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Abstract: This study introduces a class of region preserving space transformation (RPST) schemes for 

accessing high-dimensional data. The access methods in this class differ with respect to their space-

partitioning strategies. The study develops two new static partitioning schemes that can split each 

dimension of the space within linear space complexity. They also support an effective mechanism for 

handling skewed data in heavily sparse spaces. The techniques are experimentally compared to the 

Pyramid Technique, which is another example of static partitioning designed for high-dimensional 

data. On real high-dimensional data, the proposed RPST schemes outperform the Pyramid Technique 

by a significant margin. 
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INTRODUCTION 

 

As data availability has increased, so has the 

dimensionality of problems to be solved. Objects of 

multimedia applications are usually mapped to feature 

vectors indexed by a multi-dimensional database. Since 

typical feature vectors have numerous components, the 

resulting data are characterized by very high 

dimensionality. High-dimensional data also pose major 

challenges for data-mining algorithms and many 

scientific applications. For example, the results of high-

energy physics experiments are typically depicted as 

rich parameter spaces of up to 200 dimensions. Similar 

data spaces appear in many other applications, 

including environmental studies and astronomy. 

Unfortunately, the performance of traditional multi-

dimensional access methods [1] rapidly deteriorates as 

data dimensionality grows. As a result, access methods 

for high-dimensional data [2-9] continue to attract 

considerable scientific interest. 

It has already been observed that the space-partitioning 

strategy may have a profound effect on the retrieval 

performance in high-dimensional situations [2, 4, 10]. 

This observation gave rise to several retrieval 

techniques for high-dimensional data. For example, to 

improve the performance in high-dimensional spaces, 

the Pyramid Technique [2] statically partitions the d-

dimensional space into 2d pyramids that meet at the 

center of the universe. The Hybrid Tree [4] follows a 

different approach. As long as the splits of index nodes 

do not require downward propagation, whose negative 

consequences are particularly severe in high-

dimensional situations, the structure uses the space 

partition of KDB-trees [11] into non-overlapping 

regions. However, in order to prevent the downward 

cascading splits, it allows certain amount of overlap 

between the index regions [4].   

Some point access methods do not perform any 

partition of the multi-dimensional space. Typical 

examples are the point-transformation schemes that use 

a space-filling curve to map points in the d-dimensional 

space onto one-dimensional index keys [12]. However, 

in spaces with many dimensions, the complexity of the 

query transformation tends to be prohibitive. The 

problem is that space-filling curves distort the 

neighborhoods in the original space and the distortions 

become more pronounced as data dimensionality 

grows. The techniques that apply dimensionality 

reduction [13,14] are also appropriate only in 

environments with strongly correlated data. 

However, even if a space partition is applied, the 

contemporary partitioning strategies experience serious 

problems in high-dimensional situations. For example, 

to make sure that each axis is partitioned at least once, 

the traditional partitioning schemes would require 2
d
 

divisions (where, d is data dimensionality) [2], which 

could be much larger than the number of points. Since a 

division of an index region is typically performed only 

when the number of points in the region exceeds certain 

limit, for all realistic data-set sizes and high data 

dimensionality, certain dimensions of the index regions 

are not partitioned at all. As a result, these dimensions 

do not contribute anything to the selectivity of the 

structure. As the number of dimensions grows, more 

sides of the given query window are ignored [2]. 

Typical partitioning schemes may also suffer from the 

problems of dead space (indexed space that contains no 

data objects) [4] and region overlap (space covered by 

more than one index region) [15].   

This   study   introduces   a   class  of region-preserving  
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space transformation schemes for indexing high-

dimensional data. Just like the Pyramid Technique, the 

structures in this class employ two distinct layers. The 

higher layer, which statically partitions the space into 

index regions, maps multi-dimensional points and 

queries onto their one-dimensional counterparts. The 

lower layer organizes the resulting index keys into an 

exact-match retrieval structure, e.g. a B
+
-tree [16]. 

Virtually the only thing that changes across the 

structures in the class is the space-partitioning strategy. 

