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Let k > 0 be an integer and Y a standard Gamma(k) distributed random variable. Let X be an independent

positive random variable with a density that is hyperbolically monotone (HM) of order k. Then Y · X and

Y/X both have distributions that are generalized gamma convolutions (GGCs). This result extends a result

of Roynette et al. from 2009 who treated the case k = 1 but without use of the HM-concept. Applications in

excursion theory of diffusions and in the theory of exponential functionals of Lévy processes are mentioned.
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1. Introduction

A generalized gamma convolution (GGC) is a limit distribution for sums of independent gamma

distributed random variables (r.v.s). The GGCs were introduced by the actuary O. Thorin in

1977 when he tried to prove that the lognormal distribution is infinitely divisible (see [22]). He

used a technique that later on led the second author of this paper to introduce in [6] the concept

of hyperbolic complete monotonicity (HCM). The simpler concept of hyperbolic monotonicity

(HM) was mentioned in [6], pages 101–102, and more carefully studied in [7].

The GGCs have got applications in many different fields including infinite divisibility (e.g.,

Steutel and van Harn [21]), mathematical analysis (e.g., Schilling et al. [20]), stochastic processes

(e.g., James et al. [13] and Behme et al. [3]), and financial mathematics (e.g., Barndorff-Nielsen

et al. [1]).

In 2009 Roynette et al. [17] proved a novel GGC result that has provided stimulus to the

present work. In our terminology, they showed that the product of an exponentially distributed

r.v. Y and another independent r.v. X has a GGC distribution provided that the density of X is

HM. We will give a new and more transparent proof of this result and generalize it considerably

to cover gamma distributions.

The paper is organized as follows. In Section 2, the HM, HCM and GGC theory is briefly re-

called. In Section 3, the main result that the product of a gamma variable with shape parameter k

and an r.v. with HMk distribution has a GGC distribution is given. This result can be formu-

lated in several alternative ways. It has also an important extension. The proof contains some
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surprising elements. Applications, analytical as well as stochastic process related ones, are given

in Section 4. Finally, in Section 5 some open problems are mentioned.

2. Background

Basic facts on hyperbolic monotonicity (HM) and generalized gamma convolutions (GGCs) are

presented here. They are taken from Bondesson [6,7]. Much information about GGCs and hyper-

bolic complete monotonicity (HCM) can also be found in the book by Steutel and van Harn [21].

2.1. Hyperbolic monotonicity

Let f be a nonnegative function on (0,∞). Consider, for any fixed u > 0, the function

f (uv)f (u/v), v > 0. Obviously, it is invariant under the transformation v �→ v−1. It follows

that it is a function h(w) of w = v + v−1 since the value of w determines the set {v, v−1}.

Definition 1. A nonnegative function f on (0,∞) is said to be hyperbolically monotone (HM

or HM1) if, for each fixed u > 0, the function h(w) = f (uv)f (u/v) is non-increasing as a func-

tion of w = v + v−1. More generally, it is called hyperbolically monotone of order k (HMk) if

(−1)jh(j)(w) ≥ 0, j = 0,1, . . . , k − 1 and (−1)k−1h(k−1)(w) is non-increasing. If this holds for

all k ≥ 1, f is also called hyperbolically completely monotone (HCM).

The class of HMk-functions is also denoted HMk . Obviously

HCM = HM∞ ⊂ · · · ⊂ HM3 ⊂ HM2 ⊂ HM1 = HM.

Simple examples of HCM-functions are provided by (with γ ∈R, c ≥ 0): xγ , e−cx , and e−c/x . It

is apparent that the HMk-class is closed with respect to multiplication of functions. For f ∈ HMk ,

obviously f (uv)f (u/v) ≤ (f (u))2. It easily follows that logf (ex) is concave and hence that

f (x) ≤ Cxγ for some constants C ≥ 0 and γ ∈ R (depending on f ). Every HMk-function f

can therefore be modified to an HMk probability density function (p.d.f.) by multiplication by a

factor exp(−δ1x − δ2x
−1) (with δ1 > 0 and δ2 > 0 arbitrarily small) and a normalizing constant.

In this paper, we are mainly concerned with p.d.f.s.

Example 1. Let f be a p.d.f. on (a, b) ⊂ (0,∞) of the form f (x) = C(x − a)α−1(b − x)β−1,

where C is a constant. It can be shown that for α ≥ 1 and β ≥ 1, f is HMk for k = min([α], [β]),
where [·] denotes integer part. However, if a = 0, then for any value of α,f is HMk for k = [β].
In particular, the U(a,b) density is HM1. In fact, in this case it is easy to see that h(w) =
f (uv)f (u/v) is 0 for all u sufficiently large or small and that for the other values of u,h(w)

equals 1 if w is below some bound and otherwise 0.

