
Journal of Computer Science 1 (1): 89-97, 2005

ISSN 1549-3636

© Science Publications, 2005

89

A Class of Region-preserving Space Transformations for

Indexing High-dimensional Data

Ratko Orlandic and Jack Lukaszuk

Department of Computer Science, Illinois Institute of Technology

10 West 31st Street, 236SB, Chicago, IL 60616

Abstract: This study introduces a class of region preserving space transformation (RPST) schemes for

accessing high-dimensional data. The access methods in this class differ with respect to their space-

partitioning strategies. The study develops two new static partitioning schemes that can split each

dimension of the space within linear space complexity. They also support an effective mechanism for

handling skewed data in heavily sparse spaces. The techniques are experimentally compared to the

Pyramid Technique, which is another example of static partitioning designed for high-dimensional

data. On real high-dimensional data, the proposed RPST schemes outperform the Pyramid Technique

by a significant margin.

Key words: Database Systems, Access Methods, Space-partitioning Strategy, Data Dimensionality

INTRODUCTION

As data availability has increased, so has the

dimensionality of problems to be solved. Objects of

multimedia applications are usually mapped to feature

vectors indexed by a multi-dimensional database. Since

typical feature vectors have numerous components, the

resulting data are characterized by very high

dimensionality. High-dimensional data also pose major

challenges for data-mining algorithms and many

scientific applications. For example, the results of high-

energy physics experiments are typically depicted as

rich parameter spaces of up to 200 dimensions. Similar

data spaces appear in many other applications,

including environmental studies and astronomy.

Unfortunately, the performance of traditional multi-

dimensional access methods [1] rapidly deteriorates as

data dimensionality grows. As a result, access methods

for high-dimensional data [2-9] continue to attract

considerable scientific interest.

It has already been observed that the space-partitioning

strategy may have a profound effect on the retrieval

performance in high-dimensional situations [2, 4, 10].

This observation gave rise to several retrieval

techniques for high-dimensional data. For example, to

improve the performance in high-dimensional spaces,

the Pyramid Technique [2] statically partitions the d-

dimensional space into 2d pyramids that meet at the

center of the universe. The Hybrid Tree [4] follows a

different approach. As long as the splits of index nodes

do not require downward propagation, whose negative

consequences are particularly severe in high-

dimensional situations, the structure uses the space

partition of KDB-trees [11] into non-overlapping

regions. However, in order to prevent the downward

cascading splits, it allows certain amount of overlap

between the index regions [4].

Some point access methods do not perform any

partition of the multi-dimensional space. Typical

examples are the point-transformation schemes that use

a space-filling curve to map points in the d-dimensional

space onto one-dimensional index keys [12]. However,

in spaces with many dimensions, the complexity of the

query transformation tends to be prohibitive. The

problem is that space-filling curves distort the

neighborhoods in the original space and the distortions

become more pronounced as data dimensionality

grows. The techniques that apply dimensionality

reduction [13,14] are also appropriate only in

environments with strongly correlated data.

However, even if a space partition is applied, the

contemporary partitioning strategies experience serious

problems in high-dimensional situations. For example,

to make sure that each axis is partitioned at least once,

the traditional partitioning schemes would require 2
d

divisions (where, d is data dimensionality) [2], which

could be much larger than the number of points. Since a

division of an index region is typically performed only

when the number of points in the region exceeds certain

limit, for all realistic data-set sizes and high data

dimensionality, certain dimensions of the index regions

are not partitioned at all. As a result, these dimensions

do not contribute anything to the selectivity of the

structure. As the number of dimensions grows, more

sides of the given query window are ignored [2].

Typical partitioning schemes may also suffer from the

problems of dead space (indexed space that contains no

data objects) [4] and region overlap (space covered by

more than one index region) [15].