The partitioning schemes developed in this study, called 

� and �, allow configurable and overlap-free space 

partitions, making sure that every axis is partitioned 

several times. Therefore, each dimension of the space 

can effectively contribute to the search process. Just 

like the Pyramid Technique, � and � avoid another 

problem discussed in Berchtold [2], which is associated 

with access methods that strive to partition the space 

symmetrically (e.g., KDB-trees and R-trees [17]. The 

problem is that a small region query positioned 

somewhere in the middle of a high-dimensional space 

may force the traversal of the entire index. 

Even though there are similarities between � and � 

partitioning strategies and the Pyramid Technique, the 

proposed partitioning schemes have significant 

advantages over the later technique. Since the number 

and coordinates of index regions do not depend solely 

on data dimensionality and can be tuned to fit the data 

distribution, they are much more flexible than the 

Pyramid Technique. Since individual regions have 

rectangular shape, the calculations required to identify 

the regions that must be searched are simpler. Such 

regions also allow an effective way of dealing with the 

problem of dead space. In addition, � and � 

partitioning schemes reduce the magnitudes of other 

problems that accompany the Pyramid Technique, 

which include non-unique key values, false drops, loss 

of proximity, and the enlargement of queries. 

 

GAMMA AND THETA PARTITIONING 

 

Figure 1a illustrates a � partition of a 2-dimensional 

space. By placing a smaller rectangle in one of the 

corners of the space (let it be the low right corner for 

now), we carve out a portion of this space. The 

remaining subspace takes the form of a Greek � from 

which we derived the name. Since we still want 

rectilinear subdivision, this remaining � subspace must 

be divided further. The dashed line indicates one 

possible choice. The inner rectangle can be recursively 

carved in the same fashion to obtain as many � 

subspaces as desired.   

In Fig. 1b, the nested box appears in the origin (low left 

corner) of the space. This convention will be adopted in 

the rest of the study. In a 3-dimensional space, a � 

subspace (space inside one and outside its immediately 

enclosed box) is divided by a 2-dimensional plane lying 

on  one  side  of the inner box (by � subspace, we mean  

  

 

 

 

 

 

 

 

 

 

 

Fig. 1: Examples of � Space Partition 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Example of � Space Partition 

 

the space inside one and outside its immediately 

enclosed box. The resulting rectangular region is called 

a � region. The remaining part of the � subspace is 

further divided into two � regions by a 2-dimensional 

plane that lies on the second side of the inner box. The 

dividing planes can be selected in accord with any 

numbering of dimensions.  

In general, a d-dimensional universe is statically 

partitioned by several nested hyper-rectangles (NHRs), 

which we also call partition generators. Except for the 

outermost generator, which corresponds to the entire 

universe, every generator is enclosed by a larger one. 

The number of generators and their coordinates are 

selected statically. Except for the innermost subspace, 

each � subspace is further divided into d rectangular � 

regions, by means of d-1 hyper-planes lying on the 

outer sides of its inner generator. Unless some regions 

are “trivial”, there are exactly N = 1 + (m - 1) · d � 

regions in the space, where m is the number of 

generators. 

� partitioning is similar to �, except that the low 

endpoints of the nested generators can appear anywhere 

in the space, not just in the origin. As illustrated in Fig. 

2, this strategy carves out the opposite sides of each 

generator along individual dimensions, starting from 

the first dimension and proceeding further in the pre-

determined order of dimensions. With m generators, the 

number of resulting � regions is N = 1 + 2 · (m - 1) · d, 

unless some of the regions are trivial. Observe that the 

� partitioning strategy is just a generalization of �, in 

which the nested generators are allowed to float in the 

space. 