Example 2. Let X = U1U2 · · ·Uk , where the random variables (r.v.s) Ui are independent

and uniformly distributed on (0,1). Since − logX has a Gamma(k,1)-distribution, fX(x) =
1

(k−1)! (− logx)k−1,0 < x < 1. This p.d.f. is HMk . In fact, h(w) = f (uv)f (u/v) = 0 for u ≥ 1,
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whereas, for u < 1, h(w) ∝ ((logu)2 −(logv)2))k−1 if u < v < u−1 (i.e. if 2 ≤ w < u+u−1) and

otherwise vanishes. The HMk result then follows from the fact that d(logv)2/dw is completely

monotone (CM). In fact, this derivative can be shown to be equal to
∫ ∞

0 (1 + t2 + tw)−1 dt .

The following result, which concerns powers, products and ratios of r.v.s, is important. Its

proof (in [7]) is far from trivial. A main idea in the proof is to use hyperbolic substitutions of the

form x = uv, y = u/v in certain double integrals.

Proposition 1. Let X and Y be independent r.v.s with HMk-densities (X ∼ HMk, Y ∼ HMk).

Then, for any q ∈R with |q| ≥ 1, we have Xq ∼ HMk . Moreover, X ·Y ∼ HMk and X/Y ∼ HMk .

A simple consequence of Proposition 1 (with one of the r.v.s exponentially distributed) is

that the Laplace transform of an HMk function is HMk . Let X have the HM2-density f (x) =
2 max(0,1 − x) and let Y ∼ U(0,1) (with an HM1-density). Then it can be shown that X/Y ≁

HM2. Thus, there is no trivial extension of Proposition 1.

The HM1-densities can be identified as follows (see [7]).

Proposition 2. We have X ∼ HM1 if and only if Y = logX has a p.d.f. that is logconcave, i.e.

logfY (y) is concave. Equivalently, X ∼ HM1 if and only if fX(x) = C exp(−
∫ x

x0

ψ(y)
y

dy), where

ψ is non-decreasing, C a constant, and x0 is suitably chosen.

With this, the well-known fact that logconcavity is preserved under convolution (see, e.g., [12],

pages 17–23) becomes a simple consequence of Proposition 1 for k = 1.

Typical HCM (= HM∞) p.d.f.s have the form f (x) = Cxβ−1
∏n

i=1(1 + cix)−γi , where the

parameters are positive, or are limits of such densities. In fact, all HCM-densities (and functions)

are such limits. An open problem is to find canonical representations for HMk-densities for

1 < k < ∞.

The HMk-class of densities (functions) can alternatively be described by the condition that

h(w) = f (uv)f (u/v) = cu +
∫

(w,∞)

(λ − w)k−1Hu(dλ), (1)

where cu ≥ 0 and Hu(dλ) is a nonnegative measure. The simple example f (x) = xγ gives

cu = u2γ and Hu(dλ) ≡ 0. However, for a p.d.f. we must have cu = 0. The representation (1)

follows from a representation of the non-increasing function (−1)k−1h(k−1)(w) as an integral

over (w,∞) (or possibly [w,∞)) of a nonnegative measure. For instance, for k = 2 we put

−h′(w) =
∫

1(w < λ)Hu(dλ). We then get, by a change of the order of integration,

h(w) − h(∞) = −
∫ ∞

w

h′(w̃) dw̃ =
∫ ∫

1(w < w̃ < λ)dw̃Hu(dλ) =
∫

(w,∞)

(λ − w)Hu(dλ).

The representation (1) was derived and used in [7]. For functions with monotone derivatives

up to some order it seems to have been first used by Williamson [23].
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2.2. Generalized gamma convolutions

Convolving different gamma distributions, Gamma(u, t), with p.d.f.s and Laplace transforms

(LTs) of the forms f (x) = (Ŵ(u))−1xu−1tu exp(−xt) and φ(s) = ( t
t+s

)u, respectively, and then

taking weak limits, Thorin [22] was led to the following definition.

Definition 2. A generalized gamma convolution (GGC) is a probability distribution on [0,∞)

with LT of the form

φ(s) = exp

(

−as +
∫

(0,∞)

log

(
t

t + s

)

U(dt)

)

,

where (the left-extremity) a ≥ 0 and U(dt) is a nonnegative measure on (0,∞) (with finite mass

for any compact subset of (0,∞)) such that
∫

(0,1)
| log t |U(dt) < ∞ and

∫

(1,∞)
t−1U(dt) < ∞.

