
396 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 2, FEBRUARY 1997

A Class of Second-Order Stationary
Self-Similar Processes for Phenomena

Birsen Yazıcı,Member, IEEE,and Rangasami L. Kashyap,Fellow, IEEE

Abstract—We propose a class of statistically self-similar pro-
cesses and outline an alternative mathematical framework for
the modeling and analysis of1=f phenomena. The foundation
of the proposed class is based on the extensions of the basic
concepts of classical time series analysis, in particular, on the
notion of stationarity. We consider a class of stochastic processes
whose second-order structure is invariant with respect to time
scales, i.e.,E[X(t)X(�t)] = t2H�HR(�); �; t > 0 for some
�1 < H < 1. For H = 0, we refer to these processes as
wide sense scale stationary. We show that any self-similar process
can be generated from scale stationary processes. We establish a
relationship between linear scale-invariant system theory and the
proposed class that leads to a concrete analysis framework. We
introduce new concepts, such as periodicity, autocorrelation, and
spectral density functions, by which practical signal processing
schemes can be developed. We give several examples of scale sta-
tionary processes including Gaussian, non-Gaussian, covariance,
and generative models, as well as fractional Brownian motion as a
special case. In particular, we introduce a class of finite parameter
self-similar models that are similar in spirit to the ordinary
ARMA models by which an arbitrary self-similar process can be
approximated. Results from our study suggest that the proposed
self-similar processes and the mathematical formulation provide
an intuitive, general, and mathematically simple approach to1=f
signal processing.

I. INTRODUCTION

PROCESSES have a widespread occurrence in variety
of science and engineering data. Typical examples in electri-
cal systems include noises in electrical devices, burst error
in communication channels, frequency variations in music,
texture variations in natural terrain images, cloud formations,
and medical imagery, to mention a few [1]–[5]. processes
have two important characterizations. The first one is the
strong interdependence between far-apart observations. Such
a strong correlation is a result of high energy content of

spectral density at low frequencies. In statistics literature,
the correlation structure of the processes is taken as a
basis, and they are referred to as long term correlated or long
memory processes [6], [7]. The empirical correlation function
of the long-term correlated processes decays hyperbolically,
i.e., , as the lag , as opposed to the fast
exponential decay of the short-term correlated processes, such
as autoregressive moving average processes (ARMA). As a
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result, ordinary time series models do not offer parsimonious
representations for processes. A second characterization
of processes is the statistical self-similarity, that is, the
statistical properties of the process remain invariant to or
within an amplitude factor under arbitrary scalings of the time
axis. Statistical self-similarity of processes can be viewed
as a manifestation of their fractal nature.

The sharp contrast between the properties of the pro-
cesses and ordinary time series models have given rise to
many proposals about the best way of modeling and analyzing

processes. Generally speaking, most of the proposals are
based on either the concept of self-similarity, infinite-order
ARMA modeling, or physical origins of the processes.
Engineering literature contains various models based on the
physical nature of some specific phenomena [2]–[5].
While this class of models is very helpful in understanding
the mechanism of the physical phenomena by which
processes are generated, they lack mathematical tractability
to be useful in typical signal modeling tasks. Much of the
published research has argued in favor of either the mod-
els based on ARMA processes or statistical self-similarity.
The fractional differencing model, proposed independently by
Hosking and by Granger and Joyeux is an example of the
former one [7], [8]. It is a parsimonious, infinite-order, discrete
autoregressive process whose coefficients are functions of a
single parameter. Fractional Brownian motion (fBm) proposed
by Mandelbrot and Van Ness is an example of the later one
[6]. It is a continuous time moving average process in which
the past increments are weighted by the kernel ,
where the parameter is associated with the degree of self-
similarity. Although fBm became a popular framework for
various signal processing and pattern recognition problems
involving phenomena [9], [10], the mathematical structure
of the model makes the solutions of many practical problems
rather difficult. In particular, due to the nonstationarity of the
model, traditional time series analysis techniques cannot be
employed [11].

In this paper, we explore an alternative framework to the
fractional Brownian and fractional differencing models to
model and analyze phenomena. Our approach is based
on a new concept of stationarity. We propose a class of
nonstationary processes invariant in distribution with respect
to time scales, i.e., .
We call these processesscale stationary.These processes have
many properties similar in spirit to the ordinary stationary
processes. We show that a rich class of self-similar processes
can be generated by scale stationary processes. We illustrate
the practical utility of the proposed class by several examples,
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which include Gaussian, non-Gaussian, Markovian, covari-
ance, and generative models, as well as fractional Brownian
motion as a special case. Our development of the theory of
scale stationary processes is motivated by the linear scale-
invariant systems and signals theory [12], [13]. Such a system
theory perspective facilitates, first, the development of a class
of statistically self-similar processes that are rich enough to
embrace a variety of phenomena and, second, to develop
a mathematical framework by which efficient signal processing
tasks, such as spectral analysis and parameter estimation, can
be performed with minimum mathematical difficulty. Results
from our study suggest that there would appear to be many
additional applications for the self-similar processes and the
formulation we introduce in this work.

