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This paper introduces a new class of robust estimators for the linear
regression model. They are weighted least squares estimators, with weights
adaptively computed using the empirical distribution of the residuals of an
initial robust estimator. It is shown that under certain general conditions
the asymptotic breakdown points of the proposed estimators are not less
than that of the initial estimator, and the finite sample breakdown point
can be at most 1/n less. For the special case of the least median of
squares as initial estimator, hard rejection weights and normal errors and
carriers, the maximum bias function of the proposed estimators for point-
mass contaminations is numerically computed, with the result that there is
almost no worsening of bias. Moreover—and this is the original contribution
of this paper—if the errors are normally distributed and under fairly general
conditions on the design the proposed estimators have full asymptotic
efficiency. A Monte Carlo study shows that they have better behavior than
the initial estimators for finite sample sizes.

1. Introduction. In this paper we address the problem of robust and efficient
estimation in the linear regression model. It is well known that the least squares
estimator (LSE) of the regression parameter θ has the smallest variance among
unbiased estimates when the errors are normally distributed. However, the LSE
is extremely sensitive to atypical data. A single observation placed far enough
from the bulk of the data can carry the LSE arbitrarily far from θ , no matter how
big the sample size is. This lack of stability of the LSE is a serious problem in
applications. Thus several estimators that possess some stability in variance and
bias under deviations from the regression model have been proposed over the last
30 years. However, some loss in efficiency under the normal model has been the
price of this stability.

The least median of squares estimator (LMSE), proposed by Hampel (1975)
and further developed by Rousseeuw (1984), was the first equivariant regression
estimator that attained the maximum asymptotic breakdown point 1/2 (as defined
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in Section 3). But this estimator has an important drawback: its rate of convergence
is n−1/3 [see Davies (1990)] and hence its relative efficiency with respect to
the LSE is 0. To obtain a more efficient estimator under normality, Rousseeuw
and Leroy (1987) suggested computing a weighted LSE (WLSE), skipping those
observations whose LMSE standardized absolute residuals are greater than some
fixed cutoff value. However, He and Portnoy (1992) showed that, even though the
weighting step does reduce variability, the rate of convergence remains the same
and hence the asymptotic efficiency is still 0.

S-estimators, proposed by Rousseeuw and Yohai (1984), were the first high-
breakdown regression estimators to achieve the usual n1/2-consistency under ap-
propriate regularity conditions. However, Hössjer (1992) showed that S-estimators
cannot achieve simultaneously high breakdown point and high efficiency under the
normal model. Regression estimators that can attain a nearly optimal efficiency and
maximum breakdown point at the same time are MM-estimators [Yohai (1987)]
and τ -estimators [Yohai and Zamar (1988)]. However, tuning up these estimators
for high efficiency will be accompanied by an increase in bias as an unpleasant
side-effect. And, in any case, they will never achieve maximum asymptotic effi-
ciency and positive breakdown point simultaneously.

We introduce in this paper a new class of estimators that simultaneously attain
the maximum breakdown point and full asymptotic efficiency under normal errors.
They are WLS estimators computed from an initial robust estimator, but unlike
Rousseeuw and Leroy’s proposal, the cutoff values are adaptively calculated from
the data. We call these new estimators REWLSEs (robust and efficient weighted
least squares estimators).

A different approach to robust and efficient estimation in linear regression
models is presented in Agostinelli and Markatou (1998). They also proposed
a WLSE computed from an initial robust estimator, but their weighting scheme is
based on a measure of disparity between the density of the errors under the model
and the smoothed empirical density of the residuals. The method we propose is
based on the empirical distribution instead, so it is theoretically more tractable.

This article is organized as follows. The REWLS estimator is defined in Sec-
tion 2. Sections 3 and 4 analyze its robust and asymptotic behavior, respectively.
A Monte Carlo study is reported in Section 5. Proofs of the main results are given
in the Appendices, although the reader is referred to Gervini and Yohai (2000) for
complete technical details.

2. The REWLS estimator. We are given a random sample (x1, y1), . . . ,

(xn, yn), where xi is a vector of p explanatory variables and yi is the response
variable. We assume they are linked by the linear relationship

yi = x′
iθ + ui,(1)

where θ ∈ R
p is the regression parameter we will primarily focus on, and the error

terms {ui} are i.i.d. unobservable random variables with unknown distribution
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F0(·/σ ) for some scale parameter σ > 0. Most of the results in this article will
assume that F0 is symmetric about 0. This assumption, which is usual in many
papers on robust regression, simplifies the theoretical treatment of the consistency
and asymptotic normality of the estimators. Moreover, one of the main applications
of our theory is the construction of highly robust estimates with full asymptotic
efficiency under normal errors, and for this application the symmetry assumption
certainly holds.

Consider a pair of initial robust estimators of regression and scale, T0n and Sn,
respectively. If Sn > 0, the standardized residuals are defined as

ri = yi − x′
iT0n

Sn
.

A large value of |ri| would suggest that (xi , yi) is an outlier. Assuming a normal-
error model, it seems reasonable to consider as outliers those points with |ri | ≥ 2.5,
say. Following this idea, Rousseeuw and Leroy (1987) defined

wi =
{

1, if |ri| < t0,

0, if |ri| ≥ t0,
(2)

with t0 = 2.5, and computed a WLS estimator T1n = (X′WX)−1X′WY, where
W = diag(w1, . . . ,wn) and Y = (y1, . . . , yn)

′. It is known that this weighting
step improves the efficiency under normal errors and it maintains the breakdown
point of the initial estimator. However, even if observations perfectly followed the
assumed linear model, there would be a small probability that the standardized
absolute residuals exceeded any given fixed cutoff value. Thus a WLSE computed
with weights as in (2) cannot be asymptotically efficient. Of course, a very large
cutoff value t0 could be used in (2) so that for any sample size to appear in practice
no observations would be downweighted, and the WLSE would still maintain the
breakdown point of the initial estimator. But such a choice of t0 would have an
adverse effect on the maximum bias of the estimator (as defined in Section 3).

The estimator we propose uses adaptive cutoff values. These cutoff values are
constructed in such a way that the resulting WLSE is asymptotically efficient under
the normal-error model and is robust under some deviations from the linear model.
In particular, it maintains the breakdown point of the initial estimator and it does
not worsen the maximum bias function too much, as we shall see in Section 3.

The adaptive cutoff values are defined as follows. Let the empirical distribution
function of the standardized absolute residuals be

F+
n (t) = 1

n

n∑
i=1

I (|ri| ≤ t).

To detect outliers, we could compare F+
n (t) with the distribution function of the

absolute errors under the model, F+
0 (t). If F+

n (t) < F+
0 (t), the sample proportion

of absolute residuals that exceed t is greater than the theoretical proportion.
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If this happens for a large t , it means that outliers are present in the sample.
However, since the actual distribution of the errors is never known in practice,
a hypothetical F must be used instead of F0. Typically, F = � will be chosen,
although we will only require that F have finite variance. As a measure of the
proportion of outliers in the sample, we then define

dn = sup
t≥η

{F+(t) − F+
n (t)}+,(3)

where {·}+ denotes the positive part, F+ denotes the distribution of |X| when
X ∼ F and η is some large quantile of F+. A value η = 2.5 as chosen by Rous-
seeuw and Leroy seems reasonable. Note that if |r|(1) ≤ · · · ≤ |r|(n) are the order
statistics of the standardized absolute residuals and i0 = max{i : |r|(i) < η}, then

dn = max
i>i0

{
F+(|r|(i))− (i − 1)

n

}+
.

Thus we eliminate those ndn� observations with largest standardized absolute
residuals (here a� is the largest integer less than or equal to a). The resulting
cutoff value is

tn = min
{
t :F+

n (t) ≥ 1 − dn
}
,(4)

that is, tn = |r|(in) with in = n − ndn�. Observe that in > i0 and tn > η. With
this adaptive cutoff value, we define weights of the form wi = w(|ri|/tn) and the
REWLSE is

T1n =
{
(X′WX)−1X′WY, if Sn > 0,

T0n, if Sn = 0.

The most common weight function is the hard-rejection weight w(u) = I (u < 1),
as in (2). But, in general, we will only require:

W1. The weight function w: [0,∞) → [0,1] is nonincreasing, right continuous,
continuous in a neighborhood of 0, w(0) = 1, w(u) > 0 for 0 < u < 1 and
w(u) = 0 for u ≥ 1.

Property W1 ensures that wi = 0 if |ri | ≥ tn, so that observations with large
residuals are completely eliminated in the weighting step. Since tn remains boun-
ded in the presence of outliers, as we show in Section 3, this implies that T1n
keeps the finite sample and asymptotic breakdown points of T0n. On the other
hand, when F0 is of unbounded support but of lighter tails than F , tn → ∞
under the model and then w(|ri|/tn) → 1. The same happens if F0 is of bounded
support with lighter tails than F and w(u) is the hard-rejection function. This
will eventually make T1n asymptotically equivalent to the LSE under the model.
Precise conditions for this to happen are given in Section 4. But we will analyze
first the robust theoretical properties of the REWLSE.
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3. Robustness of the REWLSE. In this section we study the behavior of
the REWLSE under certain deviations from the central model. First, we analyze
asymptotic robust properties as given by the maximum bias function and the
influence function. In Section 3.4 we turn our attention to finite-sample robust
properties, specifically the finite-sample breakdown point.

3.1. Maximum bias properties. We say that the random vector (X, Y ) follows
the central model if

(X, Y ) ∼ H0 with H0(x, y) = G0(x)F0
{
(y − x′θ)/σ

}
.(5)

The kind of departures from (5) we will consider consist of distributions in the
gross-error neighborhood

Hε = {
H = (1 − ε)H0 + εH ∗ :H ∗ any distribution on R

p+1}.
Although Hε is not a neighborhood in the topological sense, this definition allows
an intuitive interpretation: we can think of H ∈ Hε as a distribution that produces
a fraction ε of outliers. We then assume 0 ≤ ε < 0.5, so the majority of the data
will always follow the central model (5).