The GGC-class of distributions is closed with respect to (w.r.t.) addition of independent ran-

dom variables and w.r.t. weak limits. Each GGC is infinitely divisible and each convolution root

of a GGC is a GGC as well. The p.d.f. f (x) of a GGC is strictly positive on (a,∞) and, if a = 0

and β =
∫

(0,∞)
U(dt) is finite, then f (x) = xβ−1h(x), where h(x) is completely monotone (see

[6], page 49).

The p.d.f. of a GGC need not be HM1. For instance, for a gamma distribution with shape

parameter less than 1 and shifted to have left-extremity a > 0 the p.d.f. is not HM1. An HMk-

density, which may have compact support, is in general not a GGC. However, see [6], Theo-

rem 5.1.2:

Proposition 3. If the p.d.f. f on (0,∞) is HCM, then it is a GGC. Thus HCM ⊂ GGC.

Many well-known p.d.f.s are HCM and therefore also GGCs and hence infinitely divisible. For

instance, gamma densities are HCM. Then it follows from Proposition 1 (for k = ∞) that also

the power q, q ≥ 1, of the ratio of two independent gamma variables has a density that is HCM.

This density is of the form f (x) = Cxβ−1(1 + cxα)−γ , x > 0, with α = q−1. Every lognormal

density is also HCM.

The next proposition gives a characterization of the LT of a GGC ([6], Theorem 6.1.1).

Proposition 4. A function φ(s) on (0,∞) is the LT of a GGC if and only if φ(0+) = 1 and φ is

HCM.

This result will be our basic tool in Section 4. Since the LT of an HMk function is HMk ,

and this also holds for k = ∞, Proposition 3 can be seen as a consequence of Proposition 4.

Using another complex characterization of the LT of a GGC, we can get the following result ([6],

Theorem 4.2.1).

Proposition 5. Let Y ∼ Gamma(1,1) and let X > 0 be an independent r.v. with a density f (x)

that is logconcave (or only such that xf (x) is logconcave). Then Y/X ∼ GGC.
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One should notice that in Proposition 5 the r.v. X is not assumed to have an HM1-density.

Proposition 6. If f (x) is the density of a GGC and x−αf (x), where α ≥ 0, can be normalized

to be the p.d.f. g(x) of a probability distribution, then g(x) is also the p.d.f. of a GGC.

This result is only a limit case of [6], Theorem 6.2.4. The following recent result from [8]

needs to be mentioned. It can be proved by the help of Proposition 4.

Proposition 7. Let X ∼ GGC and Y ∼ GGC be independent r.v.s. Then X · Y ∼ GGC.

Well-known examples of GGC distributions include the log-normal distribution and positive

strictly α-stable distributions. Also, each negative power of a gamma variable is shown to have

a GGC-distribution in [10]. Bosch and Simon [9] and Jedidi and Simon [14] give other novel

results on HM, HCM, and GGC distributions.

3. Main result

Here the main result is presented as a theorem in Section 3.1. Moreover, comments are given.

The proof is presented in Section 3.2.

3.1. Formulation of the main result and comments

Theorem 1. Let k ≥ 1 be an integer. Let Y ∼ Gamma(k,1) and X ∼ HMk be independent r.v.s.

Then Y · X ∼ GGC and Y/X ∼ GGC.

We give some comments on the above theorem.

Remarks 1. (i) For k = 1 Theorem 1 differs from Proposition 5. One should notice that X ∼
HM1 ⇔ X−1 ∼ HM1 but logconcavity of fX is not equivalent to logconcavity of fX−1 . One can

also notice that every gamma density is HCM (and thus HM1) but only logconcave when the

shape parameter is ≥ 1.

(ii) In the case k = 1 the LT φ1(s) =
∫ ∞

0 (x + s)−1xfX(x) dx of Y/X for independent

Y ∼ Gamma(1,1) and X ∼ HM1 is the Stieltjes transform (or double Laplace transform) of

the measure xfX(x) dx. For k > 1, the LT φk(s) =
∫ ∞

0 (x + s)−kxkfX(x) dx coincides with the

so-called generalized Stieltjes transform (of order k) of the measure xkfX(x) dx. In that sense

the above theorem can be restated as follows: Assume fX(x) is an HMk function. Then the kth

order generalized Stieltjes transform of xkfX(x) dx is HCM, that is, it is the LT of a GGC.

