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A Class of Second-Order Stationary
Self-Similar Processes fdr/ f Phenomena

Birsen Yazici,Member, IEEE,and Rangasami L. Kashyapellow, IEEE

Abstract—We propose a class of statistically self-similar pro- result, ordinary time series models do not offer parsimonious
cesses and outline an alternative mathematical framework for representations fot/f processes. A second characterization

the modeling and analysis ofl/f phenomena. The foundation ; ot - cimilar ;
of the proposed class is based on the extensions of the basié)f 1/f processes is the statistical self-similarity, that is, the

concepts of classical time series analysis, in particular, on the st_atl_stlcal prop_ertles, of the proces_s remaln_ invariant t(_) or
notion of stationarity. We consider a class of stochastic processesWithin an amplitude factor under arbitrary scalings of the time
whose second-order structure is invariant with respect to time axis. Statistical self-similarity of / f processes can be viewed

scales, i.e E[X(HX(\t)] = *A"R(X), X\, t > 0 for some as a manifestation of their fractal nature.

—oo < H < oo. For H = 0, we refer to these processes as  tpe sharp contrast between the properties oflthg pro-
wide sense scale stationary. We show that any self-similar process d ordi i . dels h ; ise t
can be generated from scale stationary processes. We establish 4€SSes and ordinary ime series models have given rise 1o

relationship between linear scale-invariant system theory and the many proposals about the best way of modeling and analyzing
proposed class that leads to a concrete analysis framework. We 1/ f processes. Generally speaking, most of the proposals are

introduce new concepts, such as periodicity, autocorrelation, and pased on either the concept of self-similarity, infinite-order
spectral density functions, by which practical signal processing ARMA modeling, or physical origins of thd /f processes.

schemes can be developed. We give several examples of scale st%- . ing literat tai . dels based th
tionary processes including Gaussian, non-Gaussian, covariance, ngineering literature contains various models based on the

and generative models, as well as fractional Brownian motion as a Physical nature of some specifit/f phenomena [2]-[5].
special case. In particular, we introduce a class of finite parameter While this class of models is very helpful in understanding

self-similar models that are similar in spirit to the ordinary  the mechanism of the physical phenomena by whigtf

ARMA models by which an arbitrary self-similar process can be —,.casses are generated, they lack mathematical tractability
approximated. Results from our study suggest that the proposed

self-similar processes and the mathematical formulation provide to be useful in typical signal modeling tasks. Much of the
an intuitive, general, and mathematically simple approach tal/f  Published research has argued in favor of either the mod-
signal processing. els based on ARMA processes or statistical self-similarity.
The fractional differencing model, proposed independently by
Hosking and by Granger and Joyeux is an example of the
1/f PROCESSES have a widespread occurrence in variétymer one [7], [8]. It is a parsimonious, infinite-order, discrete
of science and engineering data. Typical examples in electidtoregressive process whose coefficients are functions of a
cal systems include noises in electrical devices, burst ergingle parameter. Fractional Brownian motion (fBm) proposed
in communication channels, frequency variations in musiby Mandelbrot and Van Ness is an example of the later one
texture variations in natural terrain images, cloud formationg]. It is a continuous time moving average process in which
and medical imagery, to mention a few [1]-[8). f processes the past increments are weighted by the ke(inel s)H=1/2,
have two important characterizations. The first one is thehere the parametdd is associated with the degree of self-
strong interdependence between far-apart observations. Ssichilarity. Although fBm became a popular framework for
a strong correlation is a result of high energy content efrious signal processing and pattern recognition problems
1/f spectral density at low frequencies. In statistics literaturgvolving 1/ phenomena [9], [10], the mathematical structure
the correlation structure of thé/f processes is taken as af the model makes the solutions of many practical problems
basis, and they are referred to as long term correlated or latagher difficult. In particular, due to the nonstationarity of the
memory processes [6], [7]. The empirical correlation functiomodel, traditional time series analysis techniques cannot be
of the long-term correlated processes decays hyperbolicabynployed [11].
ie., 7% a > 0, as the lagr — oo, as opposed to the fast In this paper, we explore an alternative framework to the
exponential decay of the short-term correlated processes, sfralstional Brownian and fractional differencing models to
as autoregressive moving average processes (ARMA). Asnadel and analyzd/f phenomena. Our approach is based
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which include Gaussian, non-Gaussian, Markovian, covaBy the generalization described above, one can map the linear
ance, and generative models, as well as fractional Browniame-invariant system theory from deterministic to probabilis-
motion as a special case. Our development of the theorytmf setting and obtain a framework for the analysis of wide
scale stationary processes is motivated by the linear scalense stationary processes. In addition, a broad range of
invariant systems and signals theory [12], [13]. Such a systestatistical techniques and models in the realm of wide sense
theory perspective facilitates, first, the development of a clagf@tionary processes can be viewed as stochastic counterparts
of statistically self-similar processes that are rich enough @ the deterministic methods developed in the framework
embrace a variety of/f phenomena and, second, to developf linear time-invariant systems ant?(R, dt) signals. For
a mathematical framework by which efficient signal processirxample, the linear least squares prediction can be viewed as
tasks, such as spectral analysis and parameter estimation,&gaunterpart of the minimum norm approximation technique,
be performed with minimum mathematical difficulty. Result@énd ARMA models can be viewed as a counterpart of the con-
from our study suggest that there would appear to be magiant coefficient ordinary differential equations that are used
additional applications for the self-similar processes and tk@ represent the dynamics of linear time-invariant systems.
formulation we introduce in this work. Thus, linear time-invariant system theory can be utilized to
The rest of the paper is organized as follows. In Sectigievelop a statistical tool box, as well as a concrete physical
Il, we review the theory of linear scale-invariant systems arihderstanding, for the wide sense stationary processes.
signals from a perspective relevant to our subsequent developln our subsequent discussion, we shall consider signal pro-
ments. In Section IlI, we introduce scale stationary processeassing frameworks that are invariant with respect to another
and a class of self-similar processes generated by the sd4Re Of translation, namelyscale.In order to unify the theory
stationary processes. We give several illustrative examples. WeStationary process and our proposed models on the basis
define a concept of autocorrelation, develop a spectral repfé-invariance, for the rest of the paper, we shall refer to
sentation theorem, and discuss filtered self-similar proces§@ ordinary stationarity as shift stationarity and linear time-
as a prelude to the next section. In Section IV, we introducd®ariant systems and signals as linear shift invariant systems
class of finite parameter self-similar processes that we refer@d Signals. First, we shall sketch the framework of scale-
as self-similar autoregressive processes. In Section V, we dp@riant deterministic signals and linear systems. Later, using
cuss the long-term correlation properties of the proposed sdffe Steps of this section, we shall extend our discussion to the
similar processes. Finally, in Section VI, we discuss briefgropabilistic setting.