This study introduces a class of region-preserving

J .Computer Sci., 1 (1): 89-97, 2005

 90

space transformation schemes for indexing high-

dimensional data. Just like the Pyramid Technique, the

structures in this class employ two distinct layers. The

higher layer, which statically partitions the space into

index regions, maps multi-dimensional points and

queries onto their one-dimensional counterparts. The

lower layer organizes the resulting index keys into an

exact-match retrieval structure, e.g. a B
+
-tree [16].

Virtually the only thing that changes across the

structures in the class is the space-partitioning strategy.

The partitioning schemes developed in this study, called

� and �, allow configurable and overlap-free space

partitions, making sure that every axis is partitioned

several times. Therefore, each dimension of the space

can effectively contribute to the search process. Just

like the Pyramid Technique, � and � avoid another

problem discussed in Berchtold [2], which is associated

with access methods that strive to partition the space

symmetrically (e.g., KDB-trees and R-trees [17]. The

problem is that a small region query positioned

somewhere in the middle of a high-dimensional space

may force the traversal of the entire index.

Even though there are similarities between � and �

partitioning strategies and the Pyramid Technique, the

proposed partitioning schemes have significant

advantages over the later technique. Since the number

and coordinates of index regions do not depend solely

on data dimensionality and can be tuned to fit the data

distribution, they are much more flexible than the

Pyramid Technique. Since individual regions have

rectangular shape, the calculations required to identify

the regions that must be searched are simpler. Such

regions also allow an effective way of dealing with the

problem of dead space. In addition, � and �

partitioning schemes reduce the magnitudes of other

problems that accompany the Pyramid Technique,

which include non-unique key values, false drops, loss

of proximity, and the enlargement of queries.

GAMMA AND THETA PARTITIONING

Figure 1a illustrates a � partition of a 2-dimensional

space. By placing a smaller rectangle in one of the

corners of the space (let it be the low right corner for

now), we carve out a portion of this space. The

remaining subspace takes the form of a Greek � from

which we derived the name. Since we still want

rectilinear subdivision, this remaining � subspace must

be divided further. The dashed line indicates one

possible choice. The inner rectangle can be recursively

carved in the same fashion to obtain as many �

subspaces as desired.

In Fig. 1b, the nested box appears in the origin (low left

corner) of the space. This convention will be adopted in

the rest of the study. In a 3-dimensional space, a �

subspace (space inside one and outside its immediately

enclosed box) is divided by a 2-dimensional plane lying

on one side of the inner box (by � subspace, we mean

Fig. 1: Examples of � Space Partition

Fig. 2: Example of � Space Partition

the space inside one and outside its immediately

enclosed box. The resulting rectangular region is called

a � region. The remaining part of the � subspace is

further divided into two � regions by a 2-dimensional

plane that lies on the second side of the inner box. The

dividing planes can be selected in accord with any

numbering of dimensions.

In general, a d-dimensional universe is statically

partitioned by several nested hyper-rectangles (NHRs),

which we also call partition generators. Except for the

outermost generator, which corresponds to the entire

universe, every generator is enclosed by a larger one.

The number of generators and their coordinates are

selected statically. Except for the innermost subspace,

each � subspace is further divided into d rectangular �

regions, by means of d-1 hyper-planes lying on the

outer sides of its inner generator. Unless some regions

are “trivial”, there are exactly N = 1 + (m - 1) · d �

regions in the space, where m is the number of

generators.

� partitioning is similar to �, except that the low

endpoints of the nested generators can appear anywhere

in the space, not just in the origin. As illustrated in Fig.

2, this strategy carves out the opposite sides of each

generator along individual dimensions, starting from

the first dimension and proceeding further in the pre-

determined order of dimensions. With m generators, the

number of resulting � regions is N = 1 + 2 · (m - 1) · d,

unless some of the regions are trivial. Observe that the

� partitioning strategy is just a generalization of �, in

which the nested generators are allowed to float in the

space.