(iii) Clearly Theorem 1 remains true if Y ∼ Gamma(k, θ) for any θ > 0, since in this case

θY ∼ Gamma(k,1). Considering Y ∼ Gamma(k, k) and letting k → ∞ we get that Y → 1 in

probability. Hence, for X ∼ HMk with k fixed it is necessary in the theorem to have a restriction

upwards on the shape parameter of Y since otherwise it would incorrectly follow that HMk ⊂
GGC. For instance, if Y ∼ Gamma(2,1) and X ∼ U(1,2), then fX is HM1 but Y/X ≁ GGC.
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(iv) Letting again k → ∞ and so that Y → 1 in probability, we get back Proposition 3 as a

limit case of Theorem 1. Since a Gamma(k,1) density is HCM, it also follows that the class of

GGCs provided by Theorem 1 is closed w.r.t. multiplication and division of independent r.v.s.

However, if Z = Y · X with Y ∼ Gamma(k,1) and X ∼ HMk , it is not true that Z−1 always has

the same representation.

(v) Theorem 1 can also be expressed in the following way. Any scale mixture of Gamma(k)

distributions with a scale mixing HMk-density is a GGC. It is well known ([21], Theorem 3.3,

page 334) that any scale mixture of Gamma(1) distributions is infinitely divisible (ID). More

generally, any scale mixture of Gamma(2) distributions is ID ([15]). However, for k > 2 ID fails

to hold in general for such mixtures.

There is a nice extension of Theorem 1 which we see as a corollary of it.

Corollary 1. Let Y ∼ Gamma(r,1) be independent of X ∼ HMk where r > 0 and k is an integer

such that k ≥ r . Then Y · X ∼ GGC and Y/X ∼ GGC.

Proof. Since X ∼ HMk if and only if 1/X ∼ HMk , it suffices to consider the ratio Z = Y/X.

Let α = k − r and let Y ′ ∼ Gamma(k,1). Then

fZ(z) =
∫ ∞

0

xfY (zx)fX(x) dx =
1

Ŵ(r)

∫ ∞

0

x(zx)r−1e−zxfX(x) dx

=
Ŵ(k)

Ŵ(r)
z−α

∫ ∞

0

xfY ′(zx)x−αfX(x) dx.

Here x−αfX(x) is HMk and so is, for any δ ≥ 0, x−αe−δ/xfX(x). Letting if necessary δ > 0 and

normalizing this latter function to become the p.d.f. of an r.v. X′, we get from Theorem 1 that

Y ′/X′ ∼ GGC. Using then Proposition 6 and letting δ → 0, we conclude that Y/X ∼ GGC. �

3.2. Proof of the main result

The proof of Theorem 1 is given in two parts. First, the case k = 1 is treated. This proof is

short but contains the essential ideas. The proof in the general case becomes more technical.

Of course, we use the HCM-characterization of the LT of a GGC and hyperbolic substitutions

in the proofs. For the transformation T = t + t−1, we avoid to use the inverse transformation

t = T/2 ±
√

T 2/4 − 1. In fact, the HCM-concept was introduced in the early 1990s in order to

avoid, at least in presentations, such inverse transformations.

Proof of Theorem 1, k = 1. It suffices to consider the ratio Y/X, where Y ∼ Gamma(1,1). The

LT φ(s) of the distribution of the ratio is given by, with f = fX ,

φ(s) = E
(

exp(−sY/X)
)

=
∫ ∞

0

E
(

exp(−sY/x)
)

f (x)dx =
∫ ∞

0

x

x + s
f (x) dx.
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For fixed s > 0, consider

J = φ(st)φ(s/t) =
∫ ∞

0

∫ ∞

0

xy

(x + st)(y + s/t)
f (x)f (y) dx dy.

In view of Proposition 4, we only have to show that J is completely monotone (CM) w.r.t.

T = t + t−1. We make the hyperbolic substitution x = uv, y = u/v with Jacobian with modulus

2u/v. Hence,

J =
∫ ∞

0

∫ ∞

0

2u

v

u2

(uv + st)(u/v + s/t)
f (uv)f (u/v)dudv.

Using the representation f (uv)f (u/v) =
∫

[w,∞)
Hu(dλ), where Hu(dλ) is a nonnegative mea-

sure and w = v + v−1, letting b = b(λ) ≥ 1 be such that b + b−1 = λ, letting a = u/s, and

changing the order of integration, we get by some simple algebra that

J =
∫ ∞

0

2u2

s

∫ ∞

2

(∫ b

1/b

t

(v + t/a)(v + at)
dv

)

︸ ︷︷ ︸

=:J1

Hu(dλ)du.