Most estimates of θ can be defined by functionals. Let T be an R
p-valued

functional defined on a subset of distributions in R
p+1 which includes all the

empirical distributions and the contamination neighborhoods Hε for 0 ≤ ε <

0.5. Given a sample (x1, y1), . . . , (xn, yn) with empirical distribution Hn, the
estimate of θ associated with T is Tn = T(Hn). Similarly, scale estimates can
be defined by nonnegative functionals S defined on a subset of distributions
in R. A regression estimating functional T(H) is Fisher consistent if T(H0) = θ .
Another desirable property of regression estimating functionals is regression,
affine and scale equivariance. This equivariance property means that, given (X, Y )

that satisfies (5), b ∈ R
p , a nonsingular A ∈ R

p×p and a ∈ R, if we define
Y ∗ = aY + X′b and X∗ = A′X and H ∗

0 denotes the distribution of (X∗, Y ∗),
then T(H ∗

0 ) = A−1{aT(H0) + b}. Note that (X∗, Y ∗) satisfies model (5) with
regression parameter θ∗ = A−1(aθ + b), so this invariance requirement is natural.
For a scale functional S it is natural to require scale equivariance; that is, if Y has
distribution R and R∗ is the distribution of Y ∗ = aY , then S(R∗) = |a|S(R).

The distance between the regression estimator T(H) and the target parameter θ
is given by the asymptotic bias

b(T,H) = {(
T(H)− θ

)′
C(G0)

(
T(H) − θ

)}1/2
/S(R0),(6)

where C(G0) is an affine equivariant scatter functional and R0 = F0(·/σ ). This
measure of bias is invariant under the transformations described in the preceding
paragraph when T is Fisher consistent. An invariant measure of bias for the scale
estimator is given by

b(S,RH ) = ∣∣log
(
S(RH )/S(R0)

)∣∣,(7)
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where RH is the distribution of Y −X′T(H) when (X, Y ) ∼ H . Note that b(S,RH )

accounts for both explosion and implosion of the scale estimator.
As a measure of the outlier resistance of T, we consider the worst possible bias

produced by a distribution H ∈ Hε. This is given by the maximum bias (maxbias)
function

BT(ε) = sup
{
b(T,H) :H ∈ Hε

}
.(8)

The maxbias function for the scale estimator is defined analogously. We consider
that an estimator is robust if BT(ε) < ∞ for some ε > 0. Since any equivariant
estimator will explode for ε large enough, the asymptotic breakdown point is
defined as

ε∗
T = inf

{
ε :BT(ε) = ∞}

.

To specify the functional form of the REWLSE, let us consider a random vector
(X, Y ) with joint distribution H and initial estimators T0(H) and S0(RH ) of
regression and scale. If S0(RH ) = 0, then we set T1(H) = T0(H). If S0(RH ) > 0,
then the standardized residual is

rH (X, Y ) = Y − X′T0(H)

S0(RH )

and the distribution function of the standardized absolute residual is

F+
H (t) = PH

(|rH (X, Y )| ≤ t
)
.(9)

The functional forms of (3) and (4) are then

d(H) = sup
t≥η

{F+(t) − F+
H (t)}+,

t (H) = min{t :F+
H (t) ≥ 1 − d(H)}.

(10)

The definition of d(H) automatically implies that t (H) > η. The weights are of
the form wH(X, Y ) = w(|rH (X, Y )|/t (H)) with a function w(u) that satisfies W1.
Thus the REWLSE is defined as

T1(H) = arg min
t

EH

{
wH(X, Y )(Y − X′t)2}.(11)

Note that if

γ (H) = arg min
t

EH

{
wH(X, Y )

(
Y − X′T0(H) − X′t

)2}
,

then

T1(H) = T0(H) + γ (H).

In Gervini and Yohai (2000) it is proved that EH {wH(X, Y )(Y − X′T0(H))2} is
finite for any H ∈ Hε with ε < min{ε∗

T0
, ε∗

S0
} and hence γ (H) is well defined.

When EH {wH(X, Y )‖X‖2} is infinite it is more complicated to obtain an explicit
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expression for γ (H), but in this paper we will not need it anyway. The interested
reader can find it in Gervini and Yohai (2000). Assuming that the estimating
functional T0 is Fisher consistent and F0 is symmetric, the Fisher consistency
of T1 follows from (11). The equivariance of T1 follows from the equivariance
of T0 and S0.

Theorem 3.1 shows that the asymptotic breakdown point of the REWLSE is
not less than those of the initial regression and scale estimators, and therefore it
attains the maximum 50% if the initial estimators are properly chosen. The proof
of Theorem 3.1 can be found in Gervini and Yohai (2000). We make the following
assumptions:

R1. PG0(X
′v = 0) < 1 for every v ∈ R

p;
R2. ( = EG0(XX′) is finite and positive definite;
R3. F0 is strictly increasing.

THEOREM 3.1. If the hypothetical distribution F has finite variance and
R1–R3 and W1 hold, then the asymptotic breakdown point of the REWLSE is
ε∗

T1
≥ min{ε∗

T0
, ε∗

S0
}.

For a more complete description of the robustness properties of the REWLSE,
we would need to compute the maxbias function for all ε between 0 and ε∗

T1
.

For some estimators this is possible [see, for instance, Martin, Yohai and Zamar
(1989)]. Unfortunately, we were not able to do that for the REWLSE. However,
when the initial estimator is the LMS, it is possible to evaluate numerically the
maxbias function for point-mass contaminations. This is discussed next.

3.2. Point-maxbias function when the LMS is the initial estimator. To illustrate
the effect of the REWLS weighting scheme in the bias of the initial estimator, we
consider the case of the LMS as initial estimator. This special situation is important
because the maximum bias of the LMSE is close to the minimum maxbias
attainable within the class of residual admissible estimators [see Yohai and Zamar
(1993)]. Besides, the LMSE is perhaps the most popular robust estimator among
practitioners, despite its shortcomings.

To obtain a numerically computable approximation of BT(ε), we restrict our-
selves to a narrower neighborhood of H0, where only point-mass contaminations
are allowed, and consider the point-maxbias function

B∗
T(ε) = sup

{
b
(
T, (1 − ε)H0 + ε)z

)
: z ∈ R

p+1}.(12)

For the LMSE the maxbias and the point-maxbias functions coincide. This is
proved in Martin, Yohai and Zamar (1989), where an explicit expression for
BLMS(ε) is given. Here we take H0 as the multivariate normal, η = 2.5 and
the hard-rejection weight w(u) = I (u < 1). See Gervini and Yohai (2000) for
a detailed explanation of how (12) is computed. Table 1 displays some values
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TABLE 1
Maximum biases for point-mass contaminations

Percentage Estimator
contamination LMS REWLS τ

0.05 0.53 0.54 0.63
0.10 0.83 0.85 0.95
0.15 1.14 1.17 1.30
0.20 1.52 1.56 1.62

of (12) for LMSE and REWLSE. Maxbiases of the WLSE with cutoff value
t0 = 2.5 were also computed and they coincide with those of the REWLSE (up to
two decimal places). We also include the maximum biases of a τ -estimator with
0.5 breakdown point and 0.95 relative efficiency [see Table 1 in Yohai and Zamar
(1988)].

We see in Table 1 that the maximum biases of the REWLSE exceed those of the
LMSE only slightly, and in all cases they are less than the maximum biases of the
τ -estimator. In conclusion, we can say that the proposed weighting scheme does
not affect the asymptotic bias of the initial estimator very seriously. In any case,
the small losses in asymptotic bias are compensated by the gains in asymptotic
efficiency. A similar behavior was observed for small samples, as the Monte Carlo
study reported in Section 5 shows.

3.3. Influence function. Besides the maxbias function, a useful tool for
evaluating stability of an estimator is the influence function. Given (x, y) ∈ R

p+1

and )(x,y), the corresponding point-mass distribution, let Hε = (1 − ε)H0 +
ε)(x,y). The influence function of T at (x, y) is defined as

I FT(x, y) = lim
ε↓0

1

ε

{
T(Hε)− θ

}
.

The book by Hampel, Ronchetti, Rousseeuw and Stahel (1986) develops a theory
of robust estimation based on the influence function, focusing on bounded-
influence estimators. This approach, however, leaves out many estimators with
good robust properties. We will say more on this after Theorem 3.2.

Theorem 3.2 gives the influence function for a general WLSE computed with
cutoff values t (Hε) that converge to a certain t0 when ε goes to 0. To apply this
result to the REWLSE, we need to know the limiting behavior of d(H) and t (H).
Let

d0 = sup
t≥η

{F+(t) − F+
0 (t)}+,

t0 = min{t :F+
0 (t) ≥ 1 − d0}.

(13)

Observe that t0 ≥ η.
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LEMMA 3.1. Let d(H) and t (H) be as in (10). If T0 and S0 are Fisher
consistent, limε↓0 BT0(ε) = limε↓0 BS0(ε) = 0 and F0(t) is continuous, then:

(i) limε↓0 supH∈Hε
‖F+

0 − F+
H ‖∞ = 0, where ‖ · ‖∞ denotes the sup norm of

functions.
(ii) limε↓0 supH∈Hε

|d(H) − d0| = 0.
(iii) If t0 = ∞, limε↓0 infH∈Hε t (H) = ∞. If t0 < ∞ and F0 is strictly

increasing in its support, then limε↓0 supH∈Hε
|t (H) − t0| = 0.

For Theorem 3.2 we require additional smoothness properties:

W2. The function h1(s, t) = ∫
w(s|u − t|) dF0(u/σ ) is continuous at (s,0) for

every s ≥ 0. Let

τ1 = h1

(
1

σ t0
,0
)

=
∫

w

( |u|
t0

)
dF0(u).(14)

W3. The function h2(s, t) = ∫
w(s|u − t|)u dF0(u/σ ) is differentiable in the

variable t for every s ≥ 0 and ∂h2/∂t is continuous and bounded in both
variables. Let

τ2 = ∂h2

∂t

(
1

σ t0
,0
)
.(15)

Condition W2 holds if w(u) is continuous or if F0(u) is absolutely continuous.
Condition W3 holds if w(u) is continuously differentiable, in which case

τ2 = −
∫

w′
( |u|

t0

) |u|
t0

dF0(u),

or if F0(u) has a continuously differentiable density function f0(u), in which case

τ2 =
∫

w

( |u|
t0

){
f0(u) + uf ′

0(u)
}
du

= τ1 +
∫

w

( |u|
t0

)
uf ′

0(u) du.