The rest of the paper is organized as follows. In Section
II, we review the theory of linear scale-invariant systems and
signals from a perspective relevant to our subsequent develop-
ments. In Section III, we introduce scale stationary processes
and a class of self-similar processes generated by the scale
stationary processes. We give several illustrative examples. We
define a concept of autocorrelation, develop a spectral repre-
sentation theorem, and discuss filtered self-similar processes
as a prelude to the next section. In Section IV, we introduce a
class of finite parameter self-similar processes that we refer to
as self-similar autoregressive processes. In Section V, we dis-
cuss the long-term correlation properties of the proposed self-
similar processes. Finally, in Section VI, we discuss briefly
several further items of interest and conclude our discussion.

II. GENERALIZED LINEAR SCALE-INVARIANT SYSTEMS

In order to motivate our discussion, let us first state the
relationship between linear time-invariant system theory and
the theory of wide sense stationary processes from our per-
spective. We can view wide sense stationary processes as
a generalization of the deterministic time or shift invariant
signals in the sense that both are invariant with respect to
the same translation, namely, the time shift. Given any finite
energy, time-invariant signal, the energy of the system remains
invariant under arbitrary shifts of the origin, i.e.,

and

(2.1)

We could replace the Lebesgue measure, which is invariant
with respect to time shifts, with a probability measure exhibit-
ing a similar invariance property and obtain the well-known
wide sense stationary processes. The statistical energy of wide
sense stationary processes remains invariant under arbitrary
time shifts of the origin, i.e.

(2.2a)

or

(2.2b)

By the generalization described above, one can map the linear
time-invariant system theory from deterministic to probabilis-
tic setting and obtain a framework for the analysis of wide
sense stationary processes. In addition, a broad range of
statistical techniques and models in the realm of wide sense
stationary processes can be viewed as stochastic counterparts
of the deterministic methods developed in the framework
of linear time-invariant systems and signals. For
example, the linear least squares prediction can be viewed as
a counterpart of the minimum norm approximation technique,
and ARMA models can be viewed as a counterpart of the con-
stant coefficient ordinary differential equations that are used
to represent the dynamics of linear time-invariant systems.
Thus, linear time-invariant system theory can be utilized to
develop a statistical tool box, as well as a concrete physical
understanding, for the wide sense stationary processes.

In our subsequent discussion, we shall consider signal pro-
cessing frameworks that are invariant with respect to another
type of translation, namely,scale.In order to unify the theory
of stationary process and our proposed models on the basis
of invariance, for the rest of the paper, we shall refer to
the ordinary stationarity as shift stationarity and linear time-
invariant systems and signals as linear shift invariant systems
and signals. First, we shall sketch the framework of scale-
invariant deterministic signals and linear systems. Later, using
the steps of this section, we shall extend our discussion to the
probabilistic setting.

Linear scale-invariant systems have been studied in signal
processing and pattern recognition in connection with scale
representations and scale-invariant filtering [12]–[15]. In our
discussion, we will review and modify basic results and
redefine some of the concepts from a perspective that is
relevant for our subsequent development.

Let be a signal on the positive real axis satisfying the
following invariance property:

for any (2.3a)

Then, we shall call a scale-invariant,finite energy signal
and denote the signal space by . Note that the
energy of the signal remains invariant under arbitrary scalings
of the time axis. We can extend the class of scale-invariant
signals by allowing a change in energy proportional with the
scaling factor, i.e.

(2.3b)

We shall call a finite energyself-similarsignal with param-
eter . Note that a scale-invariant signal is self-similar with
parameter 0. It is straightforward to show that given , and

satisfying

for all (2.4)
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the signal is scale-invariant if and only if is self-similar
with parameter . Moreover, both signals have the same
energy. Hence, self-similar and scale-invariant signals are in
one-to-one correspondence.

Suppose is the response of a linear system to an
arbitrary self-similar signal . Then, we shall call the system

linear self-similar(LSS) with parameter whenever

for all (2.5)

For , we shall call the system linear scale-invariant
(LSI). As is well known, the most general input-output rela-
tionship for a 1-D linear system is given by

(2.6)

provided that the integral is well defined. Under the scale-
invariance property defined in (2.5), the kernel of the
a self-similar system satisfies the following property:

for any (2.7)

Setting and , the input output
relation of an LSS system becomes

(2.8a)

By a simple change of variables, (2.8a) can be alternatively
expressed as

(2.8b)

Note that for , the input–output relationship given in
(2.8a) is nothing but the convolution operation with respect
to multiplication. It has the same algebraic properties, such as
commutativity and associativity, as the ordinary convolution
operation. We shall refer to as pseudo impulse response
function of an LSS system [21]. We can interpret the pseudo
impulse response function physically. To do so, let us intro-
duce the following generalized signal as a “unit driving force”
to an LSS system:

(2.9a)

The signal can be defined rigorously, but for our development,
we only need the following analog of the sifting property:

(2.9b)

Using the superposition principle of the linear systems together
with (2.9a) and (2.9b), we can verify that

(2.10)

Hence, the extra term in (2.10) explains the choice of
the word pseudo. As we shall see, pseudo impulse response
has many properties similar to the properties of the impulse
response function of linear shift-invariant systems. From (2.7)

and (2.10), it is clear that linear self-similar and scale-invariant
systems are in one-to-one correspondence.