It is now evident that it suffices to show that for each b ≥ 1 and each a > 0 the interior v-integral

J1 is CM w.r.t. to T = t + t−1. For b = 1, J1 = 0, so it suffices to consider the case b > 1. The

integral J1 is a function of T since the change t �→ t−1 leaves J1 invariant which is shown by the

substitution v = 1/v′. Now J1 can be calculated explicitly. In fact, by a partial fraction expansion

we have for a �= 1,

t

(v + t/a)(v + at)
=

1

a − a−1

(
1

v + t/a
−

1

v + at

)

and hence, for a �= 1, by an integration and some simplification,

J1 =
1

a − a−1
log

(
(t + ab)(t + (ab)−1)

(t + a/b)(t + b/a)

)

=
1

a − a−1
log

T + A

T + B
,

where A = ab + (ab)−1,B = a/b + b/a. For a = 1, J1 = (b − b−1)/(T + b + b−1). Since

a �→ a−1 leaves J1 unchanged, we may without restriction assume that a > 1 (and as earlier

b > 1), and then A > B and J1 > 0. Moreover, we get that the kth derivative of J1, that is, here

its first derivative, has the form

dJ1

dT
=

1

a − a−1

(
1

T + A
−

1

T + B

)

=
1

a − a−1

B − A

(T + A)(T + B)

and this derivative is negative. Since (T + A)−1(T + B)−1 is CM, we get as desired that

(−1)jJ
(j)

1 (T ) ≥ 0, j = 0,1,2, . . . , and the proof is complete. �
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We now proceed with the general proof of Theorem 1 for any integer k ≥ 1. We shall see that

the above proof needs some complementary arguments.

Proof of Theorem 1, general k. Let Y ∼ Gamma(k,1) and X ∼ HMk be independent. Then

the LT φ(s) of the distribution of Y/X is given by

φ(s) =
∫ ∞

0

(
x

x + s

)k

f (x)dx.

Hence, using (1)

J = φ(st)φ(s/t) =
∫ ∞

0

∫ ∞

0

xkyk

(x + st)k(y + s/t)k
f (x)f (y) dx dy

=
∫ ∞

0

∫ ∞

0

2u

v

u2k

(uv + st)k(u/v + s/t)k
f (uv)f (u/v)dudv

=
∫ ∞

0

∫ ∞

0

2u

v

u2k

(uv + st)k(u/v + s/t)k

∫ ∞

w

(λ − w)k−1Hu(dλ)dudv,

where w = v + v−1 and Hu(dλ) is a nonnegative measure. Again we let b = b(λ) ≥ 1 be such

that b + b−1 = λ and put a = u/s. After a change of the order of integration with the v-integral

as the inner integral and noticing that b + b−1 − v − v−1 = (b − v)(v − b−1)/v, we see by some

algebraic manipulations that it suffices to show that the integral

Jk =
∫ b

1/b

Ik dv, where Ik =
tk((b − v)(v − b−1))k−1

(v + t/a)k(v + at)k
, (2)

is CM w.r.t. T = t + t−1. The same argumentation as in the case k = 1 shows that Jk is a

function of T . An important fact is that Jk can be calculated explicitly for all integers k although

Jk becomes complicated for k large. Since Ik is a rational function of v, we can get an expression

for Jk by using first a partial fraction expansion of Ik w.r.t. v. However, it is more efficient to use

an alternating generating function:

GF(z) =
∞
∑

k=1

(−z)k−1Jk =
∫ b

1/b

∞
∑

k=1

(−z)k−1Ik dv

=
∫ b

1/b

1

(v + t/a)(v + at)/t + z(b − v)(v − b−1)
dv.

Minimizing over v and t , we see that the series is absolutely convergent at least if |z| ≤
a

(1+a)2
(b−1)2

b
. Since the denominator in the integrand is a quadratic function of v and as such

a function can be factorized into two real linear factors for z ≥ 0, we get by integration and

considerable simplification with the notation α = a + a−1, β = b + b−1 that

GF(z) =
1

√
�

logR,
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where

� = (α + βz)2 − 4 − 4z2 + 4zT and R =
T − 2z + 1

2
β(α + βz) + 1

2
(b − b−1)

√
�

T − 2z + 1
2
β(α + βz) − 1

2
(b − b−1)

√
�

.

It is far from obvious but some calculation shows that

d

dz
logR =

2(b − b−1)
√

�
.