several further items of interest and conclude our discussion, -iN€ar scale-invariant systems have been studied in signal
processing and pattern recognition in connection with scale

Il. GENERALIZED LINEAR SCALE-INVARIANT SYSTEMS representations and scale-invariant filtering [12]-[15]. In our

In order to motivate our discussion, let us first state thde'scu.SS'on’ we will review and modify basic re§ults and.
. . : L . redefine some of the concepts from a perspective that is
relationship between linear time-invariant system theory an
) . relevant for our subsequent development.
the theory of wide sense stationary processes from our per-

spective. We can view wide sense stationary processes Let  be a signal on the positive real axis satisfying the

o L SSt8fowing invarian roperty:
a generalization of the deterministic time or shift invariant 0" Invarance prope v

signals in the sense that both are invariant with respect to e 9 e 9
the same translation, namely, the time shift. Given any finite /0 [f@) dln t = /0 [f(A)]"dIn ¢ < oo,

energy, time-invariant signal, the energy of the system remains for any A > 0. (2.3a)
invariant under arbitrary shifts of the origin, i.ef, g €
L*(R,dt) andT € R Then, we shall callf a scale-invariant,finite energy signal
oo S and denote the signal space By(R*, dIn t). Note that the
(f9)= / f()g(t)dt energy of the signal remains invariant under arbitrary scalings
o of the time axis. We can extend the class of scale-invariant
= / FE+7)g(t+7)dt. (2.1) signals by allowing a change in energy proportional with the

o _scaling factor, i.e.
We could replace the Lebesgue measure, which is invariant

with respect to time shifts, with a probability measure exhibit- /Oo |f(t)|2i dln ¢
ing a similar invariance property and obtain the well-known 12

wide sense stationary processes. The statistical energy of wide o 77 5 1

sense stationary processes remains invariant under arbitrary =A /0 |F(AD)] ﬁ_Hdln t < oo,

time shifts of the origin, i.e. A>0 —oco< H < . (2.3b)

(f(to), f(t2)) = / f(t1) f(t2) aP We shall callf a finite energyself-similarsignal with param-
o eter H. Note that a scale-invariant signal is self-similar with
= / ft1+7)f(t2+7)dP (2.2a) parameter 0. It is straightforward to show that givénf, and

or H # 0 satisfying

E[f(t)f(t2)] = E[f(t1 + 1) f(t2 +7)]. (2.2b) ft) =t~ f(t), forallt>o0 (2.4)
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the signalf is scale-invariant if and only iff is self-similar and (2.10), it is clear that linear self-similar and scale-invariant

with parameterH. Moreover, both signals have the samsystems are in one-to-one correspondence.

