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A CLASS OF RÉNYI INFORMATION ESTIMATORS FOR
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A class of estimators of the Rényi and Tsallis entropies of an unknown
distribution f in R

m is presented. These estimators are based on the kth
nearest-neighbor distances computed from a sample of N i.i.d. vectors with
distribution f . We show that entropies of any order q, including Shannon’s
entropy, can be estimated consistently with minimal assumptions on f . More-
over, we show that it is straightforward to extend the nearest-neighbor method
to estimate the statistical distance between two distributions using one i.i.d.
sample from each.

1. Introduction. We consider the problem of estimating the Rényi [33] en-
tropy

H ∗
q = 1

1 − q
log

∫
Rm

f q(x) dx, q �= 1,(1.1)

or the Havrda and Charvát [15] entropy (also called Tsallis [37] entropy)

Hq = 1

q − 1

(
1 −

∫
Rm

f q(x) dx

)
, q �= 1,(1.2)

of a random vector X ∈ R
m with probability measure μ which has density f with

respect to the Lebesgue measure, from N independent and identically distributed
(i.i.d.) samples X1, . . . ,XN , N ≥ 2. Note that H ∗

q can be expressed as a function of
Hq . Indeed, H ∗

q = log[1 − (q − 1)Hq]/(1 − q), and for any q , d(H ∗
q )/d(Hq) > 0

and [d2(H ∗
q )/d(Hq)2]/(q − 1) > 0. For q < 1 and q > 1, H ∗

q is thus a strictly
increasing concave and convex function of Hq respectively and the maximization
of H ∗

q and Hq are equivalent. Hence, in what follows we shall speak indifferently
of q-entropy maximizing distributions. When q tends to 1, both Hq and H ∗

q tend
to the (Boltzmann–Gibbs-) Shannon entropy

H1 = −
∫

Rm
f (x) logf (x) dx.(1.3)
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We consider a new class of estimators of Hq and H ∗
q based on the approach pro-

posed by Kozachenko and Leonenko [21] who consider the estimation of H1; see
also [11]. Within the classification made in [3], which also contains an outstanding
overview of nonparametric Shannon entropy estimation, the method falls in the
category of nearest-neighbor distances. See also [13]. When m = 1, the nearest-
neighbor method is related to sample-spacing methods; see, for example, [41] for
an early reference concerning Shannon entropy. It also has some connections with
the more recent random-graph approach of Redmond and Yukich [32], who, on
the supposition that the distribution is supported on [0,1]m together with some
smoothness assumptions on f , construct a strongly consistent estimator of H ∗

q for
0 < q < 1 (up to an unknown bias term independent of f and related to the graph
properties). For q �= 1, our construction relies on the estimation of the integral

Iq = E{f q−1(X)} =
∫

Rm
f q(x) dx(1.4)

through the computation of conditional moments of nearest-neighbor distances. It
thus possesses some similarities with that of Evans, Jones and Schmidt [8], who
establish the weak consistency of an estimator of Iq for m ≥ 2 and q < 1 under the
conditions that f is continuous and strictly positive on a compact convex subset
C of R

m, with bounded partial derivatives on C. In comparison to Redmond and
Yukich [32] and Evans, Jones and Schmidt [8], our results cover a larger range
of values for q and do not rely on assumptions of regularity or bounded support
for f . For the sake of completeness, we also consider the case q = 1, that is, the
estimation of Shannon entropy, with results obtained as corollaries of those for
q �= 1 (at the expense of requiring slightly stronger conditions than Kozachenko
and Leonenko [21]).

The entropy (1.2) is of interest in the study of nonlinear Fokker–Planck equa-
tions, with q < 1 for the case of subdiffusion and q > 1 for superdiffusion; see
[38]. Values of q ∈ [1,3] are used by Alemany and Zanette [1] to study the be-
havior of fractal random walks. Applications for quantizer design, characteriza-
tion of time-frequency distributions, image registration and indexing, texture clas-
sification and image matching etc., are indicated by Hero et al. [16], Hero and
Michel [17] and Neemuchwala, Hero and Carson [29]. Entropy minimization is
used by Pronzato, Thierry and Wolsztynski [31], Wolsztynski, Thierry and Pron-
zato [45] for parameter estimation in semi-parametric models. Entropy estimation
is also a basic tool for independent component analysis in signal processing; see,
for example, [22, 23].

The entropy Hq is a concave function of the density for q > 0 (and convex
for q < 0). Hence, q-entropy maximizing distributions, under some specific con-
straints, are uniquely defined for q > 0. For instance, the q-entropy maximizing
distribution is uniform under the constraint that the distribution is finitely sup-
ported. More interestingly, for any dimension m ≥ 1, the q-entropy maximizing
distribution with a given covariance matrix is of the multidimensional Student-t
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type if m/(m + 2) < q < 1; see [43]. This generalizes the well-known property
that Shannon entropy H1 is maximized for the normal distribution. Such entropy-
maximization properties can be used to derive nonparametric statistical tests by
following the same approach as Vasicek [41] who tests normality with H1; see
also [11].

The layout of the paper is as follows. Section 2 develops some of the motiva-
tions and applications just mentioned (see also Section 3.3 for signal and image
processing applications). The main results of the paper are presented in Section 3.
The paper is focused on entropy estimation, but in Section 3.3 we show how a
slight modification of the method also allows us to estimate statistical distances
and divergences between two distributions. Section 4 gives some examples and
Section 5 indicates some related results and possible developments. The proofs of
the results of Section 3 are collected in Section 6.

2. Properties, motivation and applications.

2.1. Nonlinear Fokker–Planck equation and entropy. Consider a family of
time-dependent p.d.f.’s ft . The p.d.f. that maximizes Rényi entropy (1.1) [and
Tsallis entropy (1.2)] subject to the constraints

∫
R

ft (x) dx = 1,
∫
R
[x − x̄(t)] ×

f
q
t (x) dx = 0,

∫
R
[x − x̄(t)]2f

q
t (x) dx = σ 2

q (t), for fixed q > 1, is the solution of
a nonlinear Fokker-Planck (or Kolmogorov) equation; see [38].

Let X and Y be two independent random vectors respectively in R
m1 and R

m2 .
Define Z = (X,Y ) and let f (x, y) denote the joint density for Z. Let f1(x)

and f2(y) be the marginal densities for X and Y respectively, so that f (x, y) =
f1(x)f2(y). It is well known that the Shannon and Rényi entropies (1.3) and (1.1)
satisfy the additive property H ∗

q (f ) = H ∗
q (f1)+H ∗

q (f2), q ∈ R, while for the Tsal-
lis entropy (1.2), one has Hq(f ) = Hq(f1)+Hq(f2)+ (1−q)Hq(f1)Hq(f2). The
first property is known in physical literature as the extensivity property of Shannon
and Rényi entropies, while the second is known as nonextensivity (with q the pa-
rameter of nonextensivity). The paper by Frank and Daffertshofer [10] presents
a survey of results related to entropies in connection with nonlinear Fokker–
Planck equations and normal or anomalous diffusion processes. In particular, the
so-called Sharma and Mittal entropy Hq,s = [1 − (Iq)

(s−1)/(q−1)]/(s − 1), with
q, s > 0, q, s �= 1 and Iq given by (1.4), represents a possible unification of the
(nonextensive) Tsallis entropy (1.2) and (extensive) Rényi entropy (1.1). It sat-
isfies lims→1 Hq,s = H ∗

q , lims,q→1 Hq,s = H1, Hq,q = Hq and limq→1 Hq,s =
{1 − exp[−(s − 1)H1]}/(s − 1) = HG

s , s > 0, s �= 1, where HG
s is known as

Gaussian entropy. Notice that a consistent estimator of Hq,s can be obtained from
the estimator of Iq presented in Section 3.

2.2. Entropy maximizing distributions. The m-dimensional random vector
X = ([X]1, . . . , [X]m)� is said to have a multidimensional Student distribution
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T (ν,�,μ) with mean μ ∈ R
m, scaling or correlation matrix �, covariance matrix

C = ν�/(ν − 2) and ν degrees of freedom if its p.d.f. is

fν(x) = 1

(νπ)m/2
(2.1)

× �((m + ν)/2)

�(ν/2)

1

|�|1/2[1 + (x − μ)�[ν�]−1(x − μ)](m+ν)/2 ,

x ∈ R
m. The characteristic function of the distribution T (ν,�,μ) is

φ(ζ ) = E exp(i〈ζ,X〉) = exp(i〈ζ,μ〉)Kν/2
(√

νζ��ζ
)(√

νζ��ζ
)ν/2 21−ν/2

�(ν/2)
,

ζ ∈ R
m, where Kν/2 denotes the modified Bessel function of the second order. If

ν = 1, then (2.1) is the m-variate Cauchy distribution. If (ν + m)/2 is an integer,
then (2.1) is the m-variate Pearson type VII distribution. If Y is N (0,�) and if
νS2 is independent of Y and X2-distributed with ν degrees of freedom, then X =
Y/S + μ has the p.d.f. (2.1). The limiting form of (2.1) as ν → ∞ is the m-variate
normal distribution N (μ,�). The Rényi entropy (1.1) of (2.1) is

H ∗
q = 1

1 − q
log

B(q(m + ν)/2 − m/2,m/2)

Bq(ν/2,m/2)

+ 1

2
log[(πν)m|�|] − log�

(
m

2

)
, q >

m

m + ν
.