THEOREM 3.2. Let T1 (H) be a WLSE computed with arbitrary cutoff values
t (H) such that limε↓0 t (Hε) = t0. If assumptions R2 and W1–W3 hold, the
initial estimators satisfy limε↓0 T0(Hε) = θ and limε↓0 S0(RHε) = σ and the error
distribution F0 is symmetric, then the influence function of T1 is

I FT1(x, y) = τ−1
1

{
w

( |y − x′θ |
σ t0

)
(−1x(y − x′θ) + τ2I FT0(x, y)

}
,(16)

where I FT0 is the influence function of the initial estimator and τ1 is given by (14)
and τ2 by (15).
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When t0 = ∞ we have τ1 = 1 and τ2 = 0, so the influence function of the
REWLSE coincides with that of the LSE and then it is unbounded. In spite of
that, the REWLSE is nonetheless robust. Yohai and Zamar (1993) proved that
residual-admissible estimators (a broad class that includes, among others, the
LMSE and S-estimators) share with the REWLSE this characteristic of positive
(even maximum) asymptotic breakdown point but unbounded influence. Other
classes of estimators, such as GM-estimators, have bounded influence but their
breakdown points tend to 0 when p increases. Hence bounded influence is neither
a necessary nor a sufficient condition for robustness.

3.4. Finite-sample breakdown point. Section 3.1 analyzes the robustness of
the REWLSE from an asymptotic point of view. In particular, Theorem 3.1 gives
a lower bound for the asymptotic breakdown point of the REWLSE under the
gross-error model. An analogous but nonasymptotic measure of robustness is
the finite-sample replacement breakdown point, defined by Donoho and Huber
(1983) as follows. Given a random sample (x1, y1), . . . , (xn, yn), let zi = (xi , yi)

and Z = {z1, . . . , zn}. For m ≤ n, let Zm be the set of all corrupted samples Z∗
obtained after replacing m data points of Z with arbitrary values. The finite-
sample replacement breakdown point of a regression estimator Tn is defined as
the smallest fraction of outliers that can carry the estimator beyond all bounds.
Formally,

ε∗
n(Tn,Z) = min

1≤m≤n

{
m

n
: sup

Z∗∈Zm

‖Tn(Z∗)‖ = ∞
}
.

The following theorem gives a lower bound for ε∗
n(T1n,Z) when Z is in general

position and Sn is a scale M-estimator. We recall [see Rousseeuw and Yohai
(1984)] that Z is said to be in general position if no hyperplane in R

p can contain
more than p points of {x1, . . . ,xn}. Given u = (u1, . . . , un) ∈ R

n, an M-estimator
of scale Sn is defined as

Sn(u) = inf

{
s > 0 :

1

n

n∑
i=1

ρ

(
ui

s

)
≤ b

}
,(17)

where ρ is even, nonnegative and nondecreasing for u ≥ 0 and ρ(0) = 0. Usually,
b is chosen equal to E�(ρ) so as to make Sn consistent for σ when u1, . . . , un is
a random sample of an N(0, σ 2) distribution.

THEOREM 3.3. Assume that W1 is satisfied, F has finite variance and the
sample Z is in general position. Also assume that Sn is a scale M-estimator based
on a ρ-function such that ρ(u) = a if |u| ≥ c, where c < η. Then

ε∗
n(T1n,Z) ≥ min

{
ε∗
n(T0n,Z), b/a,1 − b/a − p/n

}
.
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Observe that if b/a = (n − p)/2n this theorem implies that ε∗
n(T1n,Z) ≥

min{ε∗
n(T0n,Z), (n − p)/2n}. Since, for any regression equivariant estimate Tn,

ε∗
n(Tn,Z) ≤ ((n − p)/2� + 1)/n [see Rousseeuw and Leroy (1987)], we get
ε∗
n(T1n,Z) ≥ ε∗

n(T0n,Z)− 1/n for any equivariant estimator T0n.
A popular scale estimator is the standardized MAD defined by

Sn(u1, . . . , un) = median(|u1|, . . . , |un|)/�−1(3/4),

which is the scale M-estimator corresponding to the choices

ρ(u) = I
(|u| ≥ �−1(3/4)

)
,

b = 1/2, a = 1 and c = �−1(3/4). Note that c is less than η = 2.5 as required
by Theorem 3.3. In this case b/a = 1/2, which is close to the optimal value
(n − p)/2n for large n. Another common scale M-estimator corresponds to Tu-
key’s biweight function

ρc(u) =



u2

2

(
1 − u2

c2
+ u4

3c4

)
, if |u| ≤ c,

c2

6
, if |u| > c.

(18)

The tuning constant that simultaneously makes b/a = 1/2 and b = E�(ρc) is
c = 1.547, which is also less than η = 2.5.

4. Asymptotics of the REWLSE. This section studies the asymptotic behav-
ior of the REWLSE under the central model. We show that, under fairly gen-
eral assumptions on the error distribution F0 and the design space, the REWLSE
is asymptotically equivalent to the LSE and hence asymptotically efficient for
the normal-error model. We assume throughout this section that the sample
(x1, y1), . . . , (xn, yn) follows the central linear model (1). The explanatory vari-
ables are assumed to be deterministic. However, all the results are still valid if
x1, . . . ,xn is a random sample stochastically independent of the errors, because
the assumptions on the design would hold with probability 1.

We consider first the regular case of T0n being n1/2-consistent and asymptot-
ically linear. In that situation convergence in probability of the cutoff values is
enough to ensure n1/2-consistency and asymptotic normality of the REWLSE. The
asymptotic behavior of the cutoff values (4) is established in Lemma 4.1, which
makes use of the following assumptions:

A1. T0n → θ and Sn → σ in probability;
A2. limK→∞ lim supn−1∑n

i=1 I (‖xi‖ >K) = 0.

These assumptions are very general. Condition A1 should be satisfied under
general conditions by all estimators used in practice. For the special case of
S-estimators, see Theorem 3 of Davies (1990). Condition A2 is always satisfied
by random carriers with probability 1.
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LEMMA 4.1. If A1 and A2 are satisfied and F0 is continuous, then:

(i) ‖F+
n − F+

0 ‖∞ = oP (1).
(ii) If dn is as in (3) and d0 as in (13), then dn → d0 in probability.

(iii) If, in addition, F0 is strictly increasing in its support and tn is as in (4)
and t0 as in (13), then also tn → t0 in probability.

Lemma 4.1 implies that if the tails of F0 are lighter than the tails of the
assumed distribution F , then no observations are downweighted in the limit,
and the REWLSE becomes asymptotically equivalent to the LSE as shown in
Theorem 4.1. Note, however, that if F0 has heavier tails than the normal, then
the LSE is not a good estimator. For this reason we recommend taking F = �.

To obtain the asymptotic distribution of the REWLSE, we need to assume:

A3. The initial regression estimator admits the asymptotic linear expansion

T0n − θ = 4−1
n

1

n

n∑
i=1

ψ

(
ui

σ

)
xi + oP

(
n−1/2),

where ψ is a bounded odd function and (
1/2
n 4−1

n (
1/2
n converges in

probability to a symmetric positive-definite matrix 4, where (n is as in A4.
A4. Let (n = n−1∑n

i=1 xix′
i . Then the sequence of smallest eigenvalues of (n is

bounded away from 0.
A5. limK→∞ lim supn−1∑n

i=1 ‖xi‖2I (‖xi‖ >K) = 0.
W4. Let

h3(s, t) =
∫

w(s|u− t|)uψ(u/σ ) dF0(u/σ ),

h4(s1, t1, s2, t2) =
∫

w(s1|u− t1|)w(s2|u − t2|)u2 dF0(u/σ ).

These functions are bounded and continuous at (s,0) and (s1,0, s2,0),
respectively, for every nonnegative s, s1 and s2.

Assumption A5 implies the condition called D1 by Davies (1990). Lemma B.1
in Appendix B shows that if T0n is consistent and solves the estimating equation

n∑
i=1

ψ

(
yi − x′

iT0n

Sn

)
xi = 0,(19)

then, under some regularity conditions on ψ , A3 is satisfied with

4 = σ

EF0(ψ
′)

I.(20)
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The S- and τ -estimators are defined as global minimizers of complicated
nonconvex functions. Except for very small p, finding the global minimum is
computationally impractical or even infeasible. However, (19) is satisfied by any
local minimum of an S-estimating function. Yohai and Zamar (1988) proved
that local-minimum τ -estimators (including S-estimators) with high breakdown
can be found by using an iterative weighted least squares algorithm starting
with a consistent and high-breakdown regression estimator. Adrover, Bianco and
Yohai (2001) showed that τ -estimators computed by a subsampling algorithm
as proposed in Rousseeuw and Leroy (1987) are consistent and have the same
breakdown point as the exact τ -estimator with probability as close to 1 as desired,
provided enough subsamples are taken.

We state Theorems 4.1 and 4.3 below in terms of arbitrary cutoff values, not
necessarily those given by (4). Our purpose in doing this is twofold: first to broaden
the applicability of the results to include other types of WLSE’s and second
to pinpoint the hypotheses that are really necessary in each case. For instance,
continuity of F0 is not necessary for these theorems if w is smooth enough. For
the REWLSE, though, we need the continuity of the error distribution to ensure
convergence in probability of the cutoff values.

THEOREM 4.1. Let {T1n} be a sequence of WLSE’s computed with arbitrary
cutoff values {tn} that converge in probability to some t0 (which may be infinite).
Suppose that

V (t0) = σ 2EF0

{
w

( |U |
t0

)
U I + τ2ψ(U)

1

σ
4

}2

(21)

is finite, with τ2 as in (15). If F0 is symmetric and conditions W1–W4, A1 and
A3–A5 are satisfied, then

√
n(1/2

n (T1n − θ) →D N
(
0,V (t0)/τ

2
1
)
,(22)

with τ1 as in (14). Moreover, when t0 = ∞ condition A3 is not necessary and (22)
holds, provided T0n − θ = OP (n

−1/2).