Given a set of m generators,  the  coordinates of regions  
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INPUT:  

m;     // number of nested generators 

d;     // data dimensionality  

Gen [1..m; low..high; 1..d]; // coordinates of all generators (must be nested and non-trivial) 

OUTPUT: 

Reg [1..N; low.high; 1..d]; // coordinates of all regions in the space partition 

METHOD: 

Reg[1] := Gen[1];   // Gen[1] is the innermost generator 

k := 2;     // temporary variable; counts the index regions 

for i := 2 to m do 

temp1 := temp := Gen[i]; // for each generator, initialize the temporary variables 

for j := 1 to d do  

// calculate the region on the low end of the current generator along axis j 

temp[high,j] := Gen[i-1,low,j]; Reg[k] := temp; 

// NOTE: in a Gamma partition, the region is trivial and will be ignored  

if Reg[k,low,j] � Reg[k,high,j]  then k := k + 1; 

// calculate the region on the high end of the current generator along axis j 

temp1[low,j] := Gen[i-1,high,j]; Reg[k] := temp1; 

// ignore the calculated region if it is trivial  

if Reg[k,low,j] � Reg[k, high, j] then k := k + 1; 

// now, prepare for the next iteration 

temp1[low,j] := temp[low,j] := Gen[i-1,low,j]; 

temp1[high,j] := temp[high,j] := Gen[i-1,high,j]; 

end for  

temp[high,d] := Gen[i-1,low,d]; Reg[k] := temp; 

if ∀c=1..d Reg[k,low,c] � Reg[k,high,c]  then k := k + 1; 

temp1[high,d] := Gen[i-1,high,d]; Reg[k] := temp1;  

if ∀c=1..d Reg[k,low,c] � Reg[k,high,c] then k := k + 1; 

end for 

 

Fig. 3: Algorithm for Computing Regions in a � or � Space Partition 
 

 

INPUT:  

m;     // number of nested generators 

d;     // data dimensionality  

OUTPUT: 

Gen [1..m; low..high; 1..d]; // coordinates of all generators 

METHOD: 

Gen[m,low] := <0, 0, …, 0>;  // low endpoint of the universe (m-th generator) 

Gen[m,high] := <1, 1, …, 1>;  // high endpoint of the universe 

if Gamma partitioning   // NOTE: all regions (either Gamma or Theta) will be non-trivial 

then  N := 1 + (m - 1) · d; 

else N := 1 + 2 · (m - 1) · d;  

V := 1;    // volume of the universe 

Vr := V / N;   // volume of each individual region 

for i := m-1 downto 1 do 

temp := Vr / V; 

for j := 1 to d do 

Gen[i,high,j] := Gen[i+1,high,] - temp · (Gen[i+1,high,j] - Gen[i+1,low,j]); 

if Gamma partitioning 

then  Gen[i,low,j] := 0; 

else Gen[i,low,j] := Gen[i+1,low,j] + (Gen[i+1,high,j] - Gen[i,high,j]); 

temp := temp · (Gen[i+1,high,j] - Gen[i+1, low, j]) / (Gen[i,high,j] - Gen[i,low,j]); 

end for 

V := (Gen[i,high,1] - Gen[i,low,1]) · … · (Gen[i,high,d] - Gen[i,low,d]); 

end for 
 

Fig. 4: Algorithm for Computing Generators that Induce � or � Regions of Equal Size 
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Fig. 5: An Illustration of Live � Regions and their 

Slicing 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Alternative Schemes for � Regions Numbering 

and Projection 

 

in a � or � space partition can be calculated using the 

generalized algorithm of Fig. 3. Our assumption for the  

�  space  partition  is  that  the low endpoint of each 

generator lies in the origin of the space, whose 

coordinates are 0. The procedure starts from the 

innermost generator, which becomes a region by itself. 

Then it goes into a loop which, for every generator, 

calculates the regions lying in the � or � subspace 

formed by this and the immediately enclosed NHR. 

Depending on whether the given generators induce a � 

or � space partition, this will create at most d or 2d 

regions in the subspace, respectively. 

The algorithm is designed so that all trivial index 

regions are eliminated. By trivial, we mean a 

rectangular region whose low and high endpoint along a 

certain dimension are the same. In the d-dimensional 

space, such a region appears as just a hyper-plane of 

fewer than d dimensions. Since the points of that region 

also lie on the boundaries of one or more non-trivial 

regions, the trivial region can be safely eliminated. 