In fact, the product of the numerator and the denominator in R does not depend on z so the

derivative above is just twice the derivative of the logarithm of the numerator in R. Of course,

Jk = Jk(T ) = (−1)k−1

(k−1)! GF(k−1)(0). Now it is not difficult to see that with, as earlier, A = ab +
(ab)−1 and B = a/b + b/a, we get

Jk(T ) = Pk(T ) + Qk(T ) log

(
T + A

T + B

)

, (3)

where Pk(T ) and Qk(T ) are polynomials in T of degrees k − 2 and k − 1, respectively. For

k = 1,Pk(T ) vanishes. For k = 1,2, and 3, we have

P1(T ) = 0, P2(T ) = −2
b − b−1

(a − a−1)2
, P3(T ) = −3

b − b−1

(a − a−1)4
(2T + A + B),

Q1(T ) =
1

a − a−1
, Q2(T ) =

2T + A + B

(a − a−1)3
,

Q3(T ) = 6T 2 + 6(A + B)T + (A + B)2 + 2AB

(a − a−1)5
.

By using the above expressions for Pk(T ) and Qk(T ) one can easily verify that at least for

k = 1,2,3 we have somewhat surprisingly

dkJk

dT k
= (−1)k(k − 1)!

(b − b−1)2k−1

(T + A)k(T + B)k
. (4)

To see that (4) is completely general, some additional argumentation is needed. Since Pk(T ) has

degree k − 2, it has no influence at all on the kth derivative of Jk . Since Qk(T ) has degree k − 1

and hence Q
(k)
k (T ) ≡ 0, it also follows from (3) after some reflection that

dkJk

dT k
=

Rk(T )

(T + A)k(T + B)k
, (5)

where Rk(T ) is a polynomial of degree at most 2k − 1. To see that really Rk(T ) is a constant,

(−1)k(k − 1)!(b − b−1)2k−1, we look at the case when t → ∞. Then T = t + t−1 is very close
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to t . From (2), we get that

Jk ∼
1

tk

∫ b

1/b

(

(b − v)
(

v − b−1
))k−1

dv ∼ B(k, k)
(b − b−1)2k−1

T k
as t → ∞,

where B(k, k) = (k − 1)!(k − 1)!/(2k − 1)!. Since k(k + 1) · · · (2k − 1)B(k, k) = (k − 1)!, we

also get that

dkJk

dT k
∼ (−1)k(k − 1)!

(b − b−1)2k−1

T 2k
as t → ∞.

Since Rk(T ) in (5) is a polynomial, this asymptotic relation can only hold when the polynomial is

a constant and hence (4) holds for all k. To complete the proof, we use that (T +A)−k(T +B)−k

is CM and hence (−1)jJ
(j)

k (T ) ≥ 0 for j = k, k + 1, . . . . Then it only remains to verify that

these inequalities also hold for j = 0,1, . . . , k − 1. Using the same argumentation as above we

have that, for each j ≥ 0, J
(j)

k (T ) = O(T −k−j ) as T → ∞. In particular J
(j)

k (T ) vanishes at

T = ∞. It follows that

J
(j)

k (T ) = −
∫ ∞

T

J
(j+1)

k (T̃ ) dT̃ , j = 0,1,2, . . . .

We see that the sign of J
(k−1)
k (T ) is opposite to that of J

(k)
k (T ). The same then holds for the

sign of J
(k−2)
k (T ) compared with that of J

(k−1)
k (T ), etc. This shows that Jk(T ) is CM w.r.t. T as

desired. �

Remark 2. In the general case, some technical details have been omitted in the proof. However,

it is easy to check all statements by using a program for symbolic algebra. In fact, the simple

form in (4) for the derivative J
(k)
k (T ) was discovered in that way.

4. Applications

Theorem 1 and Corollary 1 have a wide range of possible applications. We will discuss a few in

this section.

4.1. Excursion theory

The random process foundations for the research carried out in this article have been laid by

Roynette et al. [17] and Salminen et al. [18]. In these articles, the authors study excursion times

of recurrent linear diffusions on R+. More precisely, given an R+-valued recurrent diffusion

(Xt )t≥0 and defining the last and the next visit in 0 via

gt := sup{s ≤ t,Xs = 0}, dt := inf{s ≥ t,Xs = 0}
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they are interested in the r.v.s

Y (1)
p = Zp − gZp , Y (2)

p = dZp − Zp, Y (3)
p = dZp − gZp , (6)

where Zp denotes an exponential r.v. with density pe−pz, z > 0, independent of (Xt )t≥0. In [18]

it is shown, that all Y (i) are infinitely divisible, while in [17] the authors give conditions for Y (i)

to have GGC distributions. These conditions are stated in terms of the Krein measure of the Lévy

measure of the inverse local time at 0 of (Xt )t≥0.