According to Theorem 4.1, when t0 = ∞ the asymptotic variance of
√
n(

1/2
n ×

(T1n − θ) comes down to σ 2EF0(U
2)I and then the WLSE is asymptotically

equivalent to the LSE. In such situations Theorem 4.1 is implicitly assuming
that F0 has finite variance. In the specific case of the REWLSE, when F0 is strictly
increasing in its support the asymptotic cutoff value is t0 = (F+

0 )−1(1 − d0),
according to Lemma 4.1. If the support of F0 is unbounded, t0 = ∞ only if d0 = 0.
This in turn happens only if the tails of F0 are lighter than the tails of the assumed
distribution F , so EF0(U

2) will automatically be finite if F is chosen with finite
variance. If F0 is of bounded support, the asymptotic cutoff t0 = (F+

0 )−1(1) is
finite and the REWLSE is asymptotically equivalent to the LSE only when hard-
rejection weights are used.



596 D. GERVINI AND V. J. YOHAI

Let us now turn to the case where the initial regression estimator is not n1/2-
consistent. This is the case of the LMSE, which is only n1/3-consistent, although
the companion scale estimator is still n1/2-consistent [see Theorems 4 and 5 in
Davies (1990)]. He and Portnoy (1992) proved that a WLSE with finite cutoff
value converges at the same rate as the initial estimator. Theorem 4.2 shows that
the REWLSE is able to produce the n−1/2 rate of convergence when t0 = ∞. The
following lemma is necessary for the proof of Theorem 4.2.

LEMMA 4.2. Suppose that the error distribution F0 is symmetric and
absolutely continuous, with a differentiable density function f0 such that f ′

0 and
u2f ′

0(u) are bounded. If A5 is satisfied and the initial estimators T0n and Sn are
nτ -consistent with τ ≥ 1/4, then ‖F+

n − F+
0 ‖∞ = OP (n

−1/2).

For Theorem 4.2 we need a third-moment condition on the design:

A6. limK→∞ lim supn−1∑n
i=1 ‖xi‖3I (‖xi‖ >K) = 0.

THEOREM 4.2. Let {T1n} be a sequence of REWLSEs, computed with the
cutoff values {tn} given by (4). Assume that A6 and all the conditions of Lemma 4.2
hold, T0n is nτ -consistent with τ > 1/4 and the function g(u) = uf0(u) satisfies
g(u) ≤ C(1 − F+

0 (u))1/2 for each u ≥ 0 and some constant C > 0. If w(u) =
I (u < 1) and t0 = ∞, with t0 given by (13), then

√
n(1/2

n (T1n − θ) →D N
(
0, σ 2EF0(U

2)I
)
.

Although the preceding theorem is not as general as Theorem 4.1, it shows
nonetheless that the weighting scheme we propose represents an important
improvement over the classical WLSE with fixed cutoff value, since the REWLSE
is now able to improve the rate of convergence of the initial estimator. The
condition in Theorem 4.2 that g(u) ≤ C(1 − F+

0 (u))1/2 for each u ≥ 0 is not
too restrictive. Essentially, it says that u2f 2

0 (u) tends to 0 faster than the tail
probabilities when |u| → ∞, and this is satisfied by densities with exponential
decrease. For instance, it holds for F0 = �. To see this, note that 2(1 − �(u)) −
u2f 2

0 (u) is strictly decreasing on [u0,∞) for some u0 > 0 and tends to 0 when
u → ∞, so it cannot be negative in [u0,∞). By adequately choosing C > 1 we
can make g(u) ≤ C(1 − F+

0 (u))1/2 for every u ≥ 0.
To finish this section, we consider the case of the initial regression estimator

not being n1/2-consistent and the asymptotic cutoff value being finite. This is
essentially the same as doing a WLSE with a fixed finite cutoff value; hence we
obtain basically the same result as the theorem on page 2166 of He and Portnoy
(1992). The rate of convergence is not improved in this case.
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THEOREM 4.3. Let {T1n} be a sequence of WLSE’s computed with arbitrary
cutoff values {tn} that converge in probability to some t0 < ∞. Assume that F0 is
symmetric, Sn is consistent, T0n is nτ -consistent with τ ≥ 1/4 and conditions A6
and W1–W3 hold. In addition, for h2(s, t) the function given in W3, assume that
∂h2/∂t is Lipschitz in the variable t , uniformly in s. Then(

τ1 + oP (1)
)
(n(T1n − θ) = (

τ2 + oP (1)
)
(n(T0n − θ) +OP

(
n−1/2),

with τ1 and τ2 as in (14) and (15), respectively.

Let ν = τ2/τ1 as in He and Portnoy (1992). When F0 has a differentiable
density, ν = 1 + τ−1

1

∫
w(|u|/t0)uf ′

0(u) du. If f0 is unimodal the integral in the
second term of ν is negative, so ν < 1. Therefore, if nτ (T0n − θ) converges to
a nondegenerate distribution Z with τ ∈ [1/4,1/2), then nτ (T1n − θ) →D νZ and
the WLSE has less asymptotic variability than the initial estimator. So, in terms of
asymptotic variability, there are still gains in doing the reweighting step.

5. Monte Carlo study and examples. In this section we report on a Monte
Carlo study that was carried out to assess finite-sample efficiency and robustness
of the REWLSE. As T0n we used the LMSE and an S-estimator of regression.
S-estimators of regression [Rousseeuw and Yohai (1984)] are defined as follows.
Let Sn be an M-scale estimate as defined by (17). The corresponding regression
S-estimator for model (1) is defined as

Tn = arg min
t

Sn(y1 − x′
1t, . . . , yn − x′

nt).

The scales used to standardize residuals were the standardized MAD when T0n
was the LMSE and the corresponding M-scale when T0n was an S-estimator.

We compared the following estimators:

1. Least squares (LS).
2. Least median of squares (LMS).
3. An S-estimator based on Tukey’s biweight ρ-function (18) with c = 1.547 (S).

This estimator, as well as the LMSE, has finite-sample breakdown point equal
to (n/2� − p + 2)/n [see Rousseeuw and Leroy (1987)].

4. One-step weighted least squares with cutoff value t0 = 2.5, starting from the
LMSE (WLS-LMS).

5. Same as above, starting from the S-estimator described in estimator 3 (WLS-S).
6. REWLSE with hard-rejection weight w(u) = I (u < 1) and η = 2.5, starting

from the LMSE (REWLS-LMS).
7. Same as above, starting from the S-estimator described in estimator 3

(REWLS-S).
8. For the case of linear regression with t-distributed errors in Section 5.2 we also

considered the corresponding maximum likelihood estimator.
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We considered three different models:

• Regression with normal errors and no outliers.
• Regression with heavy-tailed errors (Student’s t distribution with 3 degrees of

freedom).
• Regression with normal errors, where some fraction of the sample is replaced

by outliers.

The results for each of these models are reported in the sections that follow.

5.1. Regression model with normal errors. We considered regression models
with intercept, normal carriers and normal errors. Specifically, let (x1, y1), . . . ,

(xn, yn) be a random sample that follows the linear model (1) with xi =
(1, xi1, . . . , xip−1)

′ and such that (xi1, . . . , xip−1)
′ has an N(µ,() distribution.

Since all estimators are regression, affine and scale equivariant, without loss of
generality we took µ = 0, ( = I and θ = 0.

We considered sample sizes n = 20,50,100,200,500,1000 and p = 2,5. For
each value of p and n we generated 1000 samples, and for each estimator Tn we
computed the relative mean squared efficiency with respect to the LSE,

EFF =
∑1000

i=1 ‖TLS
ni ‖2∑1000

i=1 ‖Tni‖2
,

where Tni and TLS
ni are the ith generated values of Tn and LSE, respectively.

To compute the LMSE, we used a subsampling algorithm based on elemental
sets [see Rousseeuw and Leroy (1987)] with 1000 subsamples. The SE was
computed using an iterative reweighted LS algorithm, starting from the LMSE.
The results are shown in Tables 2 and 3.

We observe that in order for the efficiencies of the REWLSEs to be close to 1,
very large sample sizes are required. However, for n ≥ 100 the REWLSEs are
noticeably more efficient than the corresponding WLSE’s. In Sections 5.2 and 5.3
we show that this improvement in efficiency is obtained without serious loss in
robustness of the initial estimators.

TABLE 2
Efficiencies for normal errors and p = 2

n

Estimator 20 50 100 200 500 1000

LMS 0.20 0.19 0.16 0.13 0.09 0.08
WLS-LMS 0.58 0.66 0.76 0.80 0.82 0.79
REWLS-LMS 0.61 0.68 0.79 0.86 0.91 0.93
S 0.27 0.28 0.29 0.26 0.27 0.26
WLS-S 0.61 0.73 0.86 0.83 0.89 0.87
REWLS-S 0.65 0.75 0.89 0.89 0.95 0.96
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TABLE 3
Efficiencies for normal errors and p = 5

n

Estimator 20 50 100 200 500 1000

LMS 0.18 0.18 0.15 0.11 0.07 0.04
WLS-LMS 0.26 0.50 0.67 0.77 0.78 0.77
REWLS-LMS 0.26 0.51 0.70 0.83 0.88 0.92
S 0.18 0.23 0.25 0.25 0.27 0.26
WLS–S 0.23 0.50 0.71 0.80 0.86 0.87
REWLS-S 0.23 0.50 0.74 0.86 0.93 0.96

5.2. Regression with heavy-tailed errors. In the same situations as in Section
5.1, now the errors ui’s were generated according to a t distribution with 3 degrees
of freedom. The efficiencies were calculated with respect to the maximum
likelihood estimator and are shown in Tables 4 and 5.

TABLE 4
Efficiencies for Student errors with 3 d.f. and p = 2

n

Estimator 20 50 100 200 500 1000

LS 0.56 0.59 0.48 0.53 0.52 0.47
LMS 0.32 0.30 0.25 0.20 0.15 0.10
WLS-LMS 0.73 0.80 0.82 0.79 0.78 0.77
REWLS-LMS 0.72 0.80 0.83 0.81 0.81 0.80
S 0.45 0.48 0.49 0.53 0.55 0.54
WLS-S 0.77 0.86 0.89 0.88 0.88 0.90
REWLS-S 0.76 0.86 0.89 0.88 0.88 0.90

TABLE 5
Efficiencies for Student errors with 3 d.f. and p = 5

n

Estimator 20 50 100 200 500 1000

LS 0.61 0.60 0.54 0.51 0.51 0.51
LMS 0.21 0.23 0.17 0.10 0.05 0.03
WLS-LMS 0.38 0.70 0.75 0.74 0.65 0.56
REWLS-LMS 0.38 0.70 0.76 0.76 0.70 0.63
S 0.24 0.34 0.42 0.48 0.51 0.49
WLS-S 0.33 0.67 0.82 0.87 0.89 0.90
REWLS-S 0.33 0.67 0.83 0.87 0.89 0.89
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We observe that the REWLSEs perform sometimes better than the WLSE’s,
and never worse. Both the WLS-SE and the REWLS-SE have an efficiency greater
than 0.80 for n ≥ 50 when p = 2 and for n ≥ 100 when p = 5.