Given a set of m generators, the coordinates of regions

J .Computer Sci., 1 (1): 89-97, 2005

 91

INPUT:

m; // number of nested generators

d; // data dimensionality

Gen [1..m; low..high; 1..d]; // coordinates of all generators (must be nested and non-trivial)

OUTPUT:

Reg [1..N; low.high; 1..d]; // coordinates of all regions in the space partition

METHOD:

Reg[1] := Gen[1]; // Gen[1] is the innermost generator

k := 2; // temporary variable; counts the index regions

for i := 2 to m do

temp1 := temp := Gen[i]; // for each generator, initialize the temporary variables

for j := 1 to d do

// calculate the region on the low end of the current generator along axis j

temp[high,j] := Gen[i-1,low,j]; Reg[k] := temp;

// NOTE: in a Gamma partition, the region is trivial and will be ignored

if Reg[k,low,j] � Reg[k,high,j] then k := k + 1;

// calculate the region on the high end of the current generator along axis j

temp1[low,j] := Gen[i-1,high,j]; Reg[k] := temp1;

// ignore the calculated region if it is trivial

if Reg[k,low,j] � Reg[k, high, j] then k := k + 1;

// now, prepare for the next iteration

temp1[low,j] := temp[low,j] := Gen[i-1,low,j];

temp1[high,j] := temp[high,j] := Gen[i-1,high,j];

end for

temp[high,d] := Gen[i-1,low,d]; Reg[k] := temp;

if ∀c=1..d Reg[k,low,c] � Reg[k,high,c] then k := k + 1;

temp1[high,d] := Gen[i-1,high,d]; Reg[k] := temp1;

if ∀c=1..d Reg[k,low,c] � Reg[k,high,c] then k := k + 1;

end for

Fig. 3: Algorithm for Computing Regions in a � or � Space Partition

INPUT:

m; // number of nested generators

d; // data dimensionality

OUTPUT:

Gen [1..m; low..high; 1..d]; // coordinates of all generators

METHOD:

Gen[m,low] := <0, 0, …, 0>; // low endpoint of the universe (m-th generator)

Gen[m,high] := <1, 1, …, 1>; // high endpoint of the universe

if Gamma partitioning // NOTE: all regions (either Gamma or Theta) will be non-trivial

then N := 1 + (m - 1) · d;

else N := 1 + 2 · (m - 1) · d;

V := 1; // volume of the universe

Vr := V / N; // volume of each individual region

for i := m-1 downto 1 do

temp := Vr / V;

for j := 1 to d do

Gen[i,high,j] := Gen[i+1,high,] - temp · (Gen[i+1,high,j] - Gen[i+1,low,j]);

if Gamma partitioning

then Gen[i,low,j] := 0;

else Gen[i,low,j] := Gen[i+1,low,j] + (Gen[i+1,high,j] - Gen[i,high,j]);

temp := temp · (Gen[i+1,high,j] - Gen[i+1, low, j]) / (Gen[i,high,j] - Gen[i,low,j]);

end for

V := (Gen[i,high,1] - Gen[i,low,1]) · … · (Gen[i,high,d] - Gen[i,low,d]);

end for

Fig. 4: Algorithm for Computing Generators that Induce � or � Regions of Equal Size

J .Computer Sci., 1 (1): 89-97, 2005

 92

Fig. 5: An Illustration of Live � Regions and their

Slicing

Fig. 6: Alternative Schemes for � Regions Numbering

and Projection

in a � or � space partition can be calculated using the

generalized algorithm of Fig. 3. Our assumption for the

� space partition is that the low endpoint of each

generator lies in the origin of the space, whose

coordinates are 0. The procedure starts from the

innermost generator, which becomes a region by itself.

Then it goes into a loop which, for every generator,

calculates the regions lying in the � or � subspace

formed by this and the immediately enclosed NHR.

Depending on whether the given generators induce a �

or � space partition, this will create at most d or 2d

regions in the subspace, respectively.