energy. Hence, self-similar and scale-invariant signals are inObviously, the system is not physically realizable for ¢

one-to-one correspondence. in (2.8a) or\ < 1in (2.8b). We shall say that an LSS system is
Supposey(t) is the response of a linear system to anausalifh;(t) =0 for 0 < ¢ < 1. Hence, for a causal system,

arbitrary self-similar signat(¢). Then, we shall call the systemthe input—output relations given in (2.8a) and (2.8b) reduce to

S{-} linear self-similar(LSS) with parameteH whenever

¢ t
_4H v
S{z(t\)} = A"Hy(t)),  forallt, \>0.  (2.5) y(t) =t /0 hH(A)”“"(A)dln A
For H = 0, we shall call the system linear scale-invariant :tH/ hH()\)a:<3> dln A, t>0. (2.11)
(LSI). As is well known, the most general input-output rela- 1 A
tionship for a 1-D linear system is given by Before we proceed, let us define a concept of stability for

0 LSS systems in order to give a precise mathematical meaning

y(t) = / K(t, Nz(A)dr,  £>0 (2.6) to the integral representation of the input output relationships
0 given in (2.8a) and (2.8b). For a given scale-invariant, finite

prOVided that the integral is well defined. Under the Scalg'nergy SignaL we shall say that an LSS System with parameter

invariance property defined in (2.5), the kerde(-, ) of the g is stable if the output is self-similar, finite energy with some

a self-similar system satisfies the following property: parametet. The following theorem characterizes the stability
_ 1-H in terms of impulse response function.

Kt A) =a"Klat, o), foranya, A, £> 0. (27) Theorem 2.1:A linear self-similar system with pseudo im-
Settinga = 1/X andhg(t) = t~# K(t, 1), the input output pulse response functiohy is stable whenever
relation of an LSS system becomes

oo . / |he(t)|dln t < oco. (2.12)
y(t) =t / hy <—>a:()\) dln A, t>0. (2.8a) 0
0 A O
By a simple change of variables, (2.8a) can be alternativelyProof 2.1: See Appendix I.
expressed as The input output relationship of an LSS system can be

oo simplified by means of the Mellin transform. Given a scale-
y(t) = tH/ hH()\)a:<§> dln X, t>0. (2.8b) invariant, finite energy signal, its Mellin transform is defined
0 by
Note that forH = 0, the input—output relationship given in o
(2.8a) is nothing but the convolution operation with respect F(s) I/ f)t™dln t (2.133)
to multiplication. It has the same algebraic properties, such as 0
commutativity and associativity, as the ordinary convolutiowheres = o + jw takes values ensuring the convergence of
operation. We shall refer th; as pseudo impulse responsethe integral. For a purely imaginagy the Mellin transform is
function of an LSS system [21]. We can interpret the pseud® analog of the Fourier transform. It can be easily seen that
impulse response function physically. To do so, let us intré-the input of an LSI system i, the output becomes

duce the following generalized signal as a “unit driving force” oo B
to an LSS system: y(t) :ts/o ho(MA™*dln A

5(%) — {(1) " ~ 2 0<thh<l  (29) =1"Ho(s) (2.14)

2 L7 showing that{#’, s = o + jw} are the eigenfunctions of
The signal can be defined rigorously, but for our developmerite system, whereas the corresponding eigenvalues are given
we only need the following analog of the sifting property: by the Mellin transform of the impulse response function of

00 S/t the system. As a consequence, the inverse Mellin transform
HOE / f(A)6<X> dln A is given by the superposition of the eigenfunctions with the
OOO : corresponding eigenvalues, i.e.,
= / f<—>5()\) dln A, t>0. (2.9b) otjoo
o "\A f(t) = / F(s)t* ds. (2.13b)
Using the superposition principle of the linear systems together 7=joo
with (2.9a) and (2.9b), we can verify that As a result of the eigenfunction property, the time domain
~ input—output relationship of an LS| system is convenientl
S0} = tHhy(t). (2.10) but-oulpul relalonship ySiem 1S COrversntly

mapped to a multiplication operation in the Mellin domain.