Obviously, the system is not physically realizable for
in (2.8a) or in (2.8b). We shall say that an LSS system is
causal if for . Hence, for a causal system,
the input–output relations given in (2.8a) and (2.8b) reduce to

(2.11)

Before we proceed, let us define a concept of stability for
LSS systems in order to give a precise mathematical meaning
to the integral representation of the input output relationships
given in (2.8a) and (2.8b). For a given scale-invariant, finite
energy signal, we shall say that an LSS system with parameter

is stable if the output is self-similar, finite energy with some
parameter . The following theorem characterizes the stability
in terms of impulse response function.

Theorem 2.1:A linear self-similar system with pseudo im-
pulse response function is stable whenever

(2.12)

Proof 2.1: See Appendix I.
The input output relationship of an LSS system can be

simplified by means of the Mellin transform. Given a scale-
invariant, finite energy signal, its Mellin transform is defined
by

(2.13a)

where takes values ensuring the convergence of
the integral. For a purely imaginary, the Mellin transform is
an analog of the Fourier transform. It can be easily seen that
if the input of an LSI system is, , the output becomes

(2.14)

showing that are the eigenfunctions of
the system, whereas the corresponding eigenvalues are given
by the Mellin transform of the impulse response function of
the system. As a consequence, the inverse Mellin transform
is given by the superposition of the eigenfunctions with the
corresponding eigenvalues, i.e.,

(2.13b)

As a result of the eigenfunction property, the time domain
input–output relationship of an LSI system is conveniently
mapped to a multiplication operation in the Mellin domain.

(2.15)

Hence, is appropriately referred to as the transfer function
of an LSI system [13]. Similar results can be obtained for LSS
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systems, via generalized Mellin transforms. The synthesis and
analysis equations for the self-similar case are given by

(2.16)

where is any finite energy self-similar signal with parameter
. However, due to the nonorthogonality of generalized

Mellin transforms, there are differences between the results of
the scale-invariant and self-similar systems. For instance, the
input output relationship of an LSS system in the generalized
Mellin domain is given by

(2.17)

where is the generalized Mellin transform with parameter
of the output and , and are the ordinary Mellin

transform of the pseudo impulse response function and the
input, respectively.

In order to elucidate the physical meaning of the Mellin
transform of a signal, we now introduce a new concept of
periodicity.

Definition 2.1: Let be a function satisfying the following
relation:

(2.18)

for some . Then, we shall call the function fperiodic in
scaleand the smallest the period in scale, or S-period
for short.

Informally speaking, the period defines a natural scale or
a degree of self-similarity for the signal in the sense that the
signal does not change if the observation axis is scaled with
the integer exponents of the period, i.e., .
The prime example of the scale periodic signals are the
eigenfunctions of an LSI system. It is easy to show that

. Thus, is the S-period of the function
in scale. The Mellin transform coefficient at can be

interpreted as the correlation of the signal with the scale
periodic function . Therefore, the magnitude of the Mellin
transform of a signal at can be viewed as a measure of
scalability or self-similarity of the signal at S-period .

As a last but important item, we want to introduce a class
of time-varying ordinary differential equations that can be
utilized to represent the dynamics of an LSS system. It is
straightforward to check that the following system is self-
similar with parameter :

(2.19a)

Equation (2.19a) can be alternatively expressed as

(2.19b)

For , this system is known as the Euler–Cauchy system.
It was used in the engineering literature to represent time-
varying systems [16]. The transfer function of the system is
given by

(2.20)

where takes values in the appropriate region of convergence.
The importance of the Euler–Cauchy system comes from the
observation that given any stable LSS system, it can be always
approximated by a sufficiently high-order Euler–Cauchy sys-
tem. This is due to the fact that there is always a sequence of
rational functions converging to a given finite energy, scale-
invariant signal, namely, the transfer function of the stable
LSS system. For a causal LSS system with , the pseudo
impulse response function of the system is given by

and

(2.21)

where , is the number of the repeated poles
in the transfer function. Note that the system is stable whenever
all .

Finally, we want to note that there is a one-to-one corre-
spondence between the linear self-similar systems and signals
discussed in this section and the theory of linear shift invariant
systems and signals. One can easily show that through the
following logarithmic distortion of the time axis

(2.22)

finite energy, scale-invariant signals become finite energy shift
invariant signals, ordinary Mellin transform becomes Laplace
transform, and the Euler–Cauchy system becomes an ordinary
constant coefficient differential equation system.

III. A C LASS OF SECOND ORDER SELF SIMILAR PROCESSES

In this section, we will introduce a class of stochastic pro-
cesses that is a natural extension of the scale-invariant signals
in the probabilistic setting. As indicated in the introduction,
we have several objectives in our development. Our primary
objective is to introduce models for processes that can
be specified by finitely many parameters in order to develop
efficient algorithms. That is, we would like to develop models,
based on the notion of statistical self-similarity, analogous to
those specified by finite order ordinary ARMA models. In
addition, we would like to develop analysis tools, such as a
spectral decomposition method, that could provide powerful
algorithms for modeling, estimation, and other signal process-
ing tasks. Finally, we want to demonstrate that the notion of
statistical self-similarity provides a foundation for signal
processing, which is similar in spirit to the foundations of
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classical time series analysis based on the concept of shift
stationarity. We shall first introduce an important subclass of
self-similar processes, which we refer to as scale stationary
processes.