For their proof of the GGC property, Roynette et al. first show, for k = 1, a reformulation of

Theorem 1 ([17], Theorem 2). They do not use the HM-concept but define a class C of functions

which essentially coincides with the class HM1. The proof of [17], Theorem 2, then relies on the

HCM-characterization of the LT of a GGC (Proposition 4). Although also our proof for k = 1

uses Proposition 4 it is shorter than theirs because of our use of a suitable hyperbolic substitution

in a double integral and the avoidance of certain inverse transformations.

Further in [17] the LTs of the Y (i)s are shown to be Stieltjes transforms of measures whose

densities are HM1 (compare with Remark 1(ii)).

In the following, we will indicate via an example how one can also use our main theorem in

the case k = 2 to prove the GGC property of Y
(3)
p as defined in (6). Therefore, we briefly recall

some notation from [18] and [17].

Let (Lt )t≥0 be the continuous local-time of (Xt )t≥0 at 0 and (τu)u≥0 its right-continuous

inverse. Then (τu)u≥0 is a subordinator and as such has a Lévy exponent ψ and a Lévy density

ν, i.e.

E
[

e−λτu
]

= e−uψ(λ) = exp

(

−u

∫ ∞

0

(

1 − e−λx
)

ν(x) dx

)

,

where further ν has the Krein representation

ν(x) =
∫ ∞

0

e−xzK(dz)

with Krein measure K of ν.

Proposition 8. Assume that the Krein measure K is such that the function f (u) defined via

f
(

u−1
)

=
∫ u

(u−p)∨0

K(dz)

is an HM2 function. Then Y
(3)
p ∼ GGC.

Proof. It was shown in [18], that the distribution of Y
(3)
p is a Gamma(2)-mixture. In particular,

it can be deduced from [18], equations (46), (49) and (50), that the density of Y
(3)
p is given by

f
Y

(3)
p

(u) =
1

ψ(p)

∫ ∞

0

ue−ux

∫ x

x−p

K(dz)dx
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which shows that Y
(3)
p = Y · X where Y ∼ Gamma(2,1) and X is independent of Y with density

fX defined via fX(u−1) = 1
ψ(p)

∫ u

u−p
K(dz). Thus, the claim follows from Theorem 1 in the case

k = 2. �

4.2. Exponential functionals of Lévy processes

Let ξ = (ξt )t≥0 be a Lévy process such that ξt → −∞ as t → ∞. Then the exponential functional

of ξ is defined as

Iξ :=
∫

(0,∞)

eξt dt.

Such exponential functionals appear as stationary distributions of generalized Ornstein–

Uhlenbeck processes and they have attracted a lot of interest throughout the last years (see,

e.g., [11], the survey paper [5] or the more recent contributions [2,3,16] to name just very few

references).

It is known, that Iξ ∼ GGC in several cases. For example, Dufresne (e.g., [5], equation (16))

showed that Iξ
d= 2

σ 2 G−1
2a/σ 2 where Gγ ∼ Gamma(γ,1), whenever ξ is a Brownian motion with

variance σ 2 and drift a < 0. Concerning processes ξ with jumps, one has for example the fol-

lowing proposition.

Proposition 9. Suppose that ξ is a compound Poisson process, that is, ξt =
∑Nt

i=1 Xi with i.i.d.

jump heights Xi, i = 1,2, . . . , such that −∞ < E[X1] < 0 and eX1 ∼ GGC. Then Iξ ∼ GGC.

Proof. The proof can be carried out along the lines of the proof of [3], Proposition 3.2, using the

more recent Proposition 7. �

Still, assuming that ξt = at − Nt , t ≥ 0, for a < 0 and a subordinator (i.e., a nondecreasing

Lévy process) (Nt )t≥0, one easily observes that Iξ has bounded support and therefore cannot be

infinitely divisible so that in particular Iξ ≁ GGC.

In [16], based on the Wiener–Hopf factorization of Lévy processes, the authors obtain factor-

izations of exponential functionals. In particular, in case of a spectrally negative process ξ with

ξt → −∞, they prove that

Iξ
d=

IH

Gγ

,

where H = (Ht )t≥0 is the descending ladder height process of ξ and Gγ ∼ Gamma(γ,1), with γ

depending on the characteristics of ξ , is independent of H . We refer to [19] or [4] for any further

information on Lévy processes, their characteristics and their Wiener–Hopf factorizations.