The algorithm is designed so that all trivial index

regions are eliminated. By trivial, we mean a

rectangular region whose low and high endpoint along a

certain dimension are the same. In the d-dimensional

space, such a region appears as just a hyper-plane of

fewer than d dimensions. Since the points of that region

also lie on the boundaries of one or more non-trivial

regions, the trivial region can be safely eliminated.

Provided the generators are themselves non-trivial as

well as nested, the test for trivial regions is fairly simple

(the algorithm of Fig. 3).

Figure 4 gives the algorithm calculating the coordinates

of generators that induce a space partition into � (�)

regions of equal size. For simplicity, the algorithm

assumes a normalized d-dimensional universe [0,1]
d
.

The procedure starts with the outermost generator and,

based on the coordinates of the given generator and the

calculated volume Vr of a single � (�) region,

computes the coordinates of the enclosed generators in

an iterative fashion.

Even though � partitioning can be regarded as a special

case of �, when the space partitions are induced by the

algorithm of Fig. 4, � and � become two different

partitioning strategies with distinct properties. As we

will later see, � is better suited for more uniform data

distributions, but � tends to be more appropriate for

highly skewed data in heavily sparse spaces. Different

types of queries may also favor one or the other

partitioning strategy.

When the data are skewed, large portions of the given

space are typically empty (contain no objects).

Therefore, the canonical � and � space partitions as

described above would incur a significant amount of

dead space. In this regard, they would be no different

than the space partition of the Pyramid Technique.

However, in contrast to the Pyramid Technique, the

rectilinear � and � partitioning enables a relatively

simple way of addressing the problem.

In order to eliminate from inspection a potentially

significant amount of dead space, for each � or �

region, one should dynamically maintain the minimum

bounding hyper-rectangle enclosing all points that fall

in the region. We call this the live region. Depending on

the data distribution, one may also want to partition

every region along different dimensions into, possibly,

several slices. Assuming a static data set, this can be

done using a rectilinear division of each live region

along certain dimensions to obtain a desired number of

slices in proportion to the number of points falling in

the � or � region. Figure 5 illustrates the live regions

and their slicing in a � partitioned 2-dimensional space.

If the data set is dynamic, slicing must be performed on

� or � regions rather than their live portions.

Region-Preserving Space Transformations: A multi-

dimensional retrieval structure must be equipped to do

more than just the partitioning of space. How the

structure maps multi-dimensional data to locations in

storage is also an important issue. Since our focus here

is on the effects of the partitioning strategy in high-

dimensional spaces, we deliberately choose an

organization that decouples the space partitioning from

the storage aspects of the retrieval scheme. For the

purposes of this study, we will ignore the third

important aspect of access structures for high-

dimensional data, which is data compression [8].

As in the Pyramid Technique, the decoupling of the

space partitioning and storage concerns is achieved

through a form of region-preserving space

transformation (RPST), which maps regions and

queries in the multi-dimensional space onto the

segments of a linear (one-dimensional) space.

J .Computer Sci., 1 (1): 89-97, 2005

 93

Fig. 7: The Effects of Various Parameters on the Performance of �s and �s Techniques

Fig. 8: Observed Performance of the �s, �s and Pyramid Techniques for Simulated Data Distributions

J .Computer Sci., 1 (1): 89-97, 2005

 94

Fig. 9: Observed Performance of the �s, �s and Pyramid Techniques on a Set of Real Data

Generalizing this idea, we derive an entire class of

RPST retrieval schemes. Virtually the only thing that

distinguishes individual structures in this class is the

space-partitioning strategy. In the rest of the study, we

restrict our attention to the Pyramid Technique and two

other RPST schemes, called the �S and �S Techniques,

which are based on � and � partitioning.

Conceptually, each RPST scheme employs two distinct

layers. The higher layer statically partitions the given

space into a certain number of index regions (or slices,

if region slicing is applied), whose descriptors are

organized into a list maintained in main memory. This

layer also performs an explicit transformation of points

and queries onto their one-dimensional counterparts.