A. Scale Stationary Processes

A stochastic process is called
statistically self-similarwith parameter if it satisfies the
following scaling condition:

for any (3.1)

where denotes equality in finite-dimensional probability
distributions [6]. Note that in Section II, self-similarity was
defined with respect to the measure , whereas statistical
self-similarity is defined with respect to a scale-invariant
probability measure. For the rest of the paper, unless otherwise
stated, we shall use the term self-similarity in the statistical
sense.

Brownian motion is a typical example of a statistically self-
similar process. Its self-similarity parameter is . fBm
is a generalization of the Brownian motion with parameter

. Notice that for , self-similarity has
an intuitively appealing interpretation. It indicates that the
statistics of the process is absolutely independent of the time-
scale chosen. This property is analogous to the independence
of the shift stationary processes from the time origin. This
subclass of self-similar processes exhibits many properties
that can be utilized for practical applications and, therefore,
deserves a special treatment. We will start our treatment by
identifying this subclass with a new term.

Definition 3.1: We shall call a stochastic process
strictly scale stationary if it is self-similar

with parameter 0, i.e.,

for any (3.2)

Note that since strictly scale stationary processes are non-
stationary in the ordinary sense, the time origin becomes
important while the time scale looses its significance.

Before proceeding further, we want to show that there is a
natural isometry between strictly scale stationary processes and
strictly shift stationary processes. Given any shift stationary
process , the process
obtained through the following exponential distortion of the
time axis

(3.3)

is scale stationary. Note that strictly scale stationary processes
are symmetric with respect to in the sense that and

have the same finite probability distributions.
This is due to the fact that the ordinary stationary processes
are symmetric in distribution with respect to and that
the exponential distortion maps to . Therefore,

we shall refer to as theorigin of the strictly scale
stationary processes.

B. Self-Similar Processes Generated by
Scale Stationary Processes

Strictly scale stationary processes allow us to construct a
class of self-similar processes with arbitrary self-similarity
parameter . Such a construction is given by
the following theorem, which is a straightforward corollary to
Definition 3.1 and the isometry relationship described in (3.3).

Theorem 3.1:Define

for all

for some (3.4)

Then, is a statistically self-similar process with
parameter if and only if is a strictly scale
stationary process.

Proof 3.1: See Appendix II.
We shall refer to the scale stationary process

as thegeneratingscale stationary process and as thetrend
term of the self-similar process . In order to
distinguish a self-similar process defined only on the positive
time axis from an arbitrary self-similar process, we shall
refer to this class of self-similar process asp-self-similar
processes. Obviously, the generating scale stationary process
constitutes the random part, and the trend term constitutes
the deterministic part of a p-self-similar process. Obviously,
if the generating process is free of parameter, the self-
similarity parameter contributes only to the trend of the
process. Although, p-self-similar processes form a subclass
of self-similar processes, we shall demonstrate that for all
practical purposes, p-self-similar processes provide a rich class
of models, and a mathematical analysis framework for
signals. This is due to the observation that given any self-
similar process , one can find two
scale stationary processes such that
the following holds in distribution:

(3.5)

C. Second-Order P-Self-Similar Processes

In practice, it is favorable to work with models based
on first- and second-order statistics since probability density
function estimation is a more involved task. In addition,
second-order structures lead to a larger class of models, which
includes probability density function-based models as a special
case. In order to extend the concept of scale stationarity into
second-order models, we now propose the following definition:

Definition 3.2: A random process will be
called wide sense scale stationary if it satisfies the following
conditions:

i) constant for all .
ii) for all .
iii) for all
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Obviously, ordinary wide sense stationary processes and
wide sense scale stationary processes are also isometric
through the relationship described in (3.3). Note that a strictly
scale stationary process does not need to have a finite variance.
The finite variance requirement in Definition 3.2 assures that
wide sense scale stationary processes are physically realizable.
From the last condition of Definition 3.2, it is immediate that

for any (3.6)

We shall refer to as scale autocorrelationor, for short,
the S-autocorrelation function. We shall show in the follow-
ing sections that the concept of S-autocorrelation facilitates
the development of practical analytical tools and estimation
methods for wide sense scale stationary processes. Now, as a
natural extension of wide sense scale stationarity, we propose
the following definition:

Definition 3.3: A random process will be
called wide sense p-self-similar with parameterif it satisfies
the following conditions:

i) for all .
ii) for each .
iii) for all ,

, .