5.3. Model with normal errors and some fraction of outlier contamination.
We considered the same normal-error and normal-carrier model as in Section 5.1,
but now k observations in each sample were replaced by identical outliers of
the form (x0, y0). Because of the sphericity of the normal distribution, without
loss of generality we took x0 = (1, x0,0, . . . ,0)′. We chose x0 = 1,10, which
correspond to low- and high-leverage outliers, respectively, and varied y0 in the
grid {0.1jx0 : j positive integer}. Since the asymptotic behavior of these estimators
under this contamination model is studied in Section 3, we only considered a small
sample size n = 50. We took p = 2 and k = 3,5,8,10. For each estimator Tn

and each value of k, x0 and y0, we estimated the mean squared error based on
1000 Monte Carlo replications: MSE(Tn, k, x0, y0). Tables 6 and 7 report the
values of maxy0 MSE(Tn, k, x0, y0), which represents the worst performance of
the estimator for that leverage and that number of outliers.

We observe that, in general, both the WLSE and the REWLSE behave similarly,
and better than the LMSE and the SE. Estimators starting from SE outperformed
those that used the LMSE as initial estimator.

5.4. Examples. We applied the REWLSE, starting with the LMS and the
S-estimate, to several data sets included in Rousseeuw and Leroy (1987) that

TABLE 6
Maximum MSE with outliers with x0 = 1

Estimator
k LMS WLS-LMS REWLS-LMS S WLS-S REWLS-S

3 0.34 0.09 0.09 0.24 0.09 0.08
5 0.48 0.17 0.16 0.40 0.16 0.15
8 0.90 0.42 0.42 0.93 0.42 0.41

10 1.45 0.79 0.79 1.59 0.80 0.80

TABLE 7
Maximum MSE with outliers with x0 = 10

Estimator
k LMS WLS-LMS REWLS-LMS S WLS-S REWLS-S

3 0.34 0.19 0.18 0.24 0.15 0.15
5 0.56 0.38 0.38 0.35 0.26 0.25
8 1.14 0.92 0.92 0.55 0.45 0.45

10 1.89 1.62 1.62 0.69 0.57 0.57
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contained influential outliers: (i) the international phone calls data (page 25), the
Hertzprung–Russell diagram data (page 27), (iii) the salinity data (page 82) and
(iv) the artificial data of Hawkins, Bradu and Kass (page 93). In all these cases
the REWLSE with hard-rejection-weight function and η = 2.5 eliminates exactly
the same observations as the nonadaptive weighted least squares estimate with
fixed cutoff point 2.5, and it is not much influenced by outliers. These results
are consistent with our Monte Carlo results of Section 5.3, which show that
under outlier contamination both types of weighted least squares estimates behave
similarly.

The program in MATLAB used to compute the REWLSE can be obtained from
the authors upon request.

APPENDIX A

Proofs of robust results.

PROOF OF LEMMA 3.1. (i) If limε↓0 supH∈Hε
‖F+

0 − F+
H ‖∞ > 0, then there

would be a δ > 0 and sequences εn ↓ 0, Hn ∈ Hεn and {un} such that |F+
0 (un) −

F+
Hn

(un)| ≥ δ for every n. Now∣∣F+
0 (un) − F+

Hn
(un)

∣∣
≤
∣∣∣∣F+

0 (un)− (1 − εn)PH0

( |Y − X′T0(Hn)|
S0(RHn)

≤ un

)∣∣∣∣+ εn.
(23)

Since T0(Hn) → θ and S0(RHn) → σ , continuity of F0 and dominated conver-
gence imply that

PH0

( |Y − X′T0(Hn)|
S0(RHn)

≤ t

)
→ F+

0 (t) uniformly in t,

so that ∣∣∣∣PH0

( |Y − X′T0(Hn)|
S0(RHn)

≤ un

)
− F+

0 (un)

∣∣∣∣→ 0.

Then (23) would imply that |F+
0 (un) − F+

Hn
(un)| → 0, a contradiction.

(ii) Since |d(H)− d0| ≤ ‖F+
0 − F+

H ‖∞, the proof is immediate from (i).
(iii) First, let t0 < ∞. If limε↓0 supH∈Hε

|t (H) − t0| > 0, then there would be a
δ > 0, sequences εn ↓ 0 and Hn ∈ Hεn and a certain n0 such that

|t (Hn) − t0| ≥ δ for every n ≥ n0.(24)

Since F+
Hn

(t (Hn)) ≥ 1 − d(Hn) by definition and d(Hn) → d0 by part (i), we
have that lim infF+

Hn
(t (Hn)) ≥ 1 − d0. Since |F+

0 (t (Hn)) − F+
Hn

(t (Hn))| → 0 by

part (i), we also have lim infF+
0 (t (Hn)) ≥ 1 − d0 and then lim inf t (Hn) ≥ t0,
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which together with (24) imply that lim inf t (Hn) ≥ t0 + δ. Then there exists
a subsequence {t (Hnk )} such that t (Hnk ) > t0 + δ/2 for every k. By the definition
of t (H) we would then have that F+

0 (t0 +δ/2) < 1−d(Hnk ) for every k and taking
the limit we obtain F+

0 (t0 + δ/2) ≤ 1 − d0. This cannot happen if F0(t) is strictly
increasing in its support.

Now let t0 = ∞. This implies that d0 = 0 and F0 is of unbounded support.
If limε↓0 infH∈Hε t (H) < ∞, there would be a K < ∞, sequences εn ↓ 0 and
Hn ∈ Hεn and a certain n0 such that t (Hn) ≤ K for every n ≥ n0. Then

1 − d(Hn) ≤ F+
Hn

(
t (Hn)

)≤ F+
Hn

(K),

which in the limit implies that 1 = F+
0 (K). This contradicts the fact that F0 is of

unbounded support. �

PROOF OF THEOREM 3.2. Given ε > 0 and a contaminating point (x0, y0),
let Hε = (1 − ε)H0 + ε)(x0,y0). Then

T1(Hε) − θ = [
EHε

{
wHε(X, Y )XX′}]−1

EHε

{
wHε(X, Y )X(Y − X′θ)

}
.(25)

We have

EHε

{
wHε(X, Y )XX′}= (1 − ε)EH0

{
wHε(X, Y )XX′}+ εwHε(x0, y0)x0x′

0

and

EH0

{
wHε(X, Y )XX′}= EG0

{
h1

(
1

S0(RHε)t (Hε)
,X′(T0(Hε) − θ

))
XX′

}
.

So assumption W2 and dominated convergence imply that

lim
ε↓0

EHε{wHε(X, Y )XX′} = τ1(.(26)

Similarly,

EHε

{
wHε(X, Y )X(Y − X′θ)

}= (1 − ε)EH0

{
wHε(X, Y )X(Y − X′θ)

}
+ εwHε(x0, y0)x0(y0 − x′

0θ).

Here

EH0

{
wHε(X, Y )X(Y − X′θ)

}= EG0

{
h2

(
1

t (Hε)S0(RHε)
,X′(T0(Hε) − θ

))
X
}
.

By W3 and the symmetry of F0 we have

lim
ε↓0

1

ε
h2

(
1

t (Hε)S0(RHε)
,x′(T0(Hε) − θ

))= τ2x′I FT0(x0, y0).

Then by dominated convergence

lim
ε↓0

1

ε
EH0

{
wHε(X, Y )X(Y − X′θ)

}= τ2 (I FT0(x0, y0)
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and hence

lim
ε↓0

1

ε
EHε

{
wHε(X, Y )X(Y − X′θ)

}

= τ2(I FT0(x0, y0) +w

( |y0 − x′
0θ |

σ t0

)
x0(y0 − x′

0θ).

(27)

From (25), (26) and (27), we obtain expression (16). �

LEMMA A.1. Let Sn be an M-scale defined by (17) and suppose that ρ(u) = a

for |u| ≥ c, ρ(0) = 0 and ρ is continuous at 0. Then:

(i) For any u = (u1, . . . , un) we have

#
{
i : |ui| ≥ cSn(u)

}≤ nb

a
.

(ii) Let A(M,j) = {u ∈ R
n : #{i : |ui | ≤ M} ≥ j}. Then if m< nb/a, we have

sup
u∈A(M,n−m)

Sn(u) < ∞.

PROOF. Suppose that assertion (i) is not true. Then if A = {i : |ui| ≥ cSn(u)},
we have #A> nb/a and then

1

n

n∑
i=1

ρ

(
ui

Sn(u)

)
≥ 1

n

∑
i∈A

ρ

(
ui

Sn(u)

)
≥ 1

n

∑
i∈A

ρ(c) > b,

which contradicts the definition of Sn(u).
Now we prove (ii). Given M ≥ 0 and m < nb/a, let 0 < ε < nb/a − m. Then

there exists a K > 0 such that

ρ

(
M

K

)
≤ εa

n
.

We will prove that

sup
u∈A(M,n−m)

Sn(u) ≤ K.(28)

Take u ∈ A(M,n−m) and let B = {i : |ui| ≤ M}. Then

1

n

n∑
i=1

ρ

(
ui

K

)
= 1

n

∑
i∈B

ρ

(
ui

K

)
+ 1

n

∑
i /∈B

ρ

(
ui

K

)

<
1

n

∑
i∈B

ρ

(
M

K

)
+ a

n

(
nb

a
− ε

)

≤ εa

n
+ b − εa

n
≤ b
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and therefore (28) must hold by the definition of Sn(u). �

PROOF OF THEOREM 3.3. Let m0 = min{�n − nb/a − p�, �nb/a�, nε∗
n ×

(T0n,Z)}, where �x� denotes the smallest integer that is larger than or equal to x.
If n − nb/a ≤ p + 1, m0 = 1 and it is obvious that ε∗

n(T0n,Z) ≥ m0/n. Then we
will consider only the case �n− nb/a − p� ≥ 2. Take m<m0 and let

M1 = sup
Z∗∈Zm

‖T0n(Z∗)‖, M2 = sup
1≤i≤n

|yi|, M3 = sup
1≤i≤n

‖xi‖.