Provided the generators are themselves non-trivial as 

well as nested, the test for trivial regions is fairly simple 

(the algorithm of Fig. 3). 

Figure 4 gives the algorithm calculating the coordinates 

of generators that induce a space partition into � (�) 

regions of equal size. For simplicity, the algorithm 

assumes a normalized d-dimensional universe [0,1]
d
. 

The procedure starts with the outermost generator and, 

based on the coordinates of the given generator and the 

calculated volume Vr of a single � (�) region, 

computes the coordinates of the enclosed generators in 

an iterative fashion.  

Even though � partitioning can be regarded as a special 

case of �, when the space partitions are induced by the 

algorithm of Fig. 4, � and � become two different 

partitioning strategies with distinct properties. As we 

will later see, � is better suited for more uniform data 

distributions, but � tends to be more appropriate for 

highly skewed data in heavily sparse spaces. Different 

types of queries may also favor one or the other 

partitioning strategy.  

When the data are skewed, large portions of the given 

space are typically empty (contain no objects). 

Therefore, the canonical � and � space partitions as 

described above would incur a significant amount of 

dead space. In this regard, they would be no different 

than the space partition of the Pyramid Technique. 

However, in contrast to the Pyramid Technique, the 

rectilinear � and � partitioning enables a relatively 

simple way of addressing the problem. 

In order to eliminate from inspection a potentially 

significant amount of dead space, for each � or � 

region, one should dynamically maintain the minimum 

bounding hyper-rectangle enclosing all points that fall 

in the region. We call this the live region. Depending on 

the data distribution, one may also want to partition 

every region along different dimensions into, possibly, 

several slices. Assuming a static data set, this can be 

done using a rectilinear division of each live region 

along certain dimensions to obtain a desired number of 

slices in proportion to the number of points falling in 

the � or � region. Figure 5 illustrates the live regions 

and their slicing in a � partitioned 2-dimensional space. 

If the data set is dynamic, slicing must be performed on 

� or � regions rather than their live portions. 

 

Region-Preserving Space Transformations: A multi-

dimensional retrieval structure must be equipped to do 

more than just the partitioning of space. How the 

structure maps multi-dimensional data to locations in 

storage is also an important issue. Since our focus here 

is on the effects of the partitioning strategy in high-

dimensional spaces, we deliberately choose an 

organization that decouples the space partitioning from 

the storage aspects of the retrieval scheme. For the 

purposes of this study, we will ignore the third 

important aspect of access structures for high-

dimensional data, which is data compression [8]. 

As in the Pyramid Technique, the decoupling of the 

space partitioning and storage concerns is achieved 

through a form of region-preserving space 

transformation (RPST), which maps regions and 

queries in the multi-dimensional space onto the 

segments of a linear (one-dimensional) space.  
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Fig. 7: The Effects of Various Parameters on the Performance of �s and �s Techniques 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Observed Performance of the �s,  �s and Pyramid Techniques for Simulated Data Distributions 
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Fig. 9: Observed Performance of the �s,  �s and Pyramid Techniques on a Set of Real Data   

 

Generalizing this idea, we derive an entire class of 

RPST retrieval schemes. Virtually the only thing that 

distinguishes   individual  structures  in  this  class is the  

space-partitioning strategy. In the rest of the study, we 

restrict our attention to the Pyramid Technique and two 

other RPST schemes, called the �S and �S Techniques, 

which are based on � and � partitioning.  

Conceptually, each RPST scheme employs two distinct 

layers. The higher layer statically partitions the given 

space into a certain number of index regions (or slices, 

if region slicing is applied), whose descriptors are 

organized into a list maintained in main memory. This 

layer also performs an explicit transformation of points 

and queries onto their one-dimensional counterparts. 

The lower layer organizes the resulting key values into 

a regular B
+
-tree structure. The index is searched using 

the one-dimensional segments generated by the query 

transformation. 