It converges as ν → ∞ to the Rényi entropy

H ∗
q (μ,�) = log[(2π)m/2|�|1/2] − m

2(1 − q)
logq

(2.2)

= H1(μ,�) − m

2

(
1 + logq

1 − q

)

of the multidimensional normal distribution N (μ,�). When q → 1, H ∗
q (μ,�)

tends to H1(μ,�) = log[(2πe)m/2|�|1/2], the Shannon entropy of N (μ,�). For
m/(m + 2) < q < 1, the q-entropy maximizing distribution under the constraint

E(X − μ)(X − μ)� = C(2.3)

is the Student distribution T (ν, (ν − 2)C/ν,0) with ν = 2/(1 − q) − m > 2; see
[43]. For q > 1, we define p = m + 2/(q − 1) and the q-entropy maximizing
distribution under the constraint (2.3) has then finite support given by 	q = {x ∈
R

m : (x − μ)�[(p + 2)C]−1(x − μ) ≤ 1}. Its p.d.f. is

fp(x)

(2.4)

=

⎧⎪⎪⎨
⎪⎪⎩

�(p/2 + 1)

|C|1/2[π(p + 2)]m/2�((p − m)/2 + 1)

× [1 − (x − μ)�[(p + 2)C]−1(x − μ)]1/(q−1), if x ∈ 	q

0, otherwise.
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The characteristic function of the p.d.f. (2.4) is given by

φ(ζ ) = exp(i〈ζ,μ〉)2p/2�

(
p

2
+ 1

)
|ζ�(p + 2)Cζ |−p/2Jp/2

(|ζ�(p + 2)Cζ |),
ζ ∈ R

m, where Jν/2 denotes the Bessel function of the first kind.
Alternatively, fν for q < 1 or fp for q > 1 also maximizes the Shannon entropy

(1.3) under a logarithmic constraint; see [20, 46]. Indeed, when q < 1, fν(x) given
by (2.1) with ν = 2/(1 − q) − m and � = (ν − 1)C/ν maximizes H1 under the
constraint∫

Rm
log

(
1 + x�[(ν − 2)C]−1x

)
f (x) dx = 


(
ν + m

2

)
− 


(
ν

2

)
,

and when q > 1, fp(x) given by (2.4) with p = 2/(q − 1) + m maximizes H1
under ∫

Rm
log

(
1 − x�[(p + 2)C]−1x

)
f (x) dx = 


(
p

2

)
− 


(
p + m

2

)
,

where 
(z) = �′(z)/�(z) is the digamma function.

2.3. Information spectrum. Considered as a function of q , H ∗
q (1.1) is known

as the spectrum of Rényi information; see [36]. The value of H ∗
q for q = 2 corre-

sponds to the negative logarithm of the well-known efficacy parameter Ef (X) that
arises in asymptotic efficiency considerations. Consider now

Ḣ1 = lim
q→1

dH ∗
q

dq
.(2.5)

It satisfies

Ḣ1 = lim
q→1

log
∫
Rm f q(x) dx

(1 − q)2 +
∫
Rm f q(x) logf (x) dx

(1 − q)
∫
Rm f q(x) dx

= −1

2

{∫
Rm

f (x)[logf (x)]2 dx −
[∫

Rm
f (x) logf (x) dx

]2}

= −1

2
var[logf (X)].

The quantity S(f ) = −2Ḣ1 = var[logf (X)] gives a measure of the intrinsic shape
of the density f ; it is a location and scale invariant positive functional (S(f ) =
S(g) when f (x) = σ−1g[(x − μ)/σ ]). For the multivariate normal distribution
N (μ,�), H ∗

q is given by (2.2) and S(f ) = m/2. For the one-dimensional Student
distribution with ν degrees of freedom (for which EXν−1 exists, but not EXν),
with density

fν(x) = 1

(νπ)1/2

�(ν/2 + 1/2)

�(ν/2)

1

(1 + x2/ν)(ν+1)/2 ,
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we obtain

H ∗
q = 1

1 − q
log

B(q(ν + 1)/2 − 1/2,1/2)

Bq(ν/2,1/2)
+ 1

2
logν, q >

1

ν + 1
,

(2.6)

S(fν) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π2

3 
 3.2899, for ν = 1 (Cauchy distribution),
9 − 3

4π2 
 1.5978, for ν = 2,
4
3π2 − 12 
 1.1595, for ν = 3,
775
36 − 25

12π2 
 0.9661, for ν = 4,
3π2 − 115

4 
 0.8588, for ν = 5,

and, more generally, S(fν) = (1/4)(ν + 1)2{
̇(ν/2) − 
̇[(ν + 1)/2]}, with 
̇(x)

the trigamma function, 
̇(x) = d2 log�(x)/dx2. The information provided by
S(f ) on the shape of the distribution complements that given by other more clas-
sical characteristics like kurtosis. [Note that the kurtosis is not defined for fν when
ν ≤ 4; the one-dimensional Student distribution f6 and the bi-exponential Laplace
distribution fL have the same kurtosis but different values of S(f ) since S(f6) =
147931/3600 − (49/12)π2 
 0.7911 and S(fL) = 1.] For the multivariate Stu-
dent distribution (2.1), we get S(fν) = (1/4)(ν + m)2{
̇(ν/2) − 
̇[(ν + m)/2]}.
The q-entropy maximizing property of the Student distribution can be used to test
that the observed samples are Student distributed, and the estimation of S(f ) then
provides information about ν. This finds important applications, for instance, in
financial mathematics; see [18].

3. Main results. Let ρ(x, y) denote the Euclidean distance between two
points x, y of R

m (see Section 5 for an extension to other metrics). For a given
sample X1, . . . ,XN , and a given Xi in the sample, from the N − 1 distances
ρ(Xi,Xj ), j = 1, . . . ,N , j �= i, we form the order statistics ρ

(i)
1,N−1 ≤ ρ

(i)
2,N−1 ≤

· · · ≤ ρ
(i)
N−1,N−1. Therefore, ρ

(i)
1,N−1 is the nearest-neighbor distance from the ob-

servation Xi to some other Xj in the sample, j �= i, and similarly, ρ
(i)
k,N−1 is the

kth nearest-neighbor distance from Xi to some other Xj .

3.1. Rényi and Tsallis entropies. We shall estimate Iq , q �= 1, by

ÎN,k,q = 1

N

N∑
i=1

(ζN,i,k)
1−q,(3.1)

with

ζN,i,k = (N − 1)CkVm

(
ρ

(i)
k,N−1

)m
,(3.2)

where Vm = πm/2/�(m/2 + 1) is the volume of the unit ball B(0,1) in R
m and

Ck =
[

�(k)

�(k + 1 − q)

]1/(1−q)

.
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Note that I1 = 1 since f is a p.d.f. and that Iq is finite when q < 0 only if f is
of bounded support. Indeed, Iq = ∫

{x : f (x)≥1} f q(x) dx + ∫
{x : f (x)<1} f q(x) dx >∫

{x : f (x)<1} f q(x) dx > μL{x :f (x) < 1}, with μL the Lebesgue measure. Also,
when f is bounded, Iq tends to the (Lebesgue) measure of its support μL{x :
f (x) > 0} when q → 0+. Some other properties of Iq are summarized in Lemma 1
of Section 6.

REMARK 3.1. When f is known, a Monte Carlo estimator of Iq based on the
sample X1, . . . ,XN is

1

N

N∑
i=1

f q−1(Xi).(3.3)

The nearest-neighbor estimator ÎN,k,q given by (3.1) could thus also be consid-
ered as a plug-in estimator, ÎN,k,q = (1/N)

∑N
i=1[f̂N,k(Xi)]q−1, where f̂N,k(x) =

1/{(N−1)CkVm[ρk+1,N (x)]m} with ρk+1,N (x) the (k +1)th nearest-neighbor dis-
tance from x to the sample. One may notice the resemblance between f̂N,k(x)

and the density function estimator f̃N,k(x)=k/{NVm[ρk+1,N (x)]m} suggested by
Loftsgaarden and Quesenberry [26]; see also [7, 28].