Hence, the extra termt” in (2.10) explains _the choice of Y (s) = Ho(s)X(s). (2.15)
the word pseudo. As we shall see, pseudo impulse response

has many properties similar to the properties of the impulstence,H, is appropriately referred to as the transfer function
response function of linear shift-invariant systems. From (2.@j an LS| system [13]. Similar results can be obtained for LSS
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systems, via generalized Mellin transforms. The synthesis ardr H = 0, this system is known as the Euler—Cauchy system.
analysis equations for the self-similar case are given by It was used in the engineering literature to represent time-

. 00 varying systems [16]. The transfer function of the system is
F(s)= / f~ " dln ¢, given by
Ocr—l—joo_ M
f(s) = / F(s)t*tHds, t>0 (2.16) S B
T=joo i=0
. - - . . H = 2.20
where f is any finite energy self-similar signal with parameter () N ‘ ( )
H. However, due to the nonorthogonality of generalized Z @;s'
Mellin transforms, there are differences between the results of =0

the scale-invariant and self-similar systems. For instance, {jfieres takes values in the appropriate region of convergence.
input output relationship of an LSS system in the generalizqthe importance of the Euler—Cauchy system comes from the
Mellin domain is given by observation that given any stable LSS system, it can be always
Y(s) = Hy(s)X(s) (2.17) approxir_na_ted by a sufficiently high-or_der Euler—Cauchy sys-
o tem. This is due to the fact that there is always a sequence of
whereY is the generalized Mellin transform with parameterational functions converging to a given finite energy, scale-
H of the output andHy, and X are the ordinary Mellin invariant signal, namely, the transfer function of the stable
transform of the pseudo impulse response function and thgS system. For a causal LSS system wifh= 0, the pseudo

input, respectively. impulse response function of the system is given by

In order to elucidate the physical meaning of the Mellin n My
transform of a signal, we now introduce a new concept of hi(t) = Z aij(In £9)t=vii | £>1
periodicity. o e

Definition 2.1: Let f be a function satisfying the following and
relation: n

O =), >0 (2.18) N = 2)(”” +1) (2.21)
=

for lsomz)‘t; L Thﬁnékwe Sht";" cal .thg functul)n[jen%dlc n dwheremj, Jj=1,---,n,is the number of the repeated poles
scaleand the smallesk > 1 the period in scale, or S-period;, ye yransfer function. Note that the system is stable whenever

for short.
Informally speaking, the period defines a natural scale or
a degree of self-similarity for the signal in the sense that tté

signal does not change if the observation axis is scaled WhlScussed in this section and the theory of linear shift invariant

the integer exponents of the peridd i.e., f(t) = f(\"?). o stems and signals. One can easily show that through the
T_he prime example of the scale pe_r|0d|c signals are tlF lowing logarithmic distortion of the time axis
eigenfunctions of an LSI system. It is easy to show that
tin = (e27/7t)in, Thus,e?™/™ is the S-period of the function t—Int (2.22)

t/™ in scale. The Mellin transform coefficient gtv can be _ . ) ) ) . .
interpreted as the correlation of the signal with the Sca_i@lte_energy, scale-ln_varlant S|gnals become finite energy shift
periodic function#«. Therefore, the magnitude of the Mellininvariant signals, ordinary Mellin transform becomes Laplgce
transform of a signal at» can be viewed as a measure ofransform, and the Euler-Cauchy system becomes an ordinary

scalability or self-similarity of the signal at S-peried/«,  constant coefficient differential equation system.

As a last but important item, we want to introduce a ClaSﬁl
of time-varying ordinary differential equations that can be = ) o ]
utilized to represent the dynamics of an LSS system. It is!n this section, we will introduce a class of stochastic pro-

straightforward to check that the following system is selfc€SS€s that is a natural extension of the scale-invariant signals
similar with parametetd: in the probabilistic setting. As indicated in the introduction,

. we have several objectives in our development. Our primary
ant d_t—Hy(t) +otagt 4 tHy () + aot~Hy(t) objective_:_is to in_trpduce models far/f processes that can
tn dt be specified by finitely many parameters in order to develop

M . : : :
— paytM d—a:(t) +---+b1t%x(t) + boz(t). (2.19a) efficient algorithms. That is, we would like to develop models,

all bij > 0.
Finally, we want to note that there is a one-to-one corre-
ondence between the linear self-similar systems and signals

A CLASS OF SECOND ORDER SELF SIMILAR PROCESSES

dtM based on the notion of statistical self-similarity, analogous to
Equation (2.19a) can be alternatively expressed as those specified by finite order ordinary ARMA models. In
N addition, we would like to develop analysis tools, such as a
; d - :
ant? y(t) + - + art — y(t) + aoy(t) spect.ral decomp05|t!on met.hod,. that could proylde powerful
dtn u dt algorithms for modeling, estimation, and other signal process-
d d ing tasks. Finally, we want to demonstrate that the notion of
= ButMHH Sy b BT St g 1asks. W, We ) . !
Pu dtM 2B oo+ dt z(?) statistical self-similarity provides a foundation fof f signal