The lower layer organizes the resulting key values into

a regular B
+
-tree structure. The index is searched using

the one-dimensional segments generated by the query

transformation.

As in the Pyramid Technique, the points of every index

region (slice) are projected onto a selected dimension

(projection axis). In the Pyramid Technique, the central

line of the pyramid connecting its top with the center of

its base serves as the projection axis. In �S and �S, the

projection axis is one of the sides of the given region

(slice). In all cases, the position of a point in the linear

space is determined by the unique number of the region

(slice) containing the point and the projection of the

point along the selected axis. The two numbers form an

index key, which is inserted into the B
+
-tree along with

the original multi-dimensional point. Note that the

index may implicitly partition every region along the

projection axis into possibly several segments, each of

which corresponds to a leaf page of the underlying B
+
-

tree.

The numbering of regions and the choice of the

projection axis may influence the performance of an

RPST scheme. Assuming the � space partition,

potentially viable alternatives are illustrated in Figure 6.

Analogous numbering and projection schemes can be

used with � partition. Figure 6 assumes that x is the

first and y the second dimension.

With respect to the numbering of index regions, one can

distinguish generator-wise ordering (G-ordering), in

which all regions of a generator have consecutive

numbers, from region-wise ordering (R-ordering), in

which the corresponding regions of all generators have

consecutive numbers. In Figure 6, the numbers

appearing in the lower left corners of the � regions

correspond to the R-ordering scheme. With regard to

the choice of the projection axis for each region, one

can distinguish edge-wise projection (E-projection), in

which the points are projected onto the first longest

edge of the region, from axis-wise projection (A-

projection), in which the points are projected onto the

dimension whose division resulted in the creation of the

given region. If live regions and their slicing are

J .Computer Sci., 1 (1): 89-97, 2005

 95

applied, each slice can be projected in an analogous

fashion. All slices of a single region, if any, are

assigned consecutive numbers.

The search procedure must first determine the regions

(or perhaps slices, if slicing is applied) that overlap the

query. For each such region (slice), the procedure must

construct the interval of the query window that overlaps

the region (slice) along its projection axis. These

intervals are used to search the underlying B
+
-tree. The

visited leaf pages represent the segments of the

projected regions (slices) that overlap the query.

The above logic can be implemented in two ways. The

first option uses the standard B
+
-tree interfaces

FetchKey and GetNext, and requires no modification of

the B
+
-tree code. For each interval of the linear space

produced by the query transformation, the procedure

performs a range search through the B
+
-tree using the

low and high endpoint of the interval as the fetch and

stop point, respectively. However, since processing a

single query may require multiple accesses to the same

index page, this arrangement leads to more page

accesses than necessary.

The second implementation option solves the later

problem, but requires a modification of the existing B
+
-

tree code. The goal is to process each query in the

manner of the KDB-tree and R-tree variants, making

sure that no index page is accessed more than once. The

procedure scans the root page with all intervals

produced by the query transformation, identifying all

pages at the level below that need to be accessed. If

these are interior pages, they are processed in the same

way. Whenever a leaf page is accessed, the procedure

selects all resident points that fall within the given

query. The rest of the procedure involves some simple

optimizations designed to reduce the computational

overhead of scanning an index page.

The RPST schemes have one important advantage in

high-dimensional spaces. Since the transformation

produces fairly short index keys whose size is fixed for

all dimensionalities, the underlying B
+
-tree has few

pages in the interior levels. This, in turn, contributes to

the overall reduction of page accesses per query.

Unfortunately, the clear separation of space-partitioning

and storage concerns does not come without certain

problems. As a result of the static space partition, the

dynamic changes in the volume and distribution of data

may require a re-configuration of the space and the

rebuilding of the B
+
-tree. Moreover, the transformation

of data and queries onto their one-dimensional

counterparts incurs a loss of information that can result

in an increased number of page accesses at the leaf

level of the B
+
-tree.