We suppose that X1, . . . ,XN , N ≥ 2, are i.i.d. with a probability measure μ

having a density f with respect to the Lebesgue measure. [However, if μ has
a finite number of singular components superimposed to the absolutely contin-
uous component f , one can remove all zero distances from the ρ

(i)
k,N−1 in the

computation of the estimate (3.1), which then enjoys the same properties as in
Theorems 3.1 and 3.2, i.e., yields a consistent estimator of the Rényi and Tsallis
entropies of the continuous component f .] The main results of the paper are as
follows.

THEOREM 3.1 (Asymptotic unbiasedness). The estimator ÎN,k,q given by
(3.1) satisfies

EÎN,k,q → Iq, N → ∞,(3.4)

for q < 1, provided that Iq given by (1.4) exists, and for any q ∈ (1, k + 1) if f is
bounded.

Under the conditions of Theorem 3.1, E(1− ÎN,k,q)/(q −1) → Hq as N → ∞,
which provides an asymptotically unbiased estimate of the Tsallis entropy of f .

THEOREM 3.2 (Consistency). The estimator ÎN,k,q given by (3.1) satisfies

ÎN,k,q
L2→ Iq, N → ∞,(3.5)

(and thus, ÎN,k,q
p→ Iq , N → ∞) for q < 1, provided that I2q−1 exists, and for any

q ∈ (1, (k + 1)/2) when k ≥ 2 [resp. q ∈ (1,3/2) when k = 1] if f is bounded.
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COROLLARY 3.1. Under the conditions of Theorem 3.2,

ĤN,k,q = (1 − ÎN,k,q)/(q − 1)
L2→ Hq(3.6)

and

Ĥ ∗
N,k,q = log(ÎN,k,q)/(1 − q)

p→ H ∗
q(3.7)

as N → ∞, which provides consistent estimates of the Rényi and Tsallis entropies
of f .

We show the following in the proof of Theorem 3.2: when q < 1 and I2q−1 <

∞, or 1 < q < (k + 2)/2 and f is bounded,

E(ζ
1−q
N,i,k − Iq)

2 → �k,q = I2q−1
�(k + 2 − 2q)�(k)

�2(k + 1 − q)
− I 2

q , N → ∞.

Notice that limk→∞ �k,q = I2q−1 − I 2
q = var[f q−1(X)] = N var[ 1

N
×∑N

i=1 f q−1(Xi)], that is, the limit of �k,q for k → ∞ equals N times the variance
of the Monte Carlo estimator (3.3) (which forms a lower bound on the variance of
an estimator Iq based on the sample X1, . . . ,XN ).

Under the assumption that f is three times continuously differentiable μL-
almost everywhere, we can improve Lemma 2 of Section 6 into

1

VmRm

∫
B(x,R)

f (z) dz = f (x) + R2

2(m + 2)

m∑
i=1

∂2f (x)

∂x2
i

+ o(R2), R → 0,

which can be used to approximate FN,x,k(u)−Fx,k(u) in the proof of Theorem 3.1.
We thereby obtain an approximation of the bias B̂N,k,q = EÎN,k,q −Iq = Eζ

1−q
N,1,k −

Iq , which, after some calculations, can be written as

B̂N,k,q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q − 1)(2 − q)Iq

2N
+ O(1/N2), for m = 1,

q − 1

N
[(k + 1 − q)Jq−2/(8π) + (2 − q)Iq/2] + O(1/N3/2),

for m = 2,

q − 1

N2/m

�(k + 1 + 2/m − q)

Dm�(k + 1 − q)
Jq−1−2/m + O(1/N3/m),

for m ≥ 3,

where Jβ = ∫
Rm f β(x)(

∑m
i=1 ∂2f (x)/∂x2

i ) dx and Dm = 2(m + 2)V
2/m
m . For in-

stance, for f the density of the normal N (0, σ 2Im), we get

Jβ = − m

σ 2

1

(2πσ 2)mβ/2

β

(β + 1)1+m/2 ,
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which is defined for β > −1. From the expression of the MSE for ÎN,k,q given in
(6.8), we obtain

E(ÎN,k,q −Iq)
2 = �k,q

N
−2IqB̂N,k,q

(
1+o(1)

)+[E(ζ
1−q
N,1,kζ

1−q
N,2,k)−I 2

q ].(3.8)

Investigating the behavior of the last term requires an asymptotic approximation
for FN,x,y,k(u, v)−Fx,k(u)Fy,k(v) (see the proof of Theorem 3.2), which is under
current investigation. Preliminary results for k = 1 show that the contribution of
this term to the MSE for ÎN,k,q cannot be ignored in general.

3.2. Shannon entropy. For the estimation of H1 (q = 1), we take the limit of
ĤN,k,q as q → 1, which gives

ĤN,k,1 = 1

N

N∑
i=1

log ξN,i,k,(3.9)

with

ξN,i,k = (N − 1) exp[−
(k)]Vm

(
ρ

(i)
k,N−1

)m
,(3.10)

where 
(z) = �′(z)/�(z) is the digamma function [
(1) = −γ with γ 
 0.5772
the Euler constant and, for k ≥ 1 integer, 
(k) = −γ + Ak−1 with A0 = 0 and
Aj = ∑j

i=1 1/i]; see [22, 42] for applications of this estimator in physical sci-
ences. We then have the following.

COROLLARY 3.2. Suppose that f is bounded and that Iq1 exists for some

q1 < 1. Then H1 exists and the estimator (3.9) satisfies ĤN,k,1
L2→ H1 as N → ∞.

REMARK 3.2. One may notice that Ĥ ∗
N,k,q given by (3.7) is a smooth function

of q . Its derivative at q = 1 can be used as an estimate of Ḣ1 defined by (2.5).
Straightforward calculations give

lim
q→1

dĤ ∗
N,k,q

dq
= 
̇(k)

2
− m2

2

1

N

N∑
i=1

[
logρ

(i)
k,N−1 − 1

N

N∑
j=1

logρ
(j)
k,N−1

]2

= 1

2

[

̇(k) − 1

N

N∑
i=1

(log ξN,i,k − ĤN,k,1)
2

]

and S(f ) = −2Ḣ1 can be estimated by

ŜN,k = 1

N

N∑
i=1

(log ξN,i,k − ĤN,k,1)
2 − 
̇(k).(3.11)
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We obtain the following in the proof of Corollary 3.2:

E(log ξN,i,k − H1)
2 → var[logf (X)] + 
̇(k), N → ∞,

with 
̇(z) = d2 log�(z)/dz2 [and, for k integer, 
̇(k) = ∑∞
j=k 1/j2]. Note that

var[logf (X)] forms a lower bound on the variance of a Monte Carlo estimation
of H1 based on logf (Xi), i = 1, . . . ,N , and that 
̇(k) → 0 as k → ∞.

Similarly to Remark 3.1, the estimator ĤN,k,1 given by (3.9) could be consid-
ered as a plug-in estimator, ĤN,k,1 = −(1/N)

∑N
i=1 log[f̂ ′

N,k(Xi)] with f̂ ′
N,k(x) =

exp[
(k)]/{(N − 1)Vm[ρk+1,N (x)]m}. One may notice that selecting k by likeli-
hood cross-validation based on the density function estimator suggested by Lofts-
gaarden and Quesenberry [26], f̃N,k(x) = k/{NVm[ρk+1,N (x)]m}, amounts to
maximizing −ĤN,k,1 + log k − 
(k), with log k − 
(k) = 1/(2k) + 1/(12k2) +
O(1/k4), k → ∞. In our simulations this method always tended to select k = 1;
replacing f̃N,k(x) by f̂ ′

N,k(x), or by f̂N,k(x) of Remark 3.1, does not seem to yield
a valid selection procedure for k either.

Let H̃N,k,1 be the plug-in estimator of H1 based on f̃N,k defined by H̃N,k,1 =
−(1/N)

∑N
i=1 log[f̃N,k(Xi)]. Then, under the conditions of Corollary 3.2, we ob-

tain that limN→∞ EH̃N,k,1 = H1 +
(k)− logk (since H̃N,k,1 = ĤN,k,1 +
(k)−
logk + log[N/(N − 1)]). Under the additional assumption on f that it belongs
to the class F of uniformly continuous p.d.f. satisfying 0 < c1 ≤ f (x) ≤ c2 < ∞
for some constants c1, c2, we obtain the uniform and almost sure convergence of
ĤN,k,1 to H1(f ) over the class F , provided that k = kN → ∞, kN/N → 0 and
kN/ logN → ∞ as N → ∞; see the results of Devroye and Wagner [7] on the
strong uniform consistency of f̃N,k . Notice that the choice of k proposed by Hall,
Park and Samworth [14] for nearest-neighbor classification does not satisfy these
conditions.