Obviously, Theorem 3.1 applies to the wide sense p-self-
similar processes. Given any wide sense p-self-similar process

, there is a generating wide sense scale station-
ary process such that

for all (3.7)

where is the S-autocorrelation function of the generating
process. Now, we want to introduce a notion of autocorrelation
function for wide sense p-self-similar processes that will
represent both the underlying scale stationary and the trend
structure. Consider the following candidate:

(3.8)

We shall refer to as thebasic autocorrelationfunction of
the wide sense p-self-similar processes. It is a measure of
correlation between the samples at and the origin,
i.e., . Since p-self-similar processes are trended wide
sense scale stationary processes, it is sensible to choose
an autocorrelation function that is also the trended version
of the S-autocorrelation function. In fact, the concept of
basic autocorrelation function will prove to be a very natural
choice as we develop spectral analysis methods for the wide
sense p-self-similar processes. The following properties of the
basic autocorrelation function can be derived easily from the
Definition 3.2 and (3.8). We state them here without proof.

i) for all .
ii) .
iii) for all .

For the rest of this paper, we will focus on the wide sense
p-self-similar and scale stationary processes and explore their
practical utility for signal processing problems, such as signal
modeling and estimation. Unless otherwise stated, for the rest
of the paper, we shall use the terms p-self-similarity and scale

stationarity in the second-order sense. Now, we give various
examples of p-self-similar processes to illustrate their potential
applications.

D. Examples

Example 3.1: Given a random variable uniform in the
( ) and a constant , we form the process

(3.9a)

By direct calculation, one can show that is wide
sense p-self-similar with zero mean and basic autocorrelation
function

(3.9b)

The model can be utilized to analyze physical processes
that exhibit scale periodicity as well as non-Gaussian behavior.
Note that the S-autocorrelation function of the generating
process is scale periodic with S-period , i.e.,

(3.9c)

assuming that . As a consequence of periodicity,
it suffices to define the process on the interval . In
addition, one can take advantage of the generative structure
of the model in some problems, such as prediction, where
data synthesis is needed. Fig. 1 shows the sample paths of

for various values of and .
Example 3.2: The second example is the well-known frac-

tional Brownian motion. For , fBm is formally defined
as follows:

with probability

for (3.10a)

where is a parameter between 0 and 1,is the gamma
function, and is the Brownian motion.
The fBm possesses numerous interesting properties. Among
them, it is a generalization of the Brownian motion, in the
sense that for , it reduces to the Brownian motion. In
addition, fBm uniquely models a certain class of self-similar
processes. It can be shown that for , fBm constitutes
the only self-similar, zero mean, mean square continuous, finite
variance Gaussian random process with stationary increments
satisfying .

The covariance function of fBm is given by

(3.10b)

where

(3.10c)
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Fig. 1. Sample paths of the sinusoidal self-similar process.

Now, we shall derive three different p-self-similar processes
using the fBm process:

a) In order to understand the analytical properties of the
fBm, it may be useful to study the underlying generating
process. Let be the generating process
of the fBm, and let be the shift
stationary process obtained by the exponential distortion
of the time axis of , i.e.

(3.11a)

From (3.10b) and (3.10c), we can easily obtain the S-
autocorrelation function of the generating process

(3.11b)

Similarly, the lag-based autocorrelation function of
is given by

(3.11c)

Fig. 2 illustrates the sample paths of the generating
process of the fBm for various values of. While for

close to 1 the process exhibits long-term correlations,
which are displayed by slow variations in long and short
durations, it appears to exhibit short-term correlations for

close to 0, which are displayed by rapid short-term
oscillations.

The sample paths of
shown in Fig. 3 have a relatively smooth variation. We
could hypothesize that the strong long-term correlation
structure of the fBm is inherited by

through the isometric mapping of the coordinate
system.

b) Note that unlike Example 3.1, both the trend term and
the generating process of the fBm are governed by
the same parameter, namely,. We can define a new
class of p-self-similar models by assigning different

parameters to the trend term and the generating process
of the fBm. Let

(3.12a)

The basic autocorrelation function of the resulting p-
self-similar process is

(3.12b)

Since the parameter of the trend term is positive by
definition, fBm always exhibits a growing trend. In fBm,
the growth rate is dictated by the parameter that controls
the long-term correlations. This limits the applicability
of the fBm, as the model has to have high growth rate to
be able to exhibit strong correlations. In the new model,
on the other hand, the trend and generating processes are
controlled by independent parameters. The advantage of
the later model becomes evident when we compare the
sample paths of the two models generated by the same
scale stationary process. In the top left of Fig. 5, the
rapid changes in sample paths of the new model indicate
short-term correlations with a growing trend, whereas in
the top left of Fig. 4, the sample paths of fBm indicate
is slow growth with short-term correlations. Similarly,
despite the same generating process, in the bottom left
of Fig. 4, the sample paths of the fBm grow much faster
than the sample paths of the new model shown in the
bottom left of Fig. 5.

c) Let us now consider the increment process of the fBm.

(3.13a)

As we have mentioned above,
is shift stationary, and its autocorrelation function is
given by

(3.13b)
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Fig. 2. Sample paths of the generating process of the fractional Brownian motion.

Fig. 3. Sample paths of the shift stationary process corresponding to the generating process of fBm.

Fig. 4. Sample paths of the fractional Brownian motion.

For , the increment process is known to
exhibit long-term correlations. Intuitively speaking, we
expect this property to be strengthened and inherited
by the scale stationary process obtained through the
logarithmic coordinate distortion. Let

and

(3.14a)

Then

(3.14b)

Fig. 6 illustrates sample paths of . As expected, it
exhibits strong correlations in the long run.