Then if M = M2 +M1M3, for any Z∗ = {z∗
1, . . . , z∗

n} ∈ Zm, z∗
i = (x∗

i , y
∗
i ), we have

sup
1≤i≤n

|yi − x′
iT0n(Z∗)| ≤ M,

and therefore (y∗
1 − x∗′

1 T0n(Z∗), . . . , y∗
n − x∗′

n T0n(Z∗)) ∈ A(M,n − m), where
A(M,n−m) is defined in Lemma A.1(ii). Then

s0 = sup
Z∗∈Zm

Sn
(
y∗

1 − x∗′
1 T0n(Z∗), . . . , y∗

n − x∗′
n T0n(Z∗)

)
< ∞.(29)

To simplify the notation, let t0 = T0n(Z∗), s0 = Sn(y
∗
1 − x∗′

1 t0, . . . , y
∗
n − x∗′

n t0)

and r∗
i = (y∗

i − x∗′
i t0)/s0 and let |r∗|(1), . . . , |r∗|(n) be the ordered |r∗

i |’s. If i0 =
max{i : |r∗|(i) < η}, then

dn = max
i>i0

{
F+(|r∗|(i))− i − 1

n

}+
(30)

and tn = |r∗|(in) with in = n− ndn�. Remember that in > i0 and tn > η. Let wi =
w(|r∗

i |/tn) and w(i) = w(|r∗|(i)/tn). Since T1n(Z∗) minimizes
∑n

i=1 wi(y
∗
i −

x∗′
i t)2,

1

n

n∑
i=1

wi

(
y∗
i − x∗′

i T1n(Z∗)
)2 ≤ 1

n

n∑
i=1

wi(y
∗
i − x∗′

i t0)
2

= s2
0

n

n∑
i=1

w(i)|r∗|2(i).
(31)

We have w(i) = 0 for i ≥ in and, according to (30),

|r∗|2(i) ≤
{
(F+)−1

(
i + ndn�

n

)}2
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for i ≥ i0 + 1. Then

1

n

n∑
i=1

w(i)|r∗|2(i) ≤ η2 + 1

n

n−ndn�−1∑
i=i0+1

|r∗|2(i)

≤ η2 + 1

n

n−ndn�−1∑
i=i0+1

{
(F+)−1

(
i + ndn�

n

)}2

≤ η2 + 1

n

n∑
i=1

{
(F+)−1

(
i − 1

n

)}2

≤ η2 +
∫ 1

0
{(F+)−1(u)}2 du

= η2 +
∫ ∞
−∞

u2 dF < ∞.

(32)

Therefore by (29), (31) and (32) we have

sup
Z∗∈Zm

1

n

n∑
i=1

wi

(
y∗
i − x∗′

i T1n(Z∗)
)2

< ∞.(33)

By Lemma A.1(i) we have #{|r∗
i | ≤ c} ≥ n − na/b. Since m < n − nb/a − p we

have |r∗
i | ≤ c for at least p+ 1 points of the original sample, say zi1, . . . , zip+1 . For

those points wi ≥ w(c/η) > 0. Then

1

n

n∑
i=1

wi

(
y∗
i − x∗′

i T1n(Z∗)
)2 ≥ w

(
c

η

)
1

n

p+1∑
j=1

(
yij − x′

ij
T1n(Z∗)

)2
.(34)

Let

δ(Z) = min‖v‖=1
min{|x′

ij
v| : 1 ≤ i1 < · · · < ip+1 ≤ n}.

By the general-position assumption, δ(Z) > 0. Then

p+1∑
j=1

(
yij − x′

ij
T1n(Z∗)

)2 ≥
p+1∑
j=1

(
1

2
|x′

ij
T1n(Z∗)|2 − y2

ij

)

≥ (p + 1)

2
δ2(Z)‖T1n(Z∗)‖2 −

n∑
i=1

y2
i .

(35)

From (33), (34) and (35) we deduce that

sup
Z∗∈Zm

‖T1n(Z∗)‖ < ∞

and then ε∗
n(T1n,Z) > m/n. �
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APPENDIX B

Proofs of asymptotic results. The proofs that follow will make use of
stochastic process concepts that can be found in Pollard (1990). The notation then
will be somewhat different from the rest of the article because we are going to
follow Pollard’s notation. We will assume that the i.i.d. errors {ui(ω)} are defined
on a common probability space (C,S,P). E will denote expectation with respect
to P. To simplify the notation, we will also use β0n = T0n − θ and νn = (Sntn)

−1.

PROOF OF LEMMA 4.1. (i) Let us consider the family of functions{
fi(ω,v, s) = I

(|ui(ω) − x′
iv| ≤ s

)
: (v, s) ∈ T = R

p × R
+}.

For each ω ∈ C, {(f1(ω,v, s), . . . , fn(ω,v, s)) : (v, s) ∈ T } has pseudodimension
at most p + 2 according to Lemma 5 in Gervini and Yohai (2000). Then
by Corollary 4.10 of Pollard (1990) the process {fi(ω,v, s) : (v, s) ∈ T } is
Euclidean with envelope F given by Fi = 1. Let Sn(ω,v, s) = ∑n

i=1 fi(ω,v, s)
and Mn(v, s) =∑n

i=1 Efi(·,v, s), so that

F+
n (t) = 1

n
Sn(ω,β0n, Snt).

By the maximal inequality (7.10) of Pollard (1990), we have

E

{
sup

(v,s)∈T
|Sn(·,v, s) −Mn(v, s)|2

}
≤ Cn

for some constant C. This implies

sup
t≥0

1√
n
|Sn(ω,β0n, Snt) −Mn(β0n, Snt)| = OP (1)

or, equivalently,

sup
t≥0

∣∣∣∣F+
n (t) − 1

n
Mn(β0n, Snt)

∣∣∣∣= OP

(
n−1/2).(36)

So in order to prove ‖F+
n − F+

0 ‖∞ = oP (1) we only have to show that

sup
t≥0

∣∣∣∣1nMn(β0n, Snt) − F+
0 (t)

∣∣∣∣= oP (1).(37)

Note that

1

n
Mn(β0n, Snt) − F+

0 (t) = 1

n

n∑
i=1

{
F0

(
Snt + x′

iβ0n

σ

)
− F0(t)

}

− 1

n

n∑
i=1

{
F0

(−Snt + x′
iβ0n

σ

)
− F0(−t)

}
.
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Assumptions A1 and A2 and the continuity of F0 imply convergence in probability
to 0 for each t . That F0 is a continuous distribution function implies that this
convergence is uniform in t and hence (37) follows.

(ii) Since |dn − d0| ≤ ‖F+
n − F+

0 ‖∞ by definition, the result follows immedi-
ately from part (i)

(iii) Use the results in parts (i) and (ii) and proceed as in the proof of Lemma
3.1(ii). �

PROOF OF LEMMA 4.2. Consider again the sequence of processes {fi(ω,

v, s) : (v, s) ∈ T } as in the proof of Lemma 4.1. Since we have already estab-
lished (36) it suffices to show that

sup
t≥0

∣∣∣∣1nMn(β0n, Snt) − F+
0 (t)

∣∣∣∣= OP

(
n−1/2).

We will first show that

sup
t≥0

∣∣∣∣1nMn(β0n, Snt) − F+
0

(
Snt

σ

)∣∣∣∣= OP

(
n−1/2)(38)

and then that

sup
t≥0

∣∣∣∣F+
0

(
Snt

σ

)
− F+

0 (t)

∣∣∣∣= OP

(
n−1/2).(39)

Second-order Taylor expansions yield

F0

(
Snt + x′

iβ0n

σ

)
− F0

(
Snt

σ

)

= f0

(
Snt

σ

)x′
iβ0n

σ
+ f ′

0
(
ξin(t)

)1

2

(x′
iβ0n

σ

)2(40)

and

F0

(−Snt + x′
iβ0n

σ

)
− F0

(−Snt

σ

)

= f0

(−Snt

σ

)x′
iβ0n

σ
+ f ′

0
(
ζin(t)

)1

2

(x′
iβ0n

σ

)2

,

(41)

with |ξin(t)| ≤ |x′
iβ0n| and |ζin(t)| ≤ |x′

iβ0n|. Now subtract (41) from (40) and use
the symmetry of f0 to obtain

Mn(β0n, Snt) − F+
0

(
Snt

σ

)
= 1

n

n∑
i=1

{
f ′

0
(
ξin(t)

)− f ′
0
(
ζin(t)

)}1

2

(x′
iβ0n

σ

)2

.
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Since f ′
0 is bounded and ‖β0n‖2 = OP (n

−2τ ) with τ ≥ 1/4, (38) follows. To
prove (39), we again use Taylor expansions and the symmetry of f0 to get

F+
0

(
Snt

σ

)
= F+

0 (t) + 1

2

{
f ′

0
(
ξn(t)

)− f ′
0
(
ζn(t)

)}(Snt
σ

− t

)2

for ξn(t) between Snt/σ and t and ζn(t) between −Snt/σ and −t . Then |t/ξn(t)|
and |t/ζn(t)| fall between 1 and σ/Sn, so that

sup
t≥0

∣∣∣∣F+
0

(
Snt

σ

)
− F+

0 (t)

∣∣∣∣≤ sup
u

|u2f ′
0(u)|

(
σ

Sn
∨ 1

)2(
Sn

σ
− 1

)2

= OP (n
−2τ ),

which implies (39) because τ ≥ 1/4. �

LEMMA B.1. Let T0n be an estimator of θ that satisfies (19). Suppose that:

1. ψ is odd and differentiable, and limu→∞ ψ(u) = c < ∞;
2. ψ ′ is bounded and continuous, EF0(ψ

′) �= 0;
3. F0 is symmetric;
4. A1, A4 and A5 hold.

Then T0n satisfies assumption A3 with 4n = σ−1EF0(ψ
′)(n and 4 is given

by (20).