3.3. Relative entropy and divergences. In some situations the statistical dis-
tance between distributions can be estimated through the computation of entropies,
so that the method of kth nearest-neighbor distances presented above can be ap-
plied straightforwardly. For instance, the q-Jensen difference

Jβ
q (f, g) = H ∗

q [βf + (1 − β)g] − [βH ∗
q (f ) + (1 − β)H ∗

q (g)], 0 ≤ β ≤ 1,

(see, e.g., [2]) can be estimated if we have three samples, respectively distributed
according to f , g and βf + (1 − β)g. Suppose that we have one sample Si (i =
1, . . . , s) of i.i.d. variables generated from f and one sample Tj (j = 1, . . . , t)
of i.i.d. variables generated from g with s and t increasing at a constant rate as
a function of N = s + t . Then, H ∗

q (f ) and H ∗
q (g) can be estimated consistently

from the two samples when N → ∞; see Corollary 3.1. Also, as N → ∞, the
estimator Ĥ ∗

N,k,q based on the sample X1, . . . ,XN with Xi = Si (i = 1, . . . , s) and
Xi = Ti−s (i = s +1, . . . ,N ) converges to H ∗

q [βf + (1−β)g], with β = s/N , and

J
β
q can therefore be estimated consistently from the two samples. This situation is
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encountered, for instance, in the image matching problem presented in [29], where
entropy is estimated through the random graph approach of Redmond and Yukich
[32]. As shown below, some other types of distances or divergences, that are not
expressed directly through entropies, can also be estimated by the nearest-neighbor
method.

Let K(f,g) denote the Kullback–Leibler relative entropy,

K(f,g) =
∫

Rm
f (x) log

f (x)

g(x)
dx = H̆1 − H1,(3.12)

where H1 is given by (1.3) and H̆1 = − ∫
Rm f (x) logg(x) dx. Given N indepen-

dent observations X1, . . . ,XN distributed with the density f and M observations
Y1, . . . , YM distributed with g, we wish to estimate K(f,g). The second term H1
can be estimated by (3.9), with asymptotic properties given by Corollary 3.2. The
first term H̆1 can be estimated in a similar manner, as follows: given Xi in the
sample, i ∈ {1, . . . ,N}, consider ρ̆(Xi, Yj ), j = 1, . . . ,M , and the order statistics

ρ̆
(i)
1,M ≤ ρ̆

(i)
2,M ≤ · · · ≤ ρ̆

(i)
M,M , so that ρ̆

(i)
k,M is the kth nearest-neighbor distance from

Xi to some Yj , j ∈ {1, . . . ,M}. Then, one can prove, similarly to Corollary 3.2,
that

H̆N,M,k = 1

N

N∑
i=1

log
{
M exp[−
(k)]Vm

(
ρ̆

(i)
k,M

)m}
(3.13)

is an asymptotically unbiased and consistent estimator of H̆1 (when now both N

and M tend to infinity) when g is bounded and

Jq =
∫

Rm
f (x)gq−1(x) dx(3.14)

exists for some q < 1. The difference

H̆N,M,k − ĤN,k,1 = m log

[
N∏

i=1

ρ̆
(i)
k,M

]1/N

+ logM − 
(k) + logVm

− m log

[
N∏

i=1

ρ
(i)
k,N

]1/N

− log(N − 1) + 
(k) − logVm(3.15)

= m log

[
N∏

i=1

ρ̆
(i)
k,M

ρ
(i)
k,N

]1/N

+ log
M

N − 1

thus gives an asymptotically unbiased and consistent estimator of K(f,g). Ob-
viously a similar technique can be used to estimate the (symmetric) Kullback–
Leibler divergence K(f,g)+K(g,f ). Note, in particular, that when f is unknown
and only the sample X1, . . . ,XN is available while g is known, then the term H̆1
in K(f,g) can be estimated either by (3.13) with a sample Y1, . . . , YM generated
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from g, with M taken arbitrarily large, or more simply by the Monte Carlo estima-
tor

H̆1,N (g) = − 1

N

N∑
i=1

logg(Xi),(3.16)

the term H1 being still estimated by (3.9). This forms an alternative to the method
by Broniatowski [6]. Compared to the method by Jiménez and Yukich [19] based
on Voronoi tessellations (see also [27] for a Voronoi-based method for Shannon
entropy estimation), it does not require any computation of multidimensional in-
tegrals. In some applications one wishes to optimize K(f,g) with respect to g

that belongs to some class G (possibly parametric), with f fixed. Note that only
the first term H̆1 of (3.12) then needs to be estimated. [Maximum likelihood es-
timation, with g = gθ in a parametric class, is a most typical example: θ is then
estimated by minimizing H̆1,N (gθ ); see (3.16).]

The Kullback–Leibler relative entropy can be used to construct a measure of
mutual information (MI) between statistical distributions (see [22]) with applica-
tions in image [29, 44] and signal processing [23]. Let ai and bi denote the gray
levels of pixel i in two images A and B respectively, i = 1, . . . ,N . The image
matching problem consists in finding an image B in a data base that resembles a
given reference image A. The MI method corresponds to maximizing K(f,fxfy),
with f the joint density of the pairs (ai, bi) and fx (resp. fy) the density of gray
levels in image A (resp. B). We have K(f,fxfy) = H1(fx) + H1(fy) − H1(f ),
where each term can be estimated by (3.9) from one of the three samples (ai), (bi)

or (ai, bi) (but A being fixed, only the last two terms need be estimated).
Another example of statistical distance between distributions is given by the

following nonsymmetric Bregman distance

Dq(f,g) =
∫

Rm

[
gq(x) + 1

q − 1
f q(x) − q

q − 1
f (x)gq−1(x)

]
dx,

(3.17)
q �= 1,

or its symmetrized version

Kq(f,g) = 1

q
[Dq(f,g) + Dq(g,f )]

= 1

q − 1

∫
Rm

[f (x) − g(x)][f q−1(x) − gq−1(x)]dx;
see, for example, [2]. Given N independent observations from f and M from
g, the first and second terms in (3.17) can be estimated by using (3.1). In
the last term, the integral Jq given by (3.14) can be estimated by ÎN,M,k,q =
(1/N)

∑N
i=1{MCkVm(ρ̆

(i)
k,M)m}1−q . Similarly to Theorem 3.1, ÎN,M,k,q is asymp-

totically unbiased, N,M → ∞, for q < 1 if Jq exists and for any q ∈ (1, k + 1)
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if g is bounded. We also obtain a property similar to Theorem 3.2: ÎN,M,k,q is
a consistent estimator of Jq , N,M → ∞, for q < 1 if J2q−1 exists and for any
q ∈ (1, (k + 2)/2) if g is bounded. (Notice, however, the difference with Theo-
rem 3.2: when q > 1 the cases k = 1 and k ≥ 2 need not be distinguished for the
estimation of Jq and the upper bound on the admissible values for q is slightly
larger than in Theorem 3.2.)

4. Examples.

4.1. Influence of k. Figure 1 (left) presents H ∗
q as a function of q (solid

line) for the normal distribution N (0, I3) in R
3, together with estimates Ĥ ∗

N,k,q

for k = 1, . . . ,5 obtained from a single sample of size N = 1000. Note that
Ĥ ∗

N,k,q is defined only for q < k + 1 and quickly deviates from the theoreti-
cal value H ∗

q when q > (k + 1)/2 or q < 1 (the difficulties for q small being
due to f having unbounded support). For comparison, we also compute a plug-
in estimate of H ∗

q obtained through a (cross-validated) kernel density estimate

of f . Define H̃ ∗
N,q = log(ĨN,q)/(1 − q) and ĨN,q = (1/N)

∑N
i=1 f̃

q−1
N,i (Xi) with

f̃N,i(x) = [(N − 1)hm(2π)m/2]−1 ∑N
l=1,l �=i exp{−‖x − Xl‖2/(2h2)}, a m-variate

cross-validated kernel estimator of f . No special care is taken for the choice of
h and we simply use the value that minimizes the asymptotic mean integrated
squared error for the estimation of f , that is, h = [4/(m + 2)]1/(m+4)N−1/(m+4)

FIG. 1. Behavior of estimators of entropy for samples from the normal distribution N (0, I3) in
R

3 (N = 1000). [Left] H∗
q (solid line), Ĥ∗

N,k,q (dashed lines) and H̃∗
N,q obtained through a kernel

estimation of f (dotted line) as functions of q . [Right] N = 1000 times the empirical MSE for ĤN,k,q

[k = 1 (dots), k = 3 (circles), k = 5 (squares)] and for H̃∗
N,q (plus) as a function of q and computed

over 1 000 independent samples.
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with m = 3; see [34], page 152. The evolution of H̃ ∗
N,q as a function of q is plotted

in dotted-line on Figure 1 (left): although the situation is favorable to kernel den-
sity estimation, kth nearest neighbors give a better estimation of H ∗

q for q > 1 and
k large enough. Figure 1 (right) shows N times the empirical mean-squared error
(MSE) E(Ĥ ∗

N,k,q −H ∗
N,q)2 (k = 1,3,5) as a function of q using 1 000 independent

repetitions. The results for N times the MSE E(H̃ ∗
N,q − H ∗

N,q)2 for the plug-in es-
timator are also shown. The figure indicates that the kth nearest neighbor estimator
with k satisfying q < (k + 1)/2 is favorable in comparison to the plug-in estimator
(for q > 1 values of k larger than 1 are preferable, whereas k = 1 is preferable, for
q < 1).