However, �S and �S have several advantages over the

Pyramid Technique. Since the number and coordinates

of NHRs are independent of data dimensionality and

can be selected in accord with the actual data

distribution, � and � partitioning strategies are more

flexible than the Pyramid Technique. They also allow

an effective way of dealing with the problem of dead

space. While these schemes do not completely

eliminate other problems of the Pyramid Technique,

with the appropriate space partitions, the magnitudes of

these problems are significantly reduced. In particular,

� and � space partitions create many smaller index

regions, which minimize implicit enlargement of

queries that is rather severe with the Pyramid

Technique.

EXPERIMENTAL RESULTS

An extensive set of experiments was performed to

compare the retrieval performance of the �, �S and

Pyramid Techniques in different scenarios. The

experiments were conducted over both simulated and

real data sets of different size and data dimensionality,

and for different types of queries. Except for the space-

partitioning strategy, the three techniques were

implemented in the same way. Each leaf-level entry of

the underlying B
+
-tree contained a fixed-size key value

and the multi-dimensional point. The interior entries

represented <key, pointer> pairs, where pointer was a

4-byte value indicating a lower-level node. In order to

guard against the possibility of identical key values

whose number exceeds the page capacity, to each index

key, we appended a unique 4-byte ID of the data point.

The experiments were conducted on three Pentium PCs,

each with a single (either 1GHz or 1.5GHz) CPU and a

SCSI disk drive.

Configuring the GammaS and ThetaS Structures:
The first set of experiments was conducted to observe

the effects of various parameters on the retrieval

performance of �S and �S Techniques. In these

experiments, every coordinate of a point was

represented as a 4-byte integer and the page size was set

to 2K bytes. Data dimensionality was varied between 2

and 48. Each space was configured using the algorithm

of Figure 4, which induced � or � regions of equal size.

Then, each d-dimensional structure with 100,000

uniformly distributed points was searched with 1,000

region queries. The query generation derived each side

of a query window from a pair of two random points

(2RP queries).

Figures 7a and b show the effects of the number of

generators on the performance of �S and �S

Techniques, respectively. In all cases, the worst

performance was observed with only 2 generators.

Overall, the best performance of �S and �S was

observed with about 16 and 12 generators, respectively.

Since � partitioning strategy creates almost twice as

many index regions as �, the �S technique is more

sensitive to the variances in the number of partition

generators than �S. However, as page capacity

increased, both �S and �S became less sensitive to the

actual configuration of space.

J .Computer Sci., 1 (1): 89-97, 2005

 96

Figures 7c and d show the performance of the two

techniques with alternative region numbering and

projection schemes. In the Fig. 7, G and R stand for G-

and R-ordering, while E and A stand for E- and A-

projection, respectively (Fig 6). Thus, GA denotes a

technique with generator-wise numbering and axis-wise

projection, whereas RE denotes a technique with

region-wise numbering and edge-wise projection.

While the region numbering had little impact on the

performance of either technique (in the experiments, R-

ordering was somewhat better than G-ordering), the

impact of the projection scheme was significant. In

high-dimensional spaces, the performance of the two

techniques with the edge-wise projection was about

twice as good as with the axis-wise projection. In other

experiments presented in this study, we adopted R-

ordering and edge-wise projection for both the �S and

�S Technique.

Synthetic Data: Figure 8 compares the performance of

the �S, �S and Pyramid Techniques for four synthetic

data distributions and 1,000 2RP queries. Each d-

dimensional structure with 8K pages had 1,000,000

points with 2-byte coordinates. As before,

dimensionality was varied between 2 and 48. The � and

� space partitions with live regions and their slicing

were induced with 30 and 20 generators, respectively.

The number Nr of slices for each � or � region r was

calculated as Nr = max{1, �nr/na � , where nr and na

were the number of points falling in the region r and the

average number of points per region, respectively (Nr =

1 means no slicing of the region r).