PROOF. See Gervini and Yohai (2000). �

LEMMA B.2. If conditions A1, A5, W1 and W2 are satisfied and tn → t0 in
probability, then

1

n

n∑
i=1

wixix′
i − τ1(n = oP (1).

PROOF. First, note that, given K > 0,∣∣∣∣∣1n
n∑

i=1

wixix′
i − τ1(n

∣∣∣∣∣
≤
∣∣∣∣∣1n

n∑
i=1

(wi − τ1)xix′
iI (‖xi‖ ≤ K)

∣∣∣∣∣+ 2
1

n

n∑
i=1

‖xi‖2I (‖xi‖ >K).

(42)

By A5 we only have to show that the first term in (42) is oP (1) for each K > 0.
Fix two coordinates j and k and consider the sequence of processes{

fi(ω,v, s) = w
(
s|ui(ω) − x′

iv|)xij xikI (‖xi‖ ≤ K) : (v, s) ∈ T = R
p × R

+}.
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The sequence of processes {fi(ω,v, s) : (v, s) ∈ T } is Euclidean with envelope
given by Fi = K2 and then

E

{
sup

(v,s)∈T

∣∣∣∣∣
n∑

i=1

fi(ω,v, s)−Mn(v, s)

∣∣∣∣∣
2}

≤ CnK4(43)

where

Mn(v, s) =
n∑

i=1

h1(s,x′
iv)xij xikI (‖xi‖ ≤ K)

and h1 is defined in W2. From (43) we obtain that

1

n

∣∣∣∣∣
n∑

i=1

wixij xikI (‖xi‖ ≤ K) −Mn(β0n, νn)

∣∣∣∣∣= oP (1).

By assumption W2 we also have that

1

n

∣∣∣∣∣Mn(β0n, νn) − τ1

n∑
i=1

xijxikI (‖xi‖ ≤ K)

∣∣∣∣∣= oP (1)

and the proof is complete. �

From now on we will work with the standardized explanatory variables

zni = 1√
n
(−1/2

n xi .

Note that
∑n

i=1 zniz′
ni = I and that A5 implies

lim
n→∞

n∑
i=1

‖zni‖2I (‖zni‖ > ε) = 0 for any ε > 0.

LEMMA B.3. Consider the process

Wn(ω, s, t) =
n∑

i=1

{
w
(
s|ui(ω) − z′

nit|
)
ui(ω)I + τ2ψ

(
ui(ω)

σ

)
4

}
zni,

with {zni} as above, 4 a symmetric p × p matrix and ψ a bounded odd function.
Let Mn(s, t) = EWn(·, s, t). If

√
n(

1/2
n β0n = OP (1) and conditions A1, A4, A5

and W1–W4 hold, then

Wn

(
ω,νn,

√
n(1/2

n β0n
)− Mn

(
νn,

√
n(1/2

n β0n
)→D N

(
0,V (t0)

)
,

with covariance matrix V (t0) given by (21).
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PROOF. If we take α ∈ R
p , then α′Wn(ω, s, t) =∑n

i=1 fni(ω, s, t), where

fni(ω, s, t) = w
(
s|ui(ω)− z′

nit|
)
ui(ω)α′zni + τ2ψ

(
ui(ω)

σ

)
α′4zni.

Let ν0 = (σ t0)
−1 and take S = [ν0/2, ν0 + 1], so that P(νn ∈ S) → 1. Take also a

compact K in R
p such that P(

√
n(

1/2
n β0n ∈ K) → 1. Then the array of processes

{fni(ω, s, t) : (s, t) ∈ S ×K} is Euclidean with envelope Fn given by

Fni =
(

2

ν0
+ √

p sup
t∈K

‖t‖
)
|α′zni| + |τ2| ‖ψ‖∞|α′4zni|

if ν0 > 0, and

Fni(ω) = |ui(ω)| |α′zni| + |τ2| ‖ψ‖∞|α′4zni|
if ν0 = 0. We have used that max1≤i≤n ‖zni‖2 ≤∑n

i=1 ‖zni‖2 = p. By assumption,
the envelopes are square-integrable in both cases. Moreover, we have

lim sup
n∑

i=1

EF 2
ni < ∞

and the Lindeberg condition

lim
n→∞

n∑
i=1

E{F 2
niI (Fni > ε)} = 0 for each ε > 0.

Let hi for i = 2,3,4 be the functions given in conditions W2–W4. Also, define

h5(s1, t1, s2, t2) =
∫ {

w(s1|u − t1|) −w(s2|u − t2|)}2
u2 dF0(u/σ ),

which may actually be written in terms of h4 but we define it explicitly for
convenience. The covariance functional of the array of processes defined above
is given by

Hn

(
(s1, t1), (s2, t2)

)
=

n∑
i=1

[
E
{
fin(·, s1, t1)fin(·, s2, t2)

}− Efin(·, s1, t1)Efin(·, s2, t2)
]

=
n∑

i=1

h4(s1, z′
nit1, s2, z′

nit2)(α
′zni)2 + τ 2

2EF0(ψ
2)

n∑
i=1

(α′4zni)2

+ τ2

n∑
i=1

h3(s1, z′
nit1)(α

′zni)(α′4zni)+ τ2

n∑
i=1

h3(s2, z′
nit2)(α

′zni)(α′4zni)

−
{

n∑
i=1

h2(s1, z′
nit1)(α

′zni)
}{

n∑
i=1

h2(s2, z′
nit2)(α

′zni)
}
.
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Note that h2(s,0) = 0 for any s ≥ 0 by the symmetry of F0, and recall that
∑n

i=1zni
· z′

ni = I. Then it follows from assumptions W1–W4 that Hn((s1, t1), (s2, t2)) →
H((s1, t1), (s2, t2)), where

H
(
(s1, t1), (s2, t2)

)= h4(s1,0, s2,0)‖α‖2 + τ 2
2EF0(ψ

2)‖α′4‖2

+ τ2h3(s1,0)α′4α + τ2h3(s2,0)α′4α.

Consider now the sequence of pseudometrics in S ×K given by

ρn

(
(s1, t1), (s2, t2)

)=
{

n∑
i=1

E|fni(·, s1, t1) − fni(·, s2, t2)|2
}1/2

=
{

n∑
i=1

h5(s1, z′
nit1, s2, z′

nit2)(α
′zni)2

}1/2

.

Again it is not difficult to see that ρn((s1, t1), (s2, t2)) → ρ((s1, t1), (s2, t2)),
where

ρ
(
(s1, t1), (s2, t2)

)= ‖α‖2h5(s1,0, s2,0)

= ‖α‖2
∫ {

w(s1|u|)−w(s2|u|)}2
u2 dF0(u/σ ).

Note that ρ does not depend on t1 and t2. The continuity and boundedness of h5
guarantee that the convergence of ρn to ρ is uniform and then, for any deterministic
sequences {(s1n, t1n)} and {(s2n, t2n)} in S × K ,

ρ
(
(s1n, t1n), (s2n, t2n)

)→ 0 ⇒ ρn

(
(s1n, t1n), (s2n, t2n)

)→ 0.

Hence all conditions of the functional central limit theorem (10.6) of Pollard
(1990) are satisfied. Let I∞(S × K) be the space of all bounded, real-valued
functions on S × K , equipped with the sup norm, and let Uρ(S × K) ⊂
I∞(S × K) be the subspace of uniformly ρ-continuous functions. Then S × K

is totally bounded under the ρ pseudometric, the finite-dimensional distributions
of α′(Wn − Mn) have Gaussian limits with zero mean and covariances given
by H , which uniquely determine a Gaussian distribution P concentrated on
Uρ(S × K) and α′(Wn − Mn) converges in distribution to P . Let Z be a random
element in Uρ(S × K) with distribution P . To complete the proof, define
a map g: I∞(S × K) × (S × K) → R as g(x, (s, t)) = x(s, t). Since (α′(Wn −
Mn), (νn,

√
n(

1/2
n β0n)) converges in distribution to (Z, (ν0,0)) in the product

norm, with Z ∈ Uρ(S ×K), and the map g is continuous for any x ∈ Uρ(S × K),
we apply the continuous mapping theorem to obtain that

α′{Wn

(
ω,νn,

√
n(1/2

n β0n
)− Mn

(
νn,

√
n(1/2

n β0n
)}→D Z(ν0,0).

Since Z(ν0,0) has a zero-mean normal distribution with variance H((ν0,0),
(ν0,0)) = α′V (t0)α and α ∈ R

p was arbitrary, the proof is complete. �
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PROOF OF THEOREM 4.1. Let β1n = T1n − θ . Then

n∑
i=1

wizniui =
(

n∑
i=1

wizniz′
ni

)√
n(1/2

n β1n.

We apply Lemma B.2 to the right-hand side of this equation to obtain that
∑n

i=1 wi

× zniz′
ni → τ1I in probability. On the left-hand side we use Lemma B.3 and then

we only have to prove that∥∥∥∥∥Mn

(
νn,

√
n(1/2

n β0n
)− τ2

n∑
i=1

ψ

(
ui

σ

)
4zni

∥∥∥∥∥= oP (1)

or, equivalently,∥∥Mn

(
νn,

√
n(1/2

n β0n
)− τ2

√
n(1/2

n β0n
∥∥= oP (1).(44)

But Mn(s, t) = ∑n
i=1 h2(s, z′

nit)zni with h2 as in W2. Recalling that
∑n

i=1 zni
· z′

ni = I, we can rewrite (44) as∥∥∥∥∥
n∑

i=1

{
h2(νn, z′

nit0n) − τ2z′
nit0n

}
zni

∥∥∥∥∥= oP (1),(45)

with t0n = √
n(

1/2
n β0n. Since h2(νn,0) = 0 by symmetry of F0 and (∂/∂t)h2(s, t)

is bounded and continuous in s at t = 0, (45) follows immediately.
If t0 = ∞, then τ2 = 0 and we only need to prove∥∥Mn

(
νn,

√
n(1/2

n β0n
)∥∥= oP (1).

This can be proved under the assumption t0n = OP (1), with no need of the linear
expansion A3. �

PROOF OF THEOREM 4.2. Since the LSE is asymptotically normal under
these hypotheses, it is enough to show that

1√
n

n∑
i=1

(1 −wi)xiui = oP (1).