Example 3.3: Let be the Poisson
process with parameter. Consider the following process.

(3.15a)

By direct calculation, we can show that is
p-self-similar with the basic autocorrelation function

else
(3.15b)

Unlike the first two examples is p-self-similar
but does not exhibit long term correlations.
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Fig. 5. Sample paths of the self-similar process induced from the generating process of fBm.H is the parameter of the generating process, andH1

is the trend or the self-similarity parameter.

Fig. 6. Sample paths of the scale stationary process corresponding to the fractional Gaussian noise.

E. Spectral Representation of P-Self-Similar Processes

Among all available tools in statistical signal processing,
spectral analysis is of special importance. This is due to the
concepts of frequency and spectral density function by which
the representation of a broad range of physical phenomena is
simplified. In this subsection, we want to introduce similar
concepts for wide sense p-self-similar processes. To motivate
our development, let us first recall the spectral decomposition
of the shift stationary processes. We know that given any
ordinary wide sense stationary process
with square summable autocorrelation function, it can be
represented in the following form [17]:

(3.16)

where is the Brownian motion, is the spectral density
function of the process, and the integration is defined in the
mean square sense. Intuitively speaking, we can view
as the sum of the modulated statistically independent process

with variance , where the
modulating functions are periodic in
shift. For p-self-similar processes, we want to develop a similar
representation in which the modulating functions are periodic
in scale. Such a representation is given by the following

theorem, which is a corollary of the isometry relationship
(3.3) and the spectral representation theorem of shift stationary
processes.

Theorem 3.2:A function is the basic auto-
correlation function of a wide sense p-self-similar process
with parameter if and only if there exists a nonnegative,
symmetric measure on such that

(3.17)

Proof 3.2: See Appendix II.
The spectral representation theorem stated above leads to a

new set of useful spectral domain tools to analyze and process
phenomena. In particular, it leads to a whitening filter

for p-self-similar processes via generalized Mellin transform
by which a new concept of spectral density function can be
derived.

Corollary 3.1: Any wide sense p-self-similar process with
parameter has the following spectral representation:

(3.18a)

where the integral is defined in the mean square sense, and
is the orthogonal increment process
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satisfying

and (3.18b)

Moreover, if is absolutely continuous, we have

(3.18c)

Proof 3.1: See Appendix II.
Informally speaking, defined in

(3.18c) is the variance of the statistically independent process
, which can be regarded as unit

constituents of the stochastic process. In addition, can be
viewed as a measure of correlation between the p-self-similar
process and the scale periodic sinusoid . Therefore,
we shall refer to as theS-spectral density function,or S-
spectrum, Sstanding for scale. Note that the S-spectral density
function quantifies only the random part, i.e., the generating
process of a p-self-similar process. As a result, any two p-
self-similar processes generated by the same process have the
same S-spectral density functions. In addition,is directly
associated with the S-period of the modulating functions,
which is given by .

To elaborate on the physical meaning of S-spectral density
function, let us examine the spectral behavior of the process
introduced in Example 3.1.

(3.19a)

It is straightforward to show that the S-spectrum of the process
is

(3.19b)

where is the delta function. Obviously, the energy of the
process is concentrated at the S-period. This implies that
the process can be realized in the mean square sense by the
modulated white noise process with variance in which
the modulating function is . As a result, the S-period

dominates the second-order behavior of the process. This
observation is also verified by the S-autocorrelation function
of the generating process given in (3.9c). Hence, we can
conclude that given an empirical S-spectral density, the S-
periods at which the spectral peaks occur can be interpreted
as the dominant or the natural scales of the physical process.

F. Filtered P-Self-Similar Processes

For many practical problems, it may be of considerable
interest to develop finite parameter, white noise driven models
for p-self-similar processes since finite parameter models
facilitate the development of efficient estimation and system
identification methods. In this subsection, we discuss some

system theoretic issues that will guide our development of
finite parameter models in the subsequent section.

It is well known that any linear shift-invariant system, in
particular, any casual, stable system, yields a wide sense shift
stationary output when it is driven by a wide sense shift
stationary input. The following theorem states the counterpart
of this result for linear self-similar systems and p-self-similar
processes.

Theorem 3.3:Let be a p-self-similar process
with parameter and be the pseudo impulse response
function of a linear self-similar system with parameter
satisfying the following condition:

(3.20a)

Then, the output process

(3.20b)

is p-self-similar with parameter .
Proof: See Appendix II.

Note that for a scale stationary input, the condition (3.20a)
is the sufficiency condition for the stability of a linear scale-
invariant system. Now, we want to examine the output of
linear scale-invariant systems driven by a special type of scale
stationary process, which we refer to as scale stationary white
noise.

The continuous time ordinary white noise process is in-
terpreted as the derivative of the Brownian motion. In our
development, we first introduce a process analogous to the
Brownian motion and next interpret its increments as scale
stationary white noise process.