As in the Pyramid Technique, the points of every index 

region (slice) are projected onto a selected dimension 

(projection axis). In the Pyramid Technique, the central 

line of the pyramid connecting its top with the center of 

its base serves as the projection axis. In �S and �S, the 

projection axis is one of the sides of the given region 

(slice). In all cases, the position of a point in the linear 

space is determined by the unique number of the region 

(slice) containing the point and the projection of the 

point  along the selected axis. The two numbers form an  

index key, which is inserted into the B
+
-tree along with 

the original multi-dimensional point. Note that the 

index may implicitly partition every region along the 

projection axis into possibly several segments, each of 

which corresponds to a leaf page of the underlying B
+
-

tree. 

The numbering of regions and the choice of the 

projection axis may influence the performance of an 

RPST scheme. Assuming the � space partition, 

potentially viable alternatives are illustrated in Figure 6. 

Analogous numbering and projection schemes can be 

used with � partition. Figure 6 assumes that x is the 

first and y the second dimension. 

With respect to the numbering of index regions, one can 

distinguish generator-wise ordering (G-ordering), in 

which all regions of a generator have consecutive 

numbers, from region-wise ordering (R-ordering), in 

which the corresponding regions of all generators have 

consecutive numbers. In Figure 6, the numbers 

appearing in the lower left corners of the � regions 

correspond to the R-ordering scheme. With regard to 

the choice of the projection axis for each region, one 

can distinguish edge-wise projection (E-projection), in 

which the points are projected onto the first longest 

edge of the region, from axis-wise projection (A-

projection), in which the points are projected onto the 

dimension whose division resulted in the creation of the 

given   region.   If   live   regions   and  their  slicing are  
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applied, each slice can be projected in an analogous 

fashion. All slices of a single region, if any, are 

assigned consecutive numbers.   

The search procedure must first determine the regions 

(or perhaps slices, if slicing is applied) that overlap the 

query. For each such region (slice), the procedure must 

construct the interval of the query window that overlaps 

the region (slice) along its projection axis. These 

intervals are used to search the underlying B
+
-tree. The 

visited leaf pages represent the segments of the 

projected regions (slices) that overlap the query. 

The above logic can be implemented in two ways. The 

first option uses the standard B
+
-tree interfaces 

FetchKey and GetNext, and requires no modification of 

the B
+
-tree code. For each interval of the linear space 

produced by the query transformation, the procedure 

performs a range search through the B
+
-tree using the 

low and high endpoint of the interval as the fetch and 

stop point, respectively. However, since processing a 

single query may require multiple accesses to the same 

index page, this arrangement leads to more page 

accesses than necessary. 

The second implementation option solves the later 

problem, but requires a modification of the existing B
+
-

tree code. The goal is to process each query in the 

manner of the KDB-tree and R-tree variants, making 

sure that no index page is accessed more than once. The 

procedure scans the root page with all intervals 

produced by the query transformation, identifying all 

pages at the level below that need to be accessed. If 

these are interior pages, they are processed in the same 

way. Whenever a leaf page is accessed, the procedure 

selects all resident points that fall within the given 

query. The rest of the procedure involves some simple 

optimizations designed to reduce the computational 

overhead of scanning an index page.  

The RPST schemes have one important advantage in 

high-dimensional spaces. Since the transformation 

produces fairly short index keys whose size is fixed for 

all dimensionalities, the underlying B
+
-tree has few 

pages in the interior levels. This, in turn, contributes to 

the overall reduction of page accesses per query. 

Unfortunately, the clear separation of space-partitioning 

and storage concerns does not come without certain 

problems. As a result of the static space partition, the 

dynamic changes in the volume and distribution of data 

may require a re-configuration of the space and the 

rebuilding of the B
+
-tree. Moreover, the transformation 

of data and queries onto their one-dimensional 

counterparts incurs a loss of information that can result 

in an increased number of page accesses at the leaf 

level of the B
+
-tree.  

However, �S and �S have several advantages over the 

Pyramid Technique. Since the number and coordinates 

of NHRs are independent of data dimensionality and 

can be selected in accord with the actual data 

distribution, � and � partitioning strategies are more 

flexible than the Pyramid Technique. They also allow 

an effective way of dealing with the problem of dead 

space. While these schemes do not completely 

eliminate other problems of the Pyramid Technique, 

with the appropriate space partitions, the magnitudes of 

these problems are significantly reduced. In particular, 

� and � space partitions create many smaller index 

regions, which minimize implicit enlargement of 

queries that is rather severe with the Pyramid 

Technique. 