+ BotH x(t). (2.19b) processing, which is similar in spirit to the foundations of
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classical time series analysis based on the concept of ski# shall refer toA = 1 as theorigin of the strictly scale
stationarity. We shall first introduce an important subclass sfationary processes.

self-similar processes, which we refer to as scale stationary o
processes. B~ Self-Similar Processes Generated by

Scale Stationary Processes

A. Scale Stationary Processes , i
Strictly scale stationary processes allow us to construct a

A stochastic proces§.X(t), —co < t < oo} is called class of self-similar processes with arbitrary self-similarity
statistically self-similarwith parameter if it satisfies the parameteds, —0o < H < ~o. Such a construction is given by

following scaling condition: the following theorem, which is a straightforward corollary to
Definition 3.1 and the isometry relationship described in (3.3).
X(t) =a " X (at), —00 <t < oo, Theorem 3.1:Define
foranya > 0 (3.1)

X(t)=tEX(t), forallt>o0,
where = denotes equality in finite-dimensional probability _
distributions [6]. Note that in Section I, self-similarity was for some—oo < H < oo, (3.4)

defined with respect to the measuttn ¢, whereas statistical h x . isticall if-simil ith
self-similarity is defined with respect to a scale-invariant en,{X(¢), £ > 0} is a statistically self-similar process wit

probability measure. For the rest of the paper, unless otherwi@ameter if and only if {H(#), ¢ > 0} is a strictly scale

stated, we shall use the term self-similarity in the statistic§fatlonary process. _ O
sense. Proof 3.1: See Appendix II.

Brownian motion is a typical example of a statistically self- We shall refer o the sca]e stationary proceas#), ¢ > 0}
similar process. Its self-similarity parameter s % fBm as thegeneratmgsc.:alle stationary process atid as thetrend
is a generalization of the Brownian motion with parametéjrm of_the self-sw_mlgr procesﬁX(t),_ t > 0}. In order .
0 < H < 1. Notice that for H = 0, self-similarity has istinguish a self-similar process defined only on the positive
an intuitively appealing interpretation. It indicates that tth;e aX|shfrom| an afrbltrﬁry_ s$lf-3|mllar proces;, \.Ne.l shall
statistics of the process is absolutely independent of the tingler to this class of sel-similar process psseli-similar

scale chosen. This property is analogous to the independeﬂf:%cesses' Obviously, the generating scale stationary process

of the shift stationary processes from the time origin. Th onstitutes'the. random part, and 'th.e trend term constitutes
subclass of self-similar processes exhibits many propert hdeterm|n|s_t|c part of a _p'Sfe”'Ser;”ar progfegs.hObvuljfusly,
that can be utilized for practical applications and, therefor _,t e generating process Is free of parameiey the seli-

deserves a special treatment. We will start our treatment B llarity parameter contrll.:)u'Fes only to the trend of the
identifying this subclass with a new term process. Although, p-self-similar processes form a subclass

Definition 3.1: We shall call a stochastic procesé’f self-similar processes, we shall demonstrate that for all
{X(t),¢ > 0} strictly scale stationary if it is self-similar practical purposes, p-self-similar processes provide a rich class
with p7arameter 0 ie of models, and a mathematical analysis framework ffof

e signals. This is due to the observation that given any self-

X(t) = X(at), t>0, similar process{X(t), —oo < t < oo}, one can find two
for anya > 0. (3.2) scale stationary process€s\(;(t), X»(t), ¢ > 0} such that
the following holds in distribution:
O
Note that since strictly scale stationary processes are non- [t Xl(t) t>0
: . . ) - X)) =1 g< . (3.5
stationary in the ordinary sense, the time origin becomes t" Xo(—t) t<O