Since −H = (−Ht )t≥0 is a subordinator with drift aH and Lévy jump measure νH , say, it

follows from [11], Example B, that if H is non-trivial, then IH admits a density f (s) which

fulfills the integro-differential equation

(1 − aH s)f (s) =
∫ ∞

s

ν̄H

(

log(t/s)
)

f (t) dt,
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where ν̄H (x) = νH ((x,∞)). In particular, if ν̄H (s) = ce−bs , b, c > 0, and aH > 0, the authors

prove that

IH
d=

1

aH

Zb+1,c/aH
,

where Zα,β is a Beta random variable on (0,1) with parameters α,β > 0. Hence, IH ∼ HMk for

k ≤ min([b + 1], [c/aH ]).
Now by Corollary 1, Iξ is the reciprocal of a GGC if k ≥ γ . Notice that in general such inverses

of GGCs are not GGCs themselves. However, in this case Iξ ∼ HMk , since Gγ ∼ HCM.

Conversely, if again ν̄H (s) = ce−bs , b, c > 0, but aH = 0, then IH itself is Gamma distributed

and so Iξ ∼ GGC.

4.3. Constructing GGCs

Using Theorem 1, we can construct explicit densities and LTs of GGCs as we shall do in the

following.

Examples 3. (i) Let Y ∼ Gamma(1,1) and X = U ∼ U(0,1) be independent. Then we have the

following LTs and p.d.f.s for YU and Y/U , respectively:

φYU (s) =
log(1 + s)

s
, φY/U (s) = 1 + s log

(
s

1 + s

)

,

fYU (x) = Ei(x) =
∫ ∞

1

y−1e−yx dy, fY/U (x) =
1

x2

(

1 − (1 + x)e−x
)

.

By Example 2, we have U ∼ HM1 and hence by Theorem 1 the above p.d.f.s are GGCs and the

LTs are HCM.

(ii) Now let Y ∼ Gamma(2,1) and X = min(U1,U2), with U1,U2 ∼ U(0,1) independent

and independent of Y . Then fX(x) = 2(1 − x),0 < x < 1, which belongs to HM2. We can also

represent X as X
d= U1U

1/2
2 . We get the following LTs and p.d.f.s:

φYX(s) =
2

s

(

1 −
log(1 + s)

s

)

, φY/X(s) = 1 + 6s +
(

6s2 + 4s
)

log

(
s

1 + s

)

,

fYX(x) = 2e−x − 2xEi(x), fY/X(x) =
1

x3

(

−12 + 4x +
(

2x2 + 8x + 12
)

e−x
)

.

Again by Theorem 1 the p.d.f.s are GGCs and the LTs are HCM.

Many similar examples can be obtained from Corollary 1 by letting Y ∼ Gamma(r,1) with a

real r .
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5. Final comments

There are reasons to believe that Theorem 1 (as well as Proposition 1) can be extended to cover

the case that k is any real number ≥ 1. Maybe it can even be extended to all real k > 0. As a

definition of an HMk function in the real case, the integral representation (1) can be used. For

any real j and k such that 0 < j < k, we have HMk ⊂ HMj . To see this, one can use (1) together

with the simple formula

(λ − w)k−1 =
1

B(j, k − j)

∫ λ

w

(λ̃ − w)j−1(λ − λ̃)k−j−1 dλ̃.

For k ≥ 1, the HMk class is closed w.r.t. multiplication of functions. However, it is not closed for

k < 1 which the example f (x) = (1 − x)−1/2 illustrates. The technique which we have used to

prove Theorem 1 for integers k cannot be applied in the general real case since it much depends

on an explicit calculation of the integral Jk in (2). However, numerical experiments indicate that

Jk is CM as a function of T = t + t−1 for all k > 0. An important problem for the future is to

prove that so is the case.

Let A and B denote classes of probability distributions. We denote by A × B the class of

distributions generated by Y ·X for Y ∼A and X ∼ B with Y and X independent. Theorem 1 and

Proposition 7 can then be formulated as Gamma(k) × HMk ⊆ GGC and GGC × GGC ⊆ GGC,

respectively.

One may wonder about the largest class Hk such that Gamma(k) × Hk ⊂ GGC. Apparently,

because of Theorem 1 and Proposition 7, Hk ⊃ HMk × GGC. One may also wonder about the

largest class Gk such that Gk ×HMk ⊆ GGC. Of course, Gk ⊇ Gamma(k)×GGC. Could possibly

Gk ⊃ GGC(k), where GGC(k) denotes all GGCs with left-extremity 0 and total U -measure at

most k? To prove this possible result, it suffices to show that Y · X ∼ GGC when X ∼ HMk and

Y is a finite sum of independent gamma variables with a shape parameter sum not exceeding k

and varying scale parameters.
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