥⎥⎦ (104)

to related the real partial derivatives to quaternion partial

derivatives, we next derive the quaternion Taylor series.

For a real function of quaternion variables, we have

f (q, q ı , qj , qκ) = u(qr , qı , qj , qκ) and so substituting (104)

into (103) and using the identities �qr = 1/4(�q +

�q ı + �qj + �qκ), �qı = 1/4ı(�q + �q ı − �qj −

�qκ), �qj = 1/4j(�q − �q ı + �qj − �qk), and

�qκ = 1/4κ(�q − �q ı − �qj + �qκ), we obtain the

quaternion Taylor series

f (q, q ı , qj , qκ) = f (q0, q ı
0, q

j
0 , qκ

0 )

+

∞∑

n=1

1

n

[
�q

∂

∂q
+ �q ı ∂

∂q ı
+ �qj ∂

∂qj
+ �qκ ∂

∂qκ

]n

× f (q0, q ı
0, q

j
0 , qκ

0 ).
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For a multivariate quaternion function, we thus have

f (q, qı , qj , qκ ) = f (q0, qı
0, q

j
0 , qκ

0 )

+

∞∑

n=1

1

n

[
�qT ∂

∂q
+ �qıT ∂

∂qı
+ �qjT ∂

∂qj
+ �qκT ∂

∂qκ

]n

× f (q0, qı
0, q

j
0 , qκ

0 ).

Using the notation v = [q, qı, qj, qk ]T and ∂ f /∂q =

[∂ f /∂q, ∂ f /∂qı, ∂ f /∂qj , ∂ f /∂qκ ]T , the first-order quaternion

Taylor series can be written as

f (v) = f (v0) + �vT ∂ f

∂v
. (105)
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