 

EXPERIMENTAL RESULTS 

  

An extensive set of experiments was performed to 

compare the retrieval performance of the �, �S and 

Pyramid Techniques in different scenarios. The 

experiments were conducted over both simulated and 

real data sets of different size and data dimensionality, 

and for different types of queries. Except for the space-

partitioning strategy, the three techniques were 

implemented in the same way. Each leaf-level entry of 

the underlying B
+
-tree contained a fixed-size key value 

and the multi-dimensional point. The interior entries 

represented <key, pointer> pairs, where pointer was a 

4-byte value indicating a lower-level node. In order to 

guard against the possibility of identical key values 

whose number exceeds the page capacity, to each index 

key, we appended a unique 4-byte ID of the data point. 

The experiments were conducted on three Pentium PCs, 

each with a single (either 1GHz or 1.5GHz) CPU and a 

SCSI disk drive. 

 

Configuring the GammaS and ThetaS Structures: 
The first set of experiments was conducted to observe 

the effects of various parameters on the retrieval 

performance of �S and �S Techniques. In these 

experiments, every coordinate of a point was 

represented as a 4-byte integer and the page size was set 

to 2K bytes. Data dimensionality was varied between 2 

and 48. Each space was configured using the algorithm 

of Figure 4, which induced � or � regions of equal size. 

Then, each d-dimensional structure with 100,000 

uniformly distributed points was searched with 1,000 

region queries. The query generation derived each side 

of a query window from a pair of two random points 

(2RP queries). 

Figures 7a and b show the effects of the number of 

generators on the performance of �S and �S 

Techniques, respectively. In all cases, the worst 

performance was observed with only 2 generators. 

Overall, the best performance of �S and �S was 

observed with about 16 and 12 generators, respectively.  

Since � partitioning strategy creates almost twice as 

many index regions as �, the �S technique is more 

sensitive to the variances in the number of partition 

generators than �S. However, as page capacity 

increased, both �S and �S became less sensitive to the 

actual configuration of space. 
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Figures 7c and d show the performance of the two 

techniques with alternative region numbering and 

projection schemes. In the Fig. 7, G and R stand for G- 

and R-ordering, while E and A stand for E- and A-

projection, respectively (Fig 6). Thus, GA denotes a 

technique with generator-wise numbering and axis-wise 

projection, whereas RE denotes a technique with 

region-wise numbering and edge-wise projection. 

While the region numbering had little impact on the 

performance of either technique (in the experiments, R-

ordering was somewhat better than G-ordering), the 

impact of the projection scheme was significant. In 

high-dimensional spaces, the performance of the two 

techniques with the edge-wise projection was about 

twice as good as with the axis-wise projection. In other 

experiments presented in this study, we adopted R-

ordering and edge-wise projection for both the �S and 

�S Technique. 

 

Synthetic Data: Figure 8 compares the performance of 

the �S, �S and Pyramid Techniques for four synthetic 

data distributions and 1,000 2RP queries. Each d-

dimensional structure with 8K pages had 1,000,000 

points with 2-byte coordinates. As before, 

dimensionality was varied between 2 and 48. The � and 

� space partitions with live regions and their slicing 

were induced with 30 and 20 generators, respectively. 

The number Nr of slices for each � or � region r was 

calculated as Nr = max{1, �nr/na � , where nr and na 

were the number of points falling in the region r and the 

average number of points per region, respectively (Nr = 

1 means no slicing of the region r). 

Figures 8a-c show the observed average number of 

accessed pages per 2RP query for some “mildly” 

skewed data distributions consisting of: (a) one cluster 

(fixed 25% volume of the space) placed in the center of 

the universe; (b) one cluster (fixed 25% volume) placed 

in the origin; and (c) three clusters (10% volume each) 

placed in the origin, center, and the corner of the space 

that contains the highest value along the first axis. In 

each scenario, �S and �S outperformed the Pyramid 

Technique. 