Definition 3.4: We shall call a scale or-
thogonal processif it satisfies the following conditions:

and (3.21)

Note that one can rigorously derive such a process using
Hilbert space methods [18]. Now, let us define an increment
process:

(3.22a)

By Definition 3.4, are statistically indepen-
dent. Similar to the interpretation of the continuous time white
noise process, we can interpret the following process:

(3.22b)

as scale stationary white noise process as the scale factor
. The process can be viewed as a

stochastic counterpart of the unit driving force introduced in
Section II (see (2.9)).

We shall adapt the following shorthand notation:

(3.22c)
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for the variance of the process. Now, let be the pseudo
impulse response function of a linear scale-invariant system
with parameter . Consider the following output process:

(3.23a)

Using the properties of the scale stationary white noise process,
we can easily show that is wide sense p-self-
similar with the basic autocorrelation function

(3.23b)

We will use the results of this subsection as a basis to
develop a class of finite parameter p-self-similar processes in
the following section.

IV. SELF-SIMILAR AUTOREGRESSIVEMODELS

In this section, we introduce a special class of p-self-similar
processes, which we refer to as self-similar autoregressive
models and investigate their practical value in modeling
signals. Proposed models have two distinct advantages. First,
we show that any wide sense p-self-similar processes can be
approximated by a self-similar autoregressive model with a
finite number of parameters. Therefore, they are rich enough to
be useful in modeling broad range of physical phenomena.
Second, they are linear in the sense that they are generated by
white noise driven linear scale-invariant systems. As a result
of this linear structure, it may be possible to develop effi-
cient parameter estimation methods analogous to the methods
developed for ordinary ARMA models.

As is well known, ordinary continuous-time autoregressive
processes are generated by the ordinary white noise driven
linear time-invariant systems whose dynamics can be repre-
sented by a linear constant coefficient differential equations.
Motivated by this observation, we introduce a special class
of wide sense p-self-similar processes generated by the white
noise driven Euler–Cauchy system introduced in Section II.
Recall that the generalized Euler–Cauchy system is given by

(4.1)

For , the pseudo impulse response function of the sys-
tem corresponding to the generalized Euler–Cauchy equation
is equal to

and

(4.2)

where is the number of the repeated poles in
the transfer function of the system. Assume that the system is

stable, i.e., , and consider the following output process:

(4.3)

where is the scale orthogonal increment
process introduced in Definition 3.4. Then, the output of
the Euler–Cauchy system is p-self-similar with the basic
autocorrelation function

(4.4a)

We shall refer to the process defined in (4.3) as theth-order
self-similar autoregressive(SS-AR) process with parameter.
Since the filter is causal, SS-AR processes are Markov. For the
first-order SS-AR process, the basic autocorrelation function
is given by

Equation (4.1) is a symbolic representation of SS-AR pro-
cesses and does not lend itself to a data synthesis method.
Therefore, SS-AR processes basically serve as covariance
models. To synthesize an SS-AR process, we utilize the S-
autocorrelation function and Gaussian random generator. The
sampling interval for the realizations are taken to be 1. Figs. 7
and 8 shows sample paths of first– and second-order SS-AR
processes with various parameter values. As expected, the
sample paths get smoother as the order of the model increases.
Note that in a similar fashion, one can define self-similar
autoregressive moving average models.

For any real valued p-self-similar process
with continuous, square summable S-spectral density, it is
possible to find a th-order SS-AR process whose spectral
density function is arbitrarily close to. This suggests that

can be approximated in some sense by an SS-
AR model. This result is rigorously stated by the following
theorem.

Theorem 4.1:Let be a continuous, square summable S-
spectral density of a wide sense p-self-similar process with
parameter and ; then, there exists ath-order SS-AR
process with parameter such that

for all (4.5)

where is the S-spectral density of the SS-AR process.
Proof: See Appendix III.

In many cases, it may be sufficient to consider the properties
of the SS-AR processes because Theorem 4.1 may provide the
means to prove similar results for a wide range of wide sense
p-self-similar processes through appropriate approximations.

As we proposed in the introduction, the p-self-similar pro-
cesses may provide a framework for the analysis of
physical signals. Now, we shall focus on SS-AR processes
and justify our claim heuristically. Since processes are
characterized by their empirical Fourier spectrum, we shall
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Fig. 7. Sample paths of the first order self-similar autoregressive process.

Fig. 8. Sample paths of the second order SS-AR process.

study the first-order SS-AR processes in the shift stationarity
framework. Consider the covariance function of the first-order
SS-AR process represented in terms of time lag.

and (4.6)

Consider the Fourier cosine transform of the covariance func-
tion in (4.6).

(4.7a)

for (4.7b)

where is a complex-valued function of [20, pp.
1151–1152]. Equation (4.7b), together with Theorem 4.1,
justify heuristically that the Fourier spectrum of a p-self-
similar process can be approximated by a linear combination
of spectrums.