Fix a coordinate j , take δ > 0 and consider the sequence of processes{
fi(ω, s,v) = I

(
s|ui(ω) − x′

iv| ≥ 1
)
xijui(ω) : (s,v)∈ T (δ)

}
,

with T (δ) = {(s,v) : 0 ≤ s < δ,‖v‖ < δ}. This sequence of processes is manage-
able for envelopes given by

Fi(ω, δ) =
{
I

(
|ui(ω)| ≥ 1

2δ

)
+ I

(
‖xi‖ ≥ 1

2δ2

)}
‖xi‖|ui(ω)|.
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Then, if Sn(ω, s,v) =∑n
i=1 fi(ω, s,v) and Mn(s,v) =∑n

i=1 Efi(·, s,v), we have

E

{
sup
T (δ)

|Sn(·, s,v)−Mn(s,v)|2
}

≤ C

n∑
i=1

EF 2
i (·, δ)

for some C independent of δ. Now take a deterministic sequence δn ↓ 0 such that
P{(νn,β0n) ∈ T (δn)} → 1. For (νn,β0n) in T (δn) use Chebyshev’s inequality and
the fact that n−1∑n

i=1 EF 2
i (·, δn) tends to 0 to obtain

1√
n

∣∣∣∣∣
n∑

i=1

(1 −wi)xijui −Mn(νn,β0n)

∣∣∣∣∣= oP (1).

To complete the proof, we must show that Mn(νn,β0n) = oP (n
1/2). Note that

Mn(νn,β0n) =
n∑

i=1

[∫
I

( |u− x′
iβ0n|

Sntn
≥ 1

)
g

(
u

σ

)
du

]
xij

and ∫
I

( |u− x′
iβ0n|

Sntn
≥ 1

)
g

(
u

σ

)
du = −

∫ Sntn

−Sntn

g

(
u+ x′

iβ0n

σ

)
du.

Let

G(s, t) =
∫ s

−s
g

(
u + t

σ

)
du.

Then

Ġ(s, t) � ∂

∂t
G(s, t) = g

(
s + t

σ

)
− g

(−s + t

σ

)
,

G̈(s, t) � ∂2

∂t2G(s, t) = 1

σ
g′
(
s + t

σ

)
− 1

σ
g′
(−s + t

σ

)

are continuous and G̈(s, t) is bounded. Note that G(s,0) = 0 and Ġ(s,0) =
2g(s/σ ). Since

Mn(νn,β0n) = −
n∑

i=1

G(Sntn,x′
iβ0n)xij

from a second-order Taylor expansion of G(Sntn,x′
iβ0n), we get

|Mn(νn,β0n)| ≤ 2g
(
Sntn

σ

)
‖β0n‖

n∑
i=1

‖xi‖2 + 2

σ
‖g′‖∞‖β0n‖

n∑
i=1

‖xi‖3.
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Since ‖β0n‖ = oP (n
−1/4), in order to prove Mn(νn,β0n) = oP (n

1/2) it suffices to
show that g(Sntn/σ ) = OP (n

−1/4). By definition, F+
n (tn) ≥ 1 − dn. Then

g(Sntn/σ ) ≤ C
(
1 − F+

0 (Sntn/σ )
)1/2

≤ C
(
1 − F+

0 (tn)
)1/2 +C

∣∣F+
0 (tn) − F+

0 (Sntn/σ )
∣∣1/2

≤ C
(
dn + F+

n (tn)− F+
0 (tn)

)1/2 +C
∣∣F+

0 (tn) − F+
0 (Sntn/σ )

∣∣1/2

≤ C
(
2‖F+

n − F+
0 ‖∞

)1/2 + sup
u

∣∣u2f ′
0(u)

∣∣1/2
(S−1

n ∨ σ−1)|Sn − σ |.

From Lemma 4.2 and the assumption that |Sn − σ | = OP (n
−τ ) with τ ≥ 1/4, it

follows that g(Sntn/σ ) = OP (n
−1/4). �

PROOF OF THEOREM 4.3. Since

1

n

n∑
i=1

wixix′
i (β1n − β0n) = 1

n

n∑
i=1

wi(ui − x′
iβ0n)xi,

we only have to prove that

1

n

n∑
i=1

wi(ui − x′
iβ0n)xi = (

τ2 − τ1 + oP (1)
)
(nβ0n +OP

(
n−1/2).(46)

Let S = [ν0/2, ν0 + 1] and take a compact K such that P(β0n ∈ K) → 1. Fix
a coordinate j and consider the family of processes{

fi(ω, s, t) = w
(
s|ui(ω)− x′

it|
)(
ui(ω) − x′

it
)
xij : (s, t) ∈ T = S ×K

}
.

Since we are assuming ν0 > 0, this family is Euclidean with envelopes

Fi = 2

ν0
|xij |.

So if Sn(ω, s, t) = ∑n
i=1 fi(ω, s, t) and Mn(s, t) = ∑n

i=1 Efi(·, s, t), we have a
maximal inequality

E

{
sup
T

|Sn(·, s, t)−Mn(s, t)|2
}

≤ C
2

ν0

n∑
i=1

‖xi‖2.

By Chebyshev’s inequality this proves that |Sn(·, νn,β0n) − Mn(νn,β0n)| =
OP (n

1/2), or, in other words,∣∣∣∣∣1n
n∑

i=1

wi(ui − x′
iβ0n)xij − 1

n

n∑
i=1

{
h2(νn,x′

iβ0n) − h1(νn,x′
iβ0n)x′

iβ0n
}
xij

∣∣∣∣∣
= OP

(
n−1/2)
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with h1 and h2 given in W2 and W3, respectively. Therefore

1

n

n∑
i=1

wi(ui − x′
iβ0n)xi

= 1

n

n∑
i=1

h2(νn,x′
iβ0n)xi − (

τ1 + oP (1)
)
(nβ0n +OP

(
n−1/2).

Since h(νn,0) = 0 the mean value theorem yields

h2(νn,x′
iβ0n) = ∂

∂t
h2(νn, ξni)x′

iβ0n,

with |ξni | ≤ |x′
iβ0n|. Thus

1

n

n∑
i=1

h2(νn,x′
iβ0n)xi = (

τ2 + oP (1)
)
(nβ0n + Rn,

with

Rn = 1

n

n∑
i=1

{
∂

∂t
h2(νn, ξni) − ∂

∂t
h2(νn,0)

}
xix′

iβ0n.

Then

‖Rn‖ ≤ L
1

n

n∑
i=1

‖xi‖3‖β0n‖2 = OP (n
−2τ ).

Since τ ≥ 1/4, consolidating OP and oP terms, we get (46) and the proof is
complete. �

Acknowledgments. We thank both referees for their helpful criticism and
comments which contributed to the improvement of the paper.

REFERENCES

ADROVER, J., BIANCO, A. and YOHAI, V. J. (2001). Approximate τ -estimates for linear regression
based on subsampling of elemental sets. In Statistics in Genetics and in the Environmental
Sciences (L. T. Fernholz, S. Morgenthaler and W. Stahel, eds.) 141–151. Birkäuser, Basel.

AGOSTINELLI, C. and MARKATOU, M. (1998). A one-step robust estimator for regression based on
the weighted likelihood reweighting scheme. Statist. Probab. Lett. 37 341–350.

DAVIES, L. (1990). The asymptotics of S-estimators in the linear regression model. Ann. Statist. 18
1651–1675.

DONOHO, D. L. and HUBER, P. J. (1983). The notion of breakdown point. In A Festschrift for Erich
L. Lehmann (P. J. Bickel, K. A. Doksum and J. L. Hodges, Jr., eds.) 157–184. Wadsworth,
Belmont, CA.

GERVINI, D. and YOHAI, V. J. (2000). A class of robust and fully efficient regression estimators.
Unpublished manuscript.



616 D. GERVINI AND V. J. YOHAI

HAMPEL, F. R. (1975). Beyond location parameters: robust concepts and methods (with discussion).
Bull. ISI 46 375–391.

HAMPEL, F. R., RONCHETTI, E. M., ROUSSEEUW, P. J. and STAHEL, W. A. (1986). Robust
Statistics: The Approach Based on Influence Functions. Wiley, New York.

HE, X. and PORTNOY, S. (1992). Reweighted LS estimators converge at the same rate as the initial
estimator. Ann. Statist. 20 2161–2167.

HÖSSJER, O. (1992). On the optimality of S-estimators. Statist. Probab. Lett. 14 413–419.
MARTIN, R. D., YOHAI, V. J. and ZAMAR, R. H. (1989). Min-max bias robust regression. Ann.

Statist. 17 1608–1630.
POLLARD, D. (1990). Empirical Processes: Theory and Applications. IMS, Hayward, CA.
ROUSSEEUW, P. J. (1984). Least median of squares regression. J. Amer. Statist. Assoc. 79 871–880.
ROUSSEEUW, P. J. and LEROY, A. (1987). Robust Regression and Outlier Detection. Wiley, New

York.
ROUSSEEUW, P. J. and YOHAI, V. (1984). Robust regression by means of S-estimators. Robust and

Nonlinear Time Series Analysis. Lecture Notes in Statist. 26 256–272. Springer, New
York.

SIMPSON, D. G. and YOHAI, V. J. (1998). Functional stability of one-step GM-estimators in
approximately linear regression. Ann. Statist. 26 1147–1169.

YOHAI, V. J. (1987). High breakdown-point and high efficiency robust estimates for regression. Ann.
Statist. 15 642–656.

YOHAI, V. J. and ZAMAR, R. H. (1988). High breakdown-point estimates of regression by means of
the minimization of an efficient scale. J. Amer. Statist. Assoc. 83 406–413.

YOHAI, V. J. and ZAMAR, R. H. (1993). A minimax-bias property of the least α-quantile estimates.
Ann. Statist. 21 1824–1842.

DEPARTMENT OF BIOSTATISTICS

UNIVERSITY OF ZURICH

SUMATRASTRASSE 30
CH-8006 ZURICH

SWITZERLAND

E-MAIL: gervini@ifspm.unizh.zh

DEPARTAMENTO DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES

CIUDAD UNIVERSITARIA, PABELLÓN 1
1428 BUENOS AIRES

ARGENTINA

E-MAIL: vyohai@dm.uba.ar