Similar results hold for the Student distribution for T (ν,�,μ) in R
3 with 4

degrees of freedom, � = I3 and μ = 0; see Figure 2. In selecting k for Ĥ ∗
N,k,q ,

large values of k are still generally preferable when q > 1.
At this stage, the optimal selection of k in ÎN,k,q depending on q and N remains

an open issue (see Sections 3.2 and 5). We repeated a series of intensive simula-
tions to see how the MSE E(ÎN,k,q − Iq)

2 evolves when k varies, for different
choices of N , q and m. Figure 3 shows the influence of N on the MSE for ÎN,k,q

for different values of q using 10 000 independent repetitions, for f the density of
the standard normal N (0,1) and the normal N (0, I3). For both m = 1 and m = 3
changes in N appear to have a greater influence on N times the MSE for q = 1.1 in
comparison to q = 4. In particular, the figure indicates that for m = 3 and q = 1.1
the MSE decreases more slowly than 1/N . Figure 4 shows the influence of q on
N times the MSE for ÎN,k,q as k varies.

Although our simulations do not reveal a precise rule for choosing k, they
indicate that this choice is not critical for practical applications: taking k be-

FIG. 2. Same information as in Figure 1 but for the Student distribution T (ν,�,μ) in R
3 with 4

degrees of freedom (� = I3, μ = 0, N = 1000).
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FIG. 3. N times the empirical MSE for ÎN,k,q as a function of k (10 000 independent repetitions),

for f the density of the standard normal N (0,1) and N (0, I3) in R
3 for varying N {N = 1000

(dots), 2 000 (stars), 5 000 (circles) and 10 000 (squares)} and q = 1.1 and q = 4.

tween 5 and 10 for q ≤ 2 and increasing from 10 to 20 for q from 2 to 4 gives
reasonably good results for the cases we considered.

4.2. Information spectrum, estimation of var[logf (X)]. We use the method
suggested in Remark 3.2 and estimate S(f ) = var[logf (X)] by ŜN,1 given by
(3.11) from a sample of 50 000 data generated with the Student distribution with
5 degrees of freedom. S(fν) is a decreasing function of ν and S(f4) 
 0.9661,
S(f5) 
 0.8588, S(f6) 
 0.7911; see Section 2.3. The empirical mean and stan-
dard deviation of ŜN,1 obtained from 10 000 independent repetitions are 0.8578
and 0.0269 respectively, indicating that ν can be correctly estimated in this way.

FIG. 4. N times the empirical MSE for ÎN,k,q as a function of k (10 000 independent repetitions),

for f the density of the standard normal N (0,1) and N (0, I3) in R
3 for varying q {q = 0.75 (dots),

q = 0.95 (circles), q = 1.1 (squares) and q = 2 (stars)} and N = 1000.
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FIG. 5. Empirical means of Ĥ∗
N,3,0.75 (solid line) and ĤN,3,1 (dashed line) and two standard

deviations (vertical bars) in a mixture of Student and normal distributions as functions of the mixture
coefficient β for N = 500 (1 000 independent repetitions).

4.3. Estimation of Kullback–Leibler divergence. We use the same Student
data as in 4.2 and estimate the Kullback–Leibler relative entropy K(f,fν) given by
(3.12), using (3.16) for the estimation of H̆1 and (3.9) for the estimation of H1, the
entropy of f . The empirical means of the divergences estimated for ν = 1, . . . ,8
in 10 000 independent repetitions are 0.1657, 0.0440, 0.0119, 0.0021, 0.0000,
0.0012, 0.0038 and 0.0069 [the empirical standard deviations are rather large, ap-
proximately 0.0067 for each ν, but the minimum is at ν = 5 in all the 10 000
cases —notice that the dependence in ν is only through the term (3.16) where fν

is substituted for g]. Again, ν is correctly estimated in this way.

4.4. q-entropy maximizing distributions. We generate N = 500 i.i.d. samples
from the mixture of the three-dimensional Student distribution T (ν, (ν−2)/νI3,0)

with ν = 5 and the normal distribution N (0, I3), with relative weights β and 1−β .
The covariance matrix of both distributions is the identity I3, the Student distribu-
tion is q-entropy maximizing for q = 1 − 2/(ν + m) = 0.75 (see Section 2.2) and
the normal distribution maximizes Shannon entropy (q = 1). Figure 5 presents a
plot of Ĥ ∗

N,k,q for q = 0.75 and ĤN,k,1 as functions of the mixture coefficient β;
both use k = 3 and are averaged over 1 000 repetitions, the vertical bars indicate
two empirical standard deviations. [The values of H ∗

0.75 estimated by plug-in using
the kernel estimator f̃N,i(x) of Example 1 are totally out of the range for Student
distributed variables due to the use of a nonadaptive bandwidth.]

5. Related results and further developments. The paper by Jiménez and
Yukich [19] gives a method for estimating statistical distances between distribu-
tions with densities f and g based on Voronoi tessellations. Given an i.i.d. sam-
ple from f , it relies on the comparison between the Lebesgue measure (volume)
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and the measure for g of the Voronoi cells (polyhedra) constructed from the sam-
ple. Voronoi tessellations are also used in [27] to estimate the Shannon entropy
of f based on an i.i.d. sample. The method requires the computation of the vol-
umes of the Voronoi cells and no asymptotic result is given. Comparatively, the
method based on nearest neighbors does not require any computation of (mul-
tidimensional) integrals. A possible motivation for using Voronoi tessellations
could be the natural adaptation to the shape of the distribution. One may then
notice that the metric used to compute nearest-neighbor distances can be adapted
to the observed sample: for X1, . . . ,XN , a sample having a nonspherical distri-
bution, its empirical covariance matrix �̂N can be used to define a new metric
through ‖x‖2

�̂N
= x��̂−1

N x, the volume Vm of the unit ball in this metric becom-

ing |�̂N |1/2πm/2/�(m/2 + 1).√
N -consistency of an estimator of H1 based on nearest-neighbor distances

(k = 1) is proved by Tsybakov and van der Meulen [39] for m = 1 and suffi-
ciently regular densities f with unbounded support using a truncation argument.
On the other hand,

√
N -consistency of the estimator ÎN,k,q is still an open issue

(notice that the bias approximations of Section 3.1 indicate that it does not hold
for large m). As for the case of spacing methods, where the spacing can be taken
as an increasing function of the sample size N (see, e.g., [12, 40, 41]) it might
be of interest to let k = kN increase with N ; see also [35] and Section 3.2. Prop-
erties of nearest-neighbor distances with kN → ∞ are considered, for instance,
by Devroye and Wagner [7], Liero [24], Loftsgaarden and Quesenberry [26] and
Moore and Yackel [28]. The derivation of an estimate of the asymptotic mean-
squared error of the estimator could be used in a standard way to construct a rule
for choosing k as a function of q , m and N (see Sections 3.1 and 3.2). Numeri-
cal simulations indicate, however, that this choice is not as critical as that of the
bandwidth in a kernel density estimator used for plug-in entropy estimation; see
Section 4.

A central limit theorem for functions h(ρ) of nearest-neighbor distances is
obtained by Bickel and Breiman [4] for k = 1 and by Penrose [30] for k =
kN → ∞ as N → ∞. However, their results do not apply to unbounded func-
tions of ρ, such as h(ρ) = ρm(1−q) [see (3.1)], or h(ρ) = log(ρ) [see (3.9)].
Conditions for the asymptotic normality of ÎN,k,q are under current investiga-
tion.