important while the time scale looses its significance.
Before proceeding further, we want to show that there isG Second-Order P-Self-Similar Processes
natural isometry between strictly scale stationary processes anth practice, it is favorable to work with models based
strictly shift stationary processes. Given any shift stationag first- and second-order statistics since probability density
processY(t) —oc < t < oo, the processX(A), A > 0 function estimation is a more involved task. In addition,
obtained through the following exponential distortion of theecond-order structures lead to a larger class of models, which
time axis includes probability density function-based models as a special
case. In order to extend the concept of scale stationarity into
XA =Y(In ), A>0 (3.3) second-order models, we now propose the following definition:
Definition 3.2: A random procesg X (¢), ¢ > 0} will be
is scale stationary. Note that strictly scale stationary proces§@ded wide sense scale stationary if it satisfies the following
are symmetric with respect to= 1 in the sense thak'(}) and ~conditions:
X(1/X), A > 0 have the same finite probability distributions. i) E[X(¢)] = constant for all ¢ > 0.
This is due to the fact that the ordinary stationary processedi) E[X2%(t)] < oo, for all t > 0.
are symmetric in distribution with respect to= 0 and that i) E[X(#1)X(¢t2)] = E[X(At1)X (At2)] for all ¢1, 2, A >
the exponential distortion maps= 0 to A = 1. Therefore, 0. O
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Obviously, ordinary wide sense stationary processes astdtionarity in the second-order sense. Now, we give various
wide sense scale stationary processes are also isometkamples of p-self-similar processes to illustrate their potential
through the relationship described in (3.3). Note that a stricthpplications.
scale stationary process does not need to have a finite variance.

The finite variance requirement in Definition 3.2 assures thBt Examples
wide sense scale stationary processes are physically realizabl@&xample 3.1: Given a random variable> uniform in the
From the last condition of Definition 3.2, it is immediate thag—r, 7) and a constanf,, we form the process

EX(#®)X(At)] = R(N), for any¢, A > 0. (3.6)
We shall refer toR as scale autocorrelationor, for short,
the S-autocorrelation function. We shall show in the followBy direct calculation, one can show thai(t), ¢ > 0} is wide
ing sections that the concept of S-autocorrelation facilitategnse p-self-similar with zero mean and basic autocorrelation
the development of practical analytical tools and estimatidunction

methods for wide sense scale stationary processes. Now, as a a’ g 27
natural extension of wide sense scale stationarity, we propose L) = ?)‘ o8 fo nAJ, A>0. (3.9b)

the following de.:finition: _ The model can be utilized to analyz¢ f physical processes
Definition 3.3: A random proces{.X(¢), t > 0} will be ot exhibit scale periodicity as well as non-Gaussian behavior.
called wide sense p-self-similar with parameeif it satisfies Note that the S-autocorrelation functida of the generating

the following conditions: process is scale periodic with S-peried, i.e.,
) E[X()] =AHE[X(\t)] forall ¢, A > 0.

2
2(t) = at? cos <f_7r Int+ <p>, t>0. (3.9a)
0

_ fo
i) E[X%(t)] < oo, for eacht > 0. _ R(A) = R(e®A), A>0 (_3'9_0)_
i) E[X(t)X(t2)] = A2 E[X (M) X (My)] for all t;, assuming thatfo > 0. As a consequence of periodicity,
ta, A > 0. [0 it suffices to define the process on the interfiale/). In

Obviously, Theorem 3.1 applies to the wide sense p_Seqa}ddition, one can take advantage of the generative structure

similar processes. Given any wide sense p-self-similar proc&isth® model in some problems, such as prediction, where

{X(#), t > 0}, there is a generating wide sense scale statioff@(@ synthesis is needed. Fig. 1 shows the sample paths of
ary process such that {#(t), t > 0} for various values off and f,.

H A2 H oy Example 3.2: The second example is the well-known frac-
E[X ()X (A)] = A" " E[X(H X (At)] tional Brownian motion. For > 0, fBm is formally defined
=t*#A\HR(\),  forallt, A\ >0 (3.7) as follows:

where R is the S-autocorrelation function of the generating

process. Now, we want to introduce a notion of autocorrelation ~ Bu(0) =0, with probability 1.
function for wide sense p-self-similar processes that will . 1 ¢ H—1/2
; . n(t) = ——— (t-r) dB(r)
represent both the underlying scale stationary and the trend G(H + %) oo
structure. Consider the following candidate: 0 oy
—1/2
E[X(\)X(1)] = AT RO - /_ =7 dB(T)}v

=I'(N), A > 0. (3.8) fort >0 (3.10a)

We shall refer tol' as thebasic autocorrelationfunction of ] ]
the wide sense p-self-similar processes. It is a measureViere H is a parameter between 0 and ,is the gamma
correlation between the samples at> 0 and the origin, function, and{B(r), —oo <7 < oo} is the Brownian motion.
i.e., A = 1. Since p-self-similar processes are trended widd'® fBm possesses numerous interesting properties. Among
sense scale stationary processes, it is sensible to chob&. it is a generlall_zatlon of the Brownian motion, in the
an autocorrelation function that is also the trended versi§gnSe that foid = 3, it reduces to the Brownian motion. In
of the S-autocorrelation function. In fact, the concept @ddition, fBm uniquely models a certain class of self-similar
basic autocorrelation function will prove to be a very naturfrocesses. It can be shown thatox H < 1, fBm constitutes
choice as we develop spectral analysis methods for the wick only self-similar, zero mean, mean square continuous, finite
sense p-self-similar processes. The following properties of t4@rance Gaussian random process with stationary increments
basic autocorrelation function can be derived easily from t9&tisfyingz(0) = 0. o
Definition 3.2 and (3.8). We state them here without proof. ~1he covariance function of fBm is given by