V. LONG-TERM CORRELATIONS

As we have shown in Example 3.3, not all wide sense
p-self-similar processes are long-term correlated. In statistics
literature, long-term dependence is characterized in two ways:
i) by the empirical correlation function decaying hyperbol-
ically as the lag and ii) by the
sum of the lag based correlations increasing without limit as
the lag increases. In order to identify those with long term
correlations, we reinterpret the lag based criteria in terms of

the S-autocorrelation function. Let be a wide
sense p-self-similar process with parameter, and let be
its basic autocorrelation function, i.e.,

(5.1)

where is the S-autocorrelation function of the underlying
generating process. To ensure the slow decay of the lag-based
correlation function, we require (5.1) to be infinite for each
fixed . This requirement is equivalent to the following
condition:

(5.2)

This condition limits the range of the self-similarity parameter
and the range of the parameters governing the generating
process. In addition to the above condition, one can impose
further restrictions on the parameters by imposing a hyperbolic
decay on the lag-based correlations. For the sinusoidal model
introduced in Example 3.1, the basic autocorrelation function
is not summable for any . However, hyperbolic decay
requirement restricts the range of to the negative real axis.
For the first-order SS-AR process, the long-term correlation
criteria is translated into , where

is the self-similarity parameter, and is the parameter
of the generating process. In Fig. 9, we illustrate the validity
of the long-term correlation criterion chosen by the empirical
Fourier spectra of various p-self-similar processes. Note that
for , the Fourier spectrum of the first-order SS-AR
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Fig. 9. Empiricial Fourier spectrum of the first order SS-AR process for various parameters.

process contains high energy at low frequencies forclose to
0. For close to 1, the spectral energy of the process spreads
over the entire frequency range.

VI. CONCLUSION

In this paper, we have proposed a class of statistically
self-similar processes for the modeling and analysis of
phenomena. In addition, we have developed a mathematical
analysis framework whose foundation is based on the exten-
sions of the basic concepts of classical time series analysis. We
introduced new concepts, and practical analysis tools, such as
S-periodicity, S-autocorrelation, and S-spectral density, which
allow us to understand the structure of the proposed class
of self-similar processes and guide us to devise practical
signal processing schemes. We have established a relationship
between the theory of linear scale-invariant systems and the
analysis framework of the proposed class, which leads to a
concrete physical understanding of the proposed class. As we
discussed and illustrated by several examples, the proposed
class of models are suitable for a variety of processes
including Gaussian, non-Gaussian, generative, and Markovian
processes. In particular, we introduced self-similar autoregres-
sive models by which an arbitrary p-self-similar process can
be approximated.

There are several promising directions for further research
building on our formalism. In particular, essential topics for
investigation are efficient parameter estimation methods for
self-similar autoregressive models and discrete approxima-
tions. In addition, we expect that these models should be
of value for segmentation of signals and, in two dimensions,
for the identification of textures based on their self-similarity
parameter. Work on these areas, as well as several applications
of our formalism, is proceeding and will be reported in the
future.

APPENDIX I

Proof of Theorem 2.1:Suppose satisfies
.

Let

(I.1)

Then

(I.2a)

By Fubini’s theorem

(I.2b)

However, by the Cauchy–Schwartz inequality

(I.3a)

In addition

(I.3b)

Hence

APPENDIX II

Proof of Theorem 3.1:Let

and some (II.1)

Assume is a strictly scale stationary process.

Pr

Pr

Pr

Pr

(II.2)
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Now, assume is a self-similar process with
parameter .

Pr

Pr

Pr

Pr (II.3)

Proof of Theorem 3.2:This is a straightforward corollary
of the classical theorem of Bochner and the isometry rela-
tionship between the wide sense p-self-similar and the wide
sense shift stationary processes. Classical theorem of Bochner
states that is the autocorrelation function of a shift stationary
process if and only if there is a symmetric, non-negative
distribution on ( ) such that

(II.4)

Since for any wide sense p-self-similar process ,
there is a shift stationary process
satisfying

(II.5)

The autocorrelation function of is related to the basic
autocorrelation function of by

(II.6)

Hence, by suitable change of variables, (II.4) becomes

(II.7)

Proof of Corollary 3.1: As a consequence of the classical
theorem of Bochner, any wide sense shift stationary process
can be represented as

(II.8)

where the integral is defined in the mean square sense, and
is the orthogonal increment process

satisfying

(II.9a)

and

(II.9b)

Moreover, if is absolutely continuous, we have

(II.10)

where is the shift autocorrelation function. The corollary
follows by the isometry relation (3.3) and (II.10).

Proof of Theorem 3.3:It suffices to show that
, where is the S-autocorrelation

of some scale stationary process. By Fubini’s theorem

(II.12)

However

(II.13)

for some S-autocorrelation function. Then, (II.12) becomes

(II.14a)

(II.14b)

IX. A PPENDIX III

Proof of Theorem 4.1:It is sufficient to show that for a
given , there is a th-order polynomial with roots
on the left half plane satisfying

for (III.1)

The proof depends the following two results:

a) Given any continuous spectral density
[19], there is a , and a th-order polynomial
such that

(III.2a)

with , and are real valued for
satisfying

for a given (III.2b)

b) The basic device to extend the result stated in part i) is
the following mapping of the closed unit disc onto the
left half plane, which can be achieved by

(III.3)

This maps the boundary onto the boundary
, and we have . For a given

continuous spectral density , define

(III.4)
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It is easy to check that is continuous, symmetric,
positive, and square summable. Therefore, by i), it is
immediate that there is ath-order polynomial with real
coefficients and roots on the left-hand plane satisfying

for all

(III.5)
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