6. Proofs. The following lemma summarizes some properties of Iq .

LEMMA 1.

(i) If f is bounded, then Iq < ∞ for any q > 1.
(ii) If Iq < ∞ for some q < 1, then Iq ′ < ∞ for any q ′ ∈ (q,1).

(iii) If f is of finite support, Iq < ∞ for any q ∈ [0,1).
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PROOF.

(i) If f (x) < f̄ and q > 1, Iq = ∫
f ≤1 f q + ∫

f >1 f q ≤ ∫
f ≤1 f + f̄ q

∫
f >1 f <

∞.
(ii) If q < q ′ < 1, Iq ′ = ∫

f ≤1 f q ′ + ∫
f >1 f q ′ ≤ ∫

f ≤1 f q + ∫
f >1 f < ∞ if Iq <

∞.
(iii) If μS = μL{x :f (x) > 0} < ∞ and 0 ≤ q < 1, Iq = ∫

f ≤1 f q + ∫
f >1 f q ≤

μS + ∫
f >1 f < ∞. �

The proofs of Theorems 3.1 and 3.2 use the following lemmas.

LEMMA 2 [Lebesgue (1910)]. If g ∈ L1(R
m), then for any sequence of open

balls B(x,Rk) of radius tending to zero as k → ∞ and for μL-almost any x ∈ R
m,

lim
k→∞

1

VmRm
k

∫
B(x,Rk)

g(t) dt = g(x).

LEMMA 3. For any β > 0,∫ ∞
0

xβF (dx) = β

∫ ∞
0

xβ−1[1 − F(x)]dx(6.1)

and ∫ ∞
0

x−βF (dx) = β

∫ ∞
0

x−β−1F(x)dx,(6.2)

in the sense that if one side converges so does the other.

PROOF. See [9], volume 2, page 150, for (6.1). The proof is similar for (6.2).
Define α = −β < 0 and Ia,b = ∫ b

a xαF (dx) for some a, b, with 0 < a < b < ∞.
Integration by parts gives Ia,b = [bαF (b) − aαF (a)] − α

∫ b
a xα−1F(x)dx and,

since α < 0, limb→∞ Ia,b = Ia,∞ = −aαF (a) − α
∫ ∞
a xα−1F(x)dx < ∞. Sup-

pose that
∫ ∞

0 x−βF (dx) = J < ∞. It implies lima→0+ I0,a = 0 and, since I0,a >

aαF (a), lima→0+ aαF (a) = 0. Therefore, lima→0+ −α
∫ ∞
a xα−1F(x)dx = J .

Conversely, suppose that lima→0+ −α
∫ ∞
a xα−1F(x)dx = J < ∞. Since

Ia,∞ < −α
∫ ∞
a xα−1F(x)dx, lima→0+ Ia,∞ = J . �

6.1. Proof of Theorem 3.1. Since the Xi’s are i.i.d.,

EÎN,k,q = Eζ
1−q
N,i,k = E[E(ζ

1−q
N,i,k|Xi = x)],

where the random variable ζN,i,k is defined by (3.2). Its distribution function con-
ditional to Xi = x is given by

FN,x,k(u) = Pr(ζN,i,k < u|Xi = x) = Pr
[
ρ

(i)
k,N−1 < RN(u)|Xi = x

]
,
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where

RN(u) = {u/[(N − 1)VmCk]}1/m.(6.3)

Let B(x, r) be the open ball of center x and radius r . We have

FN,x,k(u) = Pr{k elements or more ∈ B[x,RN(u)]}

=
N−1∑
j=k

(
N − 1

j

)
p

j
N,u(1 − pN,u)

N−1−j

= 1 −
k−1∑
j=0

(
N − 1

j

)
p

j
N,u(1 − pN,u)

N−1−j ,

where pN,u = ∫
B[x,RN(u)] f (t) dt . From the Poisson approximation of binomial

distribution, Lemma 2 gives

FN,x,k(u) → Fx,k(u) = 1 − exp(−λu)

k−1∑
j=0

(λu)j

j !
when N → ∞ for μ-almost any x, with λ = f (x)/Ck , that is, FN,x,k tends to the
Erlang distribution Fx,k , with p.d.f. fx,k(u) = [λkuk−1 exp(−λu)]/�(k). Direct
calculation gives∫ ∞

0
u1−qfx,k(u) du = �(k + 1 − q)

λ1−q�(k)
= f q−1(x)

for any q < k + 1.
Suppose first that q < 1 and consider the random variables (U,X) with joint

p.d.f. fN,x,k(u)f (x) on R×R
m, where fN,x,k(u) = dFN,x,k(u)/du. The function

u → u1−q is bounded on every bounded interval and the generalized Helly–Bray
Lemma (see [25], page 187) implies

EÎN,k,q =
∫

Rm

∫ ∞
0

u1−qfN,x,k(u)f (x) dudx

→
∫

Rm
f q(x) dx = Iq, N → ∞,

which completes the proof.
Suppose now that 1 < q < k + 1. Note that from Lemma 1(i) Iq < ∞. Consider

JN =
∫ ∞

0
u(1−q)(1+δ)FN,x,k(du).

We show that supN JN < ∞ for some δ > 0. From Theorem 2.5.1 of Bierens [5],
page 34, it implies

zN,k(x) =
∫ ∞

0
u1−qFN,x,k(du) → zk(x) =

∫ ∞
0

u1−qFx,k(du) = f q−1(x),

(6.4)
N → ∞
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for μ-almost any x in R
m.

Define β = (1 − q)(1 + δ), so that β < 0, and take δ < (k + 1 − q)/(q − 1) so
that β + k > 0. From (6.2),

JN = −β

∫ ∞
0

uβ−1FN,x,k(u) du

= −β

∫ 1

0
uβ−1FN,x,k(u) du − β

∫ ∞
1

uβ−1FN,x,k(u) du

(6.5)

≤ −β

∫ 1

0
uβ−1FN,x,k(u) du − β

∫ ∞
1

uβ−1 du

= 1 − β

∫ 1

0
uβ−1FN,x,k(u) du.

Since f (x) is bounded, say, by f̄ , we have ∀x ∈ R
m, ∀u ∈ R, ∀N, pN,u ≤

f̄ Vm[RN(u)]m = f̄ u/[(N − 1)Ck]. It implies

FN,x,k(u)

uk
≤

N−1∑
j=k

(
N − 1

j

)
f̄ j uj−k

C
j
k (N − 1)j

≤
N−1∑
j=k

f̄ juj−k

C
j
k j ! = f̄ k

Ck
k k! +

N−1∑
j=k+1

f̄ j uj−k

C
j
k j !

≤ f̄ k

Ck
k k! + f̄ k

Ck
k

N−k−1∑
i=1

f̄ iui

Ci
ki!

≤ f̄ k

Ck
k k! + f̄ k

Ck
k

∞∑
i=1

f̄ iui

Ci
ki!

= f̄ k

Ck
k k! + f̄ k

Ck
k

{
exp

[
f̄ u

Ck

]
− 1

}
,

and thus, for u < 1,

FN,x,k(u)

uk
< Uk = f̄ k

Ck
k k! + f̄ k

Ck
k

{
exp

[
f̄

Ck

]
− 1

}
.(6.6)

Therefore, from (6.5),

JN ≤ 1 − βUk

∫ 1

0
uk+β−1 du = 1 − βUk

k + β
< ∞,(6.7)

which implies (6.4). Now we only need to prove that∫
Rm

zN,k(x)f (x) dx →
∫

Rm
zk(x)f (x) dx = Iq, N → ∞.

But this follows from Lebesgue’s bounded convergence theorem, since zN,k(x) is
bounded (take δ = 0 in JN ).
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6.2. Proof of Theorem 3.2. We shall use the same notations as in the proof of
Theorem 3.1 and write ÎN,k,q = (1/N)

∑N
i=1 ζ

1−q
N,i,k , so that

E(ÎN,k,q − Iq)
2 = E(ζ

1−q
N,i,k − Iq)

2

N
(6.8)

+ 1

N2

∑
i �=j

E{(ζ 1−q
N,i,k − Iq)(ζ

1−q
N,j,k − Iq)}.

We consider the cases q < 1 and q > 1 separately.
q < 1. Note that 2q −1 < q < 1 and Lemma 1(ii) gives Iq < ∞ when I2q−1 <

∞. Consider the first term on the right-hand side of (6.8). We have

E(ζ
1−q
N,i,k − Iq)

2 = E(ζ
1−q
N,i,k)

2 + I 2
q − 2IqEζ

1−q
N,i,k,(6.9)

where the last term tends to −2I 2
q from Theorem 3.1. Consider the first term,

E(ζ
1−q
N,i,k)

2 =
∫

Rm

∫ ∞
0

u2(1−q)fN,x,k(u)f (x) dudx.