i) T'(1) >oforall A > 0. 52

i) T(\) < TN, E[By(t)By ()] :tQH? {14 X2 1 = 2,

_ \—2H

i) I'(1/A)=A . '(x) for all )\.> 0. _ O £EAS0 (3.10b)

For the rest of this paper, we will focus on the wide sense
p-self-similar and scale stationary processes and explore thgHere
practical utility for signal processing problems, such as signal
modeling and estimation. Unless otherwise stated, for the rest 2

cos (mH)
S =G(1-2H) ———.
of the paper, we shall use the terms p-self-similarity and scale o= )

3.10c
2rH ( )
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Fig. 1. Sample paths of the sinusoidal self-similar process.

Now, we shall derive three different p-self-similar processes
using the fBm process:

a) In order to understand the analytical properties of the
fBm, it may be useful to study the underlying generating
process. Let{ By (t), t > 0} be the generating process
of the fBm, and lef{ Ay (t), —oo < t < oo} be the shift
stationary process obtained by the exponential distortion
of the time axis of{ By (t), t > 0}, i.e.

AH(t) = BH(Ct),
From (3.10b) and (3.10c), we can easily obtain the S-
autocorrelation function of the generating process

E[Bu(t)Bu(\t)]

= o*{cosh (H In A) — |sinh (3 In A)[?7},
A> 0. (3.11b)

—o00 < t < 00. (3.11a)

Similarly, the lag-based autocorrelation function of
{Ag(t), —oo < t < oo} is given by

ElAg(®)An(t+7)]
= UQ{COSh (Ht) — ‘sinh (%)‘ }7

—00 < T < 0. (3.11¢)

Fig. 2 illustrates the sample paths of the generating
process of the fBm for various values &f. While for

H close to 1 the process exhibits long-term correlations,
which are displayed by slow variations in long and short
durations, it appears to exhibit short-term correlations for
H close to 0, which are displayed by rapid short-term c)
oscillations.

The sample paths of Ag(¥), —© < ¢t < oo}
shown in Fig. 3 have a relatively smooth variation. We
could hypothesize that the strong long-term correlation
structure of the fBm is inherited bjAy (¢), —co < t <
oo} through the isometric mapping of the coordinate
system.

Note that unlike Example 3.1, both the trend term and
the generating process of the fBm are governed by
the same parameter, namell, We can define a new

class of p-self-similar models by assigning different

b)

parameters to the trend term and the generating process
of the fBm. Let

X(@t)=t"By(t), t>o. (3.12a)

The basic autocorrelation function of the resulting p-
self-similar process is

]_-w()\) IUQ{Ag_H +)\I~{+H _ )\f{—H|1 _ )\|2H}7
A>0. (3.12b)

Since the parameter of the trend term is positive by
definition, fBm always exhibits a growing trend. In fBm,
the growth rate is dictated by the parameter that controls
the long-term correlations. This limits the applicability
of the fBm, as the model has to have high growth rate to
be able to exhibit strong correlations. In the new model,
on the other hand, the trend and generating processes are
controlled by independent parameters. The advantage of
the later model becomes evident when we compare the
sample paths of the two models generated by the same
scale stationary process. In the top left of Fig. 5, the
rapid changes in sample paths of the new model indicate
short-term correlations with a growing trend, whereas in
the top left of Fig. 4, the sample paths of fBm indicate
is slow growth with short-term correlations. Similarly,
despite the same generating process, in the bottom left
of Fig. 4, the sample paths of the fBm grow much faster
than the sample paths of the new model shown in the
bottom left of Fig. 5.

Let us now consider the increment process of the fBm.

ZH(t) :BH(t + 8) - BH(t),
s> 0.