Figures 8a-c show the observed average number of

accessed pages per 2RP query for some “mildly”

skewed data distributions consisting of: (a) one cluster

(fixed 25% volume of the space) placed in the center of

the universe; (b) one cluster (fixed 25% volume) placed

in the origin; and (c) three clusters (10% volume each)

placed in the origin, center, and the corner of the space

that contains the highest value along the first axis. In

each scenario, �S and �S outperformed the Pyramid

Technique.

In the above scenarios, the impact of live � and �

regions was relatively minor. But, Fig. 8d demonstrates

their effectiveness for a heavily skewed data

distribution. All points were placed in a hyper-cube

centered in the middle of the space, whose each side

was restricted to exactly 50% of the corresponding side

of the universe. Relative to the entire space, the volume

of the hyper-cube reduced rapidly as data

dimensionality increased. As a result, the Pyramid

Technique incurred a significant amount of dead space.

Real Data: Perhaps the most instructive are the results
of our experiments with real data. The data set
represented a table with 1,000,000 records, which was
extrapolated from a database of a local company. As
before, the page size was 8K bytes.

In these experiments, we measured the performance of

the �S and �S Techniques both with and without live

regions and their slicing. � and � space partitions were

obtained using the algorithm of Figures 4 with 16 and

12 generators, respectively. No attempt was made to

optimize the space partitions for the given data

distribution. The performance of every structure (the

average number of accessed pages per query) was

measured for data sets with 1/4M, 2/4M, 3/4M and 1M

points and for two types of queries (1,000 queries of

each type) with randomly chosen center. The queries

were relatively small and restricted to at most 10% and

1% of the total space, respectively.

Figures 9a and b show the results. Even without live

regions and slicing, �S and �S outperformed the

Pyramid Technique. However, with live regions and

slicing, the performance improvements over the

Pyramid Technique were much more significant. Since

the performance curves of �S and �S with live regions

and slicing appear to lie on the horizontal axes of the

graphs, Figures 9c and 9d show how these curves

actually look like.

DISCUSSION

In this study, two novel partitioning strategies, called �

and � were developed. Each of these strategies applies

an asymmetric subdivision of individual dimensions,

making sure that every axis is divided several times. As

a result, every dimension of data can effectively

contribute to the search process. Just like the Pyramid

Technique, these strategies avoid both the exhaustive

search and region overlap. However, unlike the

Pyramid Technique, the � and � partitioning strategies

allow highly configurable partitions of space that can fit

the actual data distribution. They also enable effective

ways of dealing with the other problems of the Pyramid

Technique, which include the loss of proximity, the

enlarged queries, and dead space.

The proposed partitioning strategies were used to

develop two new region-preserving space

transformation schemes for indexing high-dimensional

data, called the �S and �S Techniques. By reusing an

exact-match indexing mechanism along with its

concurrency and recovery features, �S and �S enable

relatively simple integration of advanced multi-

dimensional capabilities in complex transactional

environments.

The experimental evidence, gathered on both simulated

and real data sets, demonstrates the superiority of �S

and �S over the Pyramid Technique, which also uses

static partitioning. As data distribution becomes more

skewed, the performance improvements over the

Pyramid Technique become more pronounced. �

partitioning is generally better than � for more uniform

data distributions and when queries tend to clutter

J .Computer Sci., 1 (1): 89-97, 2005

 97

around the middle of the space. � partitioning tends to

be more appropriate in special scenarios that frequently

appear in practice.

The proposed partitioning strategies also have direct

application in supporting similarity (k-nearest neighbor)

searches. Bit-sliced indexes, such as the VA-file [9], are

often used for this purpose. However, these indexes

employ a grid-like space partition into rectangular cells,

whose number grows exponentially with data

dimensionality. Since the � and � partitioning

strategies require a limited number of divisions to split

each axes multiple times, they can enable a faster and

more accurate process of similarity searching with a

more compact indexing structure than the VA-file.