Since the function u → u1−q is bounded on every bounded interval, it tends to∫
Rm

∫ ∞
0

u2(1−q)fx,k(u)f (x) dudx = I2q−1
�(k + 2 − 2q)�(k)

�2(k + 1 − q)

for any q < (k + 2)/2 (generalized Helly–Bray lemma, Lóeve [25], page 187).
Therefore, E(ζ

1−q
N,i,k − Iq)

2 tends to a finite limit and the first term on the right-
hand side of (6.8) tends to zero as N → ∞.

Consider now the second term of (6.8). We show that

E{(ζ 1−q
N,i,k − Iq)(ζ

1−q
N,j,k − Iq)}

= E{ζ 1−q
N,i,kζ

1−q
N,j,k} + I 2

q − 2IqEζ
1−q
N,i,k → 0, N → ∞.

Since Eζ
1−q
N,i,k → Iq from Theorem 3.1, we only need to show that

E{ζ 1−q
N,i,kζ

1−q
N,j,k} → I 2

q . Define

FN,x,y,k(u, v) = Pr{ζN,i,k < u, ζN,j,k < v|Xi = x,Xj = y},
= Pr

{
ρ

(i)
k,N−1 < RN(u), ρ

(j)
k,N−1 < RN(v)|Xi = x,Xj = y

}
,

so that

E{ζ 1−q
N,i,kζ

1−q
N,j,k}

(6.10)
=

∫
Rm

∫
Rm

∫ ∞
0

∫ ∞
0

u1−qv1−qFN,x,y,k(du, dv)f (x)f (y) dx dy.
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Let us assume that x �= y. From the definition of RN(u) [see (6.3)] there exist
N0 = N0(x, y,u, v) such that B[x,RN(u)] ∩ B[y,RN(v)] = ∅ for N > N0 and
thus,

FN,x,y,k(u, v) =
N−2∑
j=k

N−2−j∑
l=k

(
N − 2

j

)(
N − 2 − j

l

)

× p
j
N,up

l
N,v(1 − pN,u − pN,v)

N−2−j−l

with pN,u = ∫
B[x,RN(u)] f (t) dt , pN,v = ∫

B[y,RN(v)] f (t) dt . Hence, for N > N0,

FN,x,y,k(u, v) = FN−1,x,k(u) + FN−1,y,k(v) − 1

+
k−1∑
j=0

k−1∑
l=0

(
N − 2

j

)(
N − 2 − j

l

)

× p
j
N,up

l
N,v(1 − pN,u − pN,v)

N−2−j−l .

Similarly to the proof of Theorem 3.1, we then obtain

FN,x,y,k(u, v) → Fx,y,k(u, v) = Fx,k(u)Fy,k(v), N → ∞,(6.11)

for μL-almost any x and y with∫ ∞
0

∫ ∞
0

u1−qv1−qFx,y,k(du, dv) = f q−1(x)f q−1(y),(6.12)

for any q < k + 1. Since the function u → u1−q is bounded on every bounded
interval, (6.10) gives

E{ζ 1−q
N,i,kζ

1−q
N,j,k} →

∫
Rm

∫
Rm

f q(x)f q(y) dx dy = I 2
q , N → ∞

(generalized Helly–Bray lemma, [25], page 187). This completes the proof that

E(ÎN,k,q − Iq)
2 → 0. Therefore, ÎN,k,q

p→ Iq , when N → ∞.
q > 1. Note that from Lemma 1(i) Iq and I2q−1 both exist. Consider the first

term on the right-hand side of (6.8). We have again (6.9) where the last term tends
to −2I 2

q (the assumptions of the theorem imply q < k + 1 so that Theorem 3.1
applies). Consider the first term of (6.9). Define

J ′
N =

∫ ∞
0

u2(1−q)(1+δ)FN,x,k(du),

we show that supN J ′
N < ∞ for some δ > 0. From the assumptions of the theorem,

2q < k+2. Let β = 2(1−q)(1+δ), so that β < 0 and take δ < (k+2−2q)/[2(q−
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1)] so that β + k > 0. Using Lemma 3 and developments similar to the proof of
Theorem 3.1, we obtain

J ′
N = −β

∫ ∞
0

uβ−1FN,x,k(du) ≤ 1 − β

∫ 1

0
uβ−1FN,x,k(du)

≤ 1 − βUk

∫ 1

0
uk+β−1 du = 1 − βUk

k + β
< ∞,

where Uk is given by (6.6). Theorem 2.5.1 of Bierens [5] then implies∫ ∞
0

u2(1−q)FN,x,k(du) →
∫ ∞

0
u2(1−q)Fx,k(du)

= �(k + 2 − 2q)�(k)

�2(k + 1 − q)
f 2q−2(x)

for μ-almost any x, q < (k + 2)/2 and Lebesgue’s bounded convergence theorem
gives E(ζ

1−q
N,i,k)

2 → I2q−1�(k + 2 − 2q)�(k)/�2(k + 1 − q), N → ∞. The first
term of (6.8) thus tends to zero.

Consider now the second term. As in the case q < 1, we only need to show that
E{ζ 1−q

N,i,kζ
1−q
N,j,k} → I 2

q . Define

J ′′
N =

∫ ∞
0

∫ ∞
0

u(1−q)(1+δ)v(1−q)(1+δ)FN,x,y,k(du, dv).

Using (6.11, 6.12), proving that supN J ′′
N < J(x, y) < ∞ for some δ > 0 will then

establish that ∫ ∞
0

∫ ∞
0

u1−qv1−qFN,x,y,k(du, dv)

(6.13)
→ f q−1(x)f q−1(y), N → ∞,

for μ-almost x and y; see Theorem 2.5.1 of Bierens [5]. Using (6.10), if∫
Rm

∫
Rm

J (x, y)f (x)f (y) dx dy < ∞,(6.14)

Lebesgue’s dominated convergence theorem will then complete the proof.
Integration by parts, as in the proof of Lemma 3, gives

J ′′
N = β2

∫ ∞
0

∫ ∞
0

uβ−1vβ−1FN,x,y,k(u, v) dudv,

where β = (1 − q)(1 + δ) < 0. We use different bounds for FN,x,y,k(u, v) on three
different parts of the (u, v) plane.

(i) Suppose that max[RN(u),RN(v)] ≤ ‖x −y‖, which is equivalent to (u, v) ∈
D1 = [0,�] × [0,�] with � = �(k,N,x, y) = (N − 1)VmCk‖x − y‖m. This
means that the balls B[x,RN(u)] and B[y,RN(v)] either do not intersect, or,
when they do, their intersection contains neither x nor y. In that case, we use

FN,x,y,k(u, v) < min[FN−1,x,k(u),FN−1,y,k(v)] < F
1/2
N−1,x,k(u)F

1/2
N−1,y,k(v)
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and

J
′′(1)
N = β2

∫
D1

uβ−1vβ−1FN,x,y,k(u, v) dudv

< β2
[∫ �

0
uβ−1F

1/2
N−1,x,k(u) du

][∫ �

0
vβ−1F

1/2
N−1,y,k(v) dv

]

< β2
[
U

1/2
k

∫ 1

0
uβ−1+k/2 du +

∫ ∞
1

uβ−1 du

]2

= β2
[
U

1/2
k

2

2β + k
− 1

β

]2

< ∞,

where we used the bound (6.6) for FN−1,x,k(u) when u < 1, FN−1,x,k(u) < 1 for
u ≥ 1 and choose δ < (k + 2 − 2q)/[2(q − 1)] so that 2β + k > 0 [this choice of
δ is legitimate since q < (k + 2)/2].

(ii) Suppose, without any loss of generality, that u < v and consider the domain
defined by RN(u) ≤ ‖x−y‖ < RN(v), that is, (u, v) ∈ D2 = [0,�]×(�,∞). The
cases k = 1 and k ≥ 2 must be treated separately since B[y,RN(v)] contains x.

When k = 1, FN,x,y,1(u, v) = FN−1,x,1(u) and we have

J
′′(2)
N = β2

∫
D2

uβ−1vβ−1FN,x,y,1(u, v) dudv

< β2
[∫ �

0
uβ−1FN−1,x,1(u) du

][∫ ∞
�

vβ−1 dv

]

< β2
[
U1

∫ 1

0
uβdu +

∫ ∞
1

uβ−1 du

](
−�β

β

)
(6.15)

= −β

[
U1

β + 1
− 1

β

]
�β

< J (2)(x, y) = −β

[
U1

β + 1
− 1

β

]
V β

mC
β
1 ‖x − y‖mβ,

where we used (6.6) and take δ < (2 − q)/(q − 1) so that β > −1 (this choice of
δ is legitimate since q < 2).