—o0 < t < 00,
(3.13a)

As we have mentioned aboveZy (t), —oco < t < oo}
is shift stationary, and its autocorrelation function is
given by

ElZgt)Zy(t+7)]

2
= Tl + 1P+ = 1P — 2P,

> 0. (3.13b)
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Fig. 4. Sample paths of the fractional Brownian motion.
For % < H < 1, the increment process is known to Fig. 6 illustrates sample paths af;. As expected, it

exhibit long-term correlations. Intuitively speaking, we exhibits strong correlations in the long run.

expect this property to be strengthened and inheritedExample 3.3: Let P(t), — < t < oo be the Poisson
by the scale stationary process obtained through tBfocess with parametgt. Consider the following process.
logarithmic coordinate distortion. Let

Yu(t) = Zu(n t), X(t) =t"{P(In ta) — P(n t)}, t,a>0. (3.15a)
and By direct calculation, we can show thadtX(¢), ¢t > 0} is
Yi(t) = 1 Vi (), £>0. (3.14a) P-self-similar with the basic autocorrelation function
Then = 1
i DOy = {ﬁln(a))\ (1=} S <A<a. (318
ElY(6)Y(t0)] = —5— A"{|In A+ 1]¥ 0 else
+ [l A — 127 —2[In A7}, Unlike the first two example$X (t), t > 0} is p-self-similar

t, A> 0. (3.14b) but does not exhibit long term correlations.
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Fig. 6. Sample paths of the scale stationary process corresponding to the fractional Gaussian noise.

E. Spectral Representation of P-Self-Similar Processes theorem, which is a corollary of the isometry relationship
Among all available tools in statistical signal processiné,3'3) and the spectral representation theorem of shift stationary

spectral analysis is of special importance. This is due to tRE2C€SSES. _ _ ,

concepts of frequency and spectral density function by which heorem 3.2:A function I'(A), A > 0 is the basic auto-

the representation of a broad range of physical phenomen&9&relation function of a wide sense p-self-similar process

simplified. In this subsection, we want to introduce similafith parameters if and only if there exists a nonnegative,

concepts for wide sense p-self-similar processes. To motiva¥nmetric measuré” on (—oo, oo) such that

our development, let us first recall the spectral decomposition Sl
/ N GRG), A 0, (3.17)

— o0

of the shift stationary processes. We know that given any (A =
ordinary wide sense stationary procgs§(t), —oo < t < oo}

with square summable autocorrelation function, it can be Proof 3.2: See Appendix II. O
represented in the following form [17]: The spectral representation theorem stated above leads to a

00 new set of useful spectral domain tools to analyze and process
X () :/ e~ S(w) dB(w) (3.16) 1/f phenomena. In particular, it leads to a whitening filter
—o0 for p-self-similar processes via generalized Mellin transform
where B is the Brownian motion,S is the spectral density by which a new concept of spectral density function can be
function of the process, and the integration is defined in tigerived.
mean square sense. Intuitively speaking, we can \Ae{#) Corollary 3.1: Any wide sense p-self-similar process with
as the sum of the modulated statistically independent proc@ggametettl has the following spectral representation:
{5 (w) dB(w), —o0 < w < oo} with varianceS(w), where the o
modulating functionge=**, —oo < w < 0o} are periodic in X(t)= / ot dBw),  t>0 (3.183)
shift. For p-self-similar processes, we want to develop a similar -
representation in which the modulating functions are periodichere the integral is defined in the mean square sense, and
in scale. Such a representation is given by the followingB(w), —o0 < w < oo} is the orthogonal increment process
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satisfying system theoretic issues that will guide our development of
finite parameter models in the subsequent section.

2
E[|Bw)I"] It is well known that any linear shift-invariant system, in
= F(w), particular, any casual, stable system, yields a wide sense shift
E{B(w)[B(w+ A) — Bw))]} stationary output when it is driven by a wide sense shift

stationary input. The following theorem states the counterpart

=0 A >0and-— . (3.18b ; ) e o
’ > o <w<oo ) of this result for linear self-similar systems and p-self-similar

Moreover, if I is absolutely continuous, we have processes.
Theorem 3.3:Let {X(¢), t > 0} be a p-self-similar process
ar ; i
flw) = — (w) with parameterd; andhy, be the pseudo impulse response
d - function of a linear self-similar system with parametdp
_ 1 ATIOmH=1P(A) dA, (3.18c) satisfying the following condition:

2 0 0o

Proof 3.1: See Appendix . O /0 |z, (D]t dln ¢ < oo (3.20a)

Informally speaking, f(w), —o0 < w < oo defined in
(3.18¢) is the variance of the statistically independent procesden. the output process
dB(w), —0 < w < oo, which can be regarded as unit oo +
constituents of the stochastic process. In additfga) can be ~ Y(t) = ¢ / hu, <X>X()\) dln A, t>0 (3.20b)
viewed as a measure of correlation between the p-self-similar 0
processX (t) and the scale periodic sinusoié#. Therefore, is p-self-similar with parametef; + Ho.
we shall refer tof as theS-spectral density functiorgr