Other applications of � and � partitioning include

retrieval of data on tertiary storage [18] and clustering

large sets of high-dimensional data. In the later context,

they can replace typical grid-like space partitions

frequently used in contemporary clustering algorithms.

ACKNOWLEDGEMENT

This material is based upon work supported by the

National Science Foundation under Grant No. IIS-

0312266

REFERENCES

1. Gaede, V. and O. Gunther, 1998. Multidimensional

access methods. ACM Computing Surveys, 30:

170-231.

2. Berchtold, S., C. Bohm and H.P. Kriegel, 1998.

The pyramid-technique: Towards breaking the

curse of dimensionality. Proc. ACM SIGMOD Int.

Conf. on Management of Data, pp: 142-153.

3. Boehm, C., S. Berchtold and D.A. Keim, 2001.

Searching in high-dimensional spaces: index

structures for improving the performance of

multimedia databases. ACM Computing Surveys,

33: 322-373.

4. Chakrabarti, K. and S. Mehrotra, 1999. The hybrid

tree: an index structure for high dimensional

feature spaces. Proc. 15
th

 Intl. Conf. on Data

Engineering, pp: 440-447.

5. Fagin, R., R. Kumar and D. Sivakumar, 2003.

Efficient similarity search and classification via

rank aggregation. Proc. ACM SIGMOD Intl. Conf.

on Management of Data, pp: 301-312.

6. Lin, K., H. Jagadish and C. Faloutsos, 1995. The

TV-tree: An index structure for high-dimensional

data. VLDB J., 3: 517-542.

7. Sakurai, Y., M. Yoshikawa, S. Uemura and H.

Kojima, 2000. The A-tree: An index structure for

high-dimensional spaces using relative

approximation. Proc. 26
th

 Intl. Conf. on Very Large

Data Bases, pp: 516-526.

8. Weber, R., H.J. Schek and S. Blott, 1998. A

quantitative analysis and performance study for

similarity-search methods in high-dimensional

spaces. Proc. 24
th

Intl. Conf. on Very Large Data

Bases, pp: 194-205.

9. Orlandic, R., and B. Yu, 2002. A retrieval

technique for high-dimensional data and partially

specified queries. Data and Knowledge

Engineering, 42: 1-21.

10. Robinson, J.T., 1981. The K-D-B tree: A search

structure for large multidimensional dynamic

indexes. Proc. ACM SIGMOD Intl. Conf. on

Management of Data, pp: 10-18.

11. Ramsak, F., V. Markl, R. Fenk, M. Zirkel, K.

Elhardt and R. Bayer, 2000. Integrating the UB-

tree into a database system kernel. Proc. 26
th

 Intl.

Conf. on Very Large Data Bases, pp: 263-272.

12. Aggarwal, C.C., 2001. On the effects of

dimensionality reduction on high dimensional

similarity search. Proc. 20
th
 ACM Symposium on

Principles of Database Systems PODS'2001, pp:

256-266.

13. Ravi Kanth, K.V., D. Agrawal and A. Singh, 1998.

Dimensionality reduction for similarity search in

dynamic databases. Proc. ACM SIGMOD Intl.

Conf. on Management of Data, pp: 166-176.

14. Berchtold, S., D.A. Keim and H.P. Kriegel, 1996.

The X-tree: an index structure for high-

dimensional data. Proc. 22
nd

 Intl. Conf. on Very

Large Data Bases, pp: 28-39.

15. Comer, D., 1979. The ubiquitous B-tree. ACM

Computing Surveys, 11: 121-137.

16. Guttman, A., 1984. R-trees: A dynamic index

structure for spatial searching. Proc. ACM

SIGMOD Int. Conf. on Management of Data, pp:

47-54.

17. Orlandic, R., J. Lukaszuk and C. Swietlik, 2002.

The design of a retrieval technique for high-

dimensional data on tertiary storage. SIGMOD

Record, 31: 15-21.