Suppose now that k ≥ 2. We have FN,x,y,k(u, v) < F 1−α
N−1,x,k(u)Fα

N−1,y,k−1(v),
∀α ∈ (0,1). Developments similar to those used for the derivation of (6.6) give for
v < 1

FN−1,y,k−1(v)

vk−1
(6.16)

< Vk−1 = f̄ k−1

Ck−1
k (k − 1)! + f̄ k−1

Ck−1
k

{
exp

[
f̄

Ck

]
− 1

}
.
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We obtain

J
′′(2)
N = β2

∫
D2

uβ−1vβ−1FN,x,y,k(u, v) dudv

< β2
[∫ �

0
uβ−1F 1−α

N−1,x,k(u) du

][∫ ∞
�

vβ−1Fα
N−1,y,k−1(v) dv

]

< β2
[
U1−α

k

∫ 1

0
uβ−1+(1−α)k du +

∫ ∞
1

uβ−1 du

]

×
[
V α

k−1

∫ 1

0
vβ−1+(k−1)α dv +

∫ ∞
1

vβ−1 dv

]

= β2
[

U1−α
k

k(1 − α) + β
− 1

β

][
V α

k−1

(k − 1)α + β
− 1

β

]
< ∞,

where we used (6.6, 6.16) and require β + k(1 −α) > 0 and β + (k − 1)α > 0. For
that we take α = αk = k/(2k − 1). Indeed, from the assumptions of the theorem,
q < (k + 1)/2 < (k2 + k − 1)/(2k − 1) so that we can choose δ < [(k2 + k −
1)− q(2k − 1)]/[(q − 1)(2k − 1)], which ensures that both β + k(1 −αk) > 0 and
β + (k − 1)αk > 0.

(iii) Suppose finally that ‖x − y‖ < min[RN(u),RN(v)], that is, (u, v) ∈ D3 =
(�,∞) × (�,∞). In that case, each of the balls B[x,RN(u)] and B[y,RN(v)]
contains both x and y. Again, the case k = 1 and k ≥ 2 must be distinguished.

When k = 1, FN,x,y,1(u, v) = 1 and

J
′′(3)
N = β2

∫
D3

uβ−1vβ−1FN,x,y,1(u, v) dudv

= β2
[∫ ∞

�
uβ−1 du

]2

= �2β(6.17)

< J(3)(x, y) = V 2β
m C

2β
1 ‖x − y‖2mβ.

When k ≥ 2, FN,x,y,k(u, v) < F
1/2
N−1,x,k−1(u)F

1/2
N−1,y,k−1(v) and

J
′′(3)
N = β2

∫
D3

uβ−1vβ−1FN,x,y,k(u, v) dudv

< β2
[∫ ∞

�
uβ−1F

1/2
N−1,x,k−1(u) du

]

×
[∫ ∞

�
vβ−1F

1/2
N−1,y,k−1(v) dv

]

< β2
[
V

1/2
k−1

2

2β + k − 1
− 1

β

]2

< ∞,
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where we used (6.16) and take δ < [(k+1)−2q]/[2(q −1)] so that k−1+2β > 0
[this choice of δ is legitimate since q < (k + 1)/2].

Summarizing the three cases above, we obtain J ′′
N = J

′′(1)
N +2J

′′(2)
N +J

′′(3)
N with

different bounds for J
′′(2)
N and J

′′(3)
N depending on whether k = 1 or k ≥ 2. This

proves (6.13).
When k ≥ 2, the bound on J ′′

N does not depend on x, y and Lebesgue’s bounded

convergence theorem implies E{ζ 1−q
N,i,kζ

1−q
N,j,k} → I 2

q , which completes the proof of
the theorem; see (6.14).

When k = 1, the condition (6.14) is satisfied if 2β > −1 [see (6.15), (6.17)],
which is ensured by the choice δ < (3−2q)/[2(q −1)] (legitimate since q < 3/2).
Indeed, we can write∫

Rm

∫
Rm

‖x − y‖γ f (x)f (y) dx dy =
∫

Rm
‖x‖γ g(x) dx,

where g(x) = ∫
Rm f (x + y)f (y) dy, and thus (since γ < 0),∫

Rm

∫
Rm

‖x − y‖γ f (x)f (y) dx dy ≤ f̄ 2
∫
‖x‖<1

‖x‖γ dx + I2

= f̄ 2 mVm

γ + m
+ I2,

when γ > −m. When δ < (3−2q)/[2(q−1)], Lebesgue’s dominated convergence
theorem thus implies E{ζ 1−q

N,i,kζ
1−q
N,j,k} → I 2

q , which completes the proof of the
theorem.

6.3. Proof of Corollary 3.2. The existence of H1 directly follows from that of
Iq1 for q1 < 1 and the boundedness of f .

Asymptotic unbiasedness. We have

EĤN,k,1 = E log ξN,i,k = E[E(log ξN,i,k|Xi = x)],
where the only difference between the random variables ζN,i,k (3.10) and
ξN,i,k (3.2) is the substitution of exp[−
(k)] for Ck . Similarly to the proof
of Theorem 3.1, we define FN,x,k(u) = Pr(ξN,i,k < u|Xi = x) = Pr[ρ(i)

k,N−1 <

RN(u)|Xi = x] with now RN(u) = (u/{(N − 1)Vm exp[−
(k)]})1/m. Following
the same steps as in the proof of Theorem 3.1, we then obtain

FN,x,k(u) → Fx,k(u) = 1 − exp(−λu)

k−1∑
j=0

(λu)j

j ! , N → ∞,

for μL-almost any x, with λ = f (x) exp[
(k)].
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Direct calculation gives
∫ ∞

0 log(u)Fx,k(du) = − logf (x). We shall use again
Theorem 2.5.1 of Bierens [5], page 34, and show that

JN =
∫ ∞

0
| log(u)|1+δFN,x,k(du) < ∞,(6.18)

for some δ > 0, which implies∫ ∞
0

log(u)FN,x,k(du) →
∫ ∞

0
log(u)Fx,k(du) = − logf (x), N → ∞,

for μL-almost any x. The convergence∫
Rm

∫ ∞
0

log(u)FN,x,k(du)f (x) dx → H1, N → ∞,

then follows from Lebesgue’s bounded convergence theorem.
In order to prove (6.18), we write

JN =
∫ 1

0
| log(u)|1+δFN,x,k(du) +

∫ ∞
1

| log(u)|1+δFN,x,k(du).(6.19)

Since f is bounded, we can take q2 > 1 (and smaller than k + 1) such that∫ ∞
0 u1−q2FN,x,k(du) < ∞; see (6.7). Since | log(u)|1+δ/u1−q2 → 0 when u → 0,

it implies that the first integral on the right-hand side of (6.19) is finite. Similarly,
since, by assumption, Iq1 exists for some q1 < 1,

∫ ∞
0 u1−q1FN,x,k(du) < ∞ and

| log(u)|1+δ/u1−q1 → 0, u → ∞, implies that the second integral on the right-
hand side of (6.19) is finite, which completes the proof that EĤN,k,1 → H1 as
N → ∞.

L2 consistency. Similarly to the proof of asymptotic unbiasedness, we only
need to replace ζN,i,k (3.10) by ξN,i,k (3.2) and Ck by exp[−
(k)] in the proof of
Theorem 3.2. When we now compute

E(ĤN,k,1 − H1)
2 = E(log ξN,i,k − H1)

2

N
(6.20)

+ 1

N2

∑
i �=j

E{(log ξN,i,k − H1)(log ξN,j,k − H1)},

in the first term, E(log ξN,i,k − H1)
2 tends to∫

Rm
log2 f (x)f (x) dx − H 2

1 + 
̇(k) = var[logf (X)] + 
̇(k),

where 
̇(z) is the trigamma function, 
̇(z) = d2 log�(z)/dz2, and for the second
term the developments are similar to those in Theorem 3.2. For instance, equa-
tion (6.13) now becomes

∫ ∞
0

∫ ∞
0 logu logvFN,x,y,k(du, dv) → logf (x) logf (y),

N → ∞, for μ-almost x and y. We can then show that E{log ξN,i,k log ξN,j,k} →
H 2

1 , so that E(ĤN,k,1 − H1)
2 → 0, N → ∞.
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