In the above scenarios, the impact of live � and � 

regions was relatively minor. But, Fig. 8d demonstrates 

their effectiveness for a heavily skewed data 

distribution. All points were placed in a hyper-cube 

centered in the middle of the space, whose each side 

was restricted to exactly 50% of the corresponding side 

of the universe. Relative to the entire space, the volume 

of the hyper-cube reduced rapidly as data 

dimensionality increased. As a result, the Pyramid 

Technique incurred a significant amount of dead space. 

 

Real Data: Perhaps the most instructive are the results 
of our experiments with real data. The data set 
represented a table with 1,000,000 records, which was 
extrapolated  from a  database   of  a local company. As  
before, the page size was 8K bytes. 

In these experiments, we measured the performance of 

the �S and �S Techniques both with and without live 

regions and their slicing. � and � space partitions were 

obtained using the algorithm of Figures 4 with 16 and 

12 generators, respectively. No attempt was made to 

optimize the space partitions for the given data 

distribution. The performance of every structure (the 

average number of accessed pages per query) was 

measured for data sets with 1/4M, 2/4M, 3/4M and 1M 

points and for two types of queries (1,000 queries of 

each type) with randomly chosen center. The queries 

were relatively small and restricted to at most 10% and 

1% of the total space, respectively. 

Figures 9a and b show the results. Even without live 

regions and slicing, �S and �S outperformed the 

Pyramid Technique. However, with live regions and 

slicing, the performance improvements over the 

Pyramid Technique were much more significant. Since 

the performance curves of �S and �S with live regions 

and slicing appear to lie on the horizontal axes of the 

graphs, Figures 9c and 9d show how these curves 

actually look like. 

 

DISCUSSION 

 

In this study, two novel partitioning strategies, called � 

and � were developed. Each of these strategies applies 

an asymmetric subdivision of individual dimensions, 

making sure that every axis is divided several times. As 

a result, every dimension of data can effectively 

contribute to the search process. Just like the Pyramid 

Technique, these strategies avoid both the exhaustive 

search and region overlap. However, unlike the 

Pyramid Technique, the � and � partitioning strategies 

allow highly configurable partitions of space that can fit 

the actual data distribution. They also enable effective 

ways of dealing with the other problems of the Pyramid 

Technique, which include the loss of proximity, the 

enlarged queries, and dead space.  

The proposed partitioning strategies were used to 

develop two new region-preserving space 

transformation schemes for indexing high-dimensional 

data, called the �S and �S Techniques. By reusing an 

exact-match indexing mechanism along with its 

concurrency and recovery features, �S and �S enable 

relatively simple integration of advanced multi-

dimensional capabilities in complex transactional 

environments.  

The experimental evidence, gathered on both simulated 

and real data sets, demonstrates the superiority of �S 

and �S over the Pyramid Technique, which also uses 

static partitioning. As data distribution becomes more 

skewed, the performance improvements over the 

Pyramid Technique become more pronounced. � 

partitioning is generally better than � for more uniform 

data   distributions   and   when   queries  tend to clutter  



J .Computer Sci., 1 (1): 89-97, 2005 

 97 

around the middle of the space. � partitioning tends to 

be more appropriate in special scenarios that frequently 

appear in practice.   

The proposed partitioning strategies also have direct 

application in supporting similarity (k-nearest neighbor) 

searches. Bit-sliced indexes, such as the VA-file [9], are 

often used for this purpose. However, these indexes 

employ a grid-like space partition into rectangular cells, 

whose number grows exponentially with data 

dimensionality. Since the � and � partitioning 

strategies require a limited number of divisions to split 

each axes multiple times, they can enable a faster and 

more accurate process of similarity searching with a 

more compact indexing structure than the VA-file. 

Other applications of � and � partitioning include 

retrieval of data on tertiary storage [18] and clustering 

large sets of high-dimensional data. In the later context, 

they can replace typical grid-like space partitions 

frequently used in contemporary clustering algorithms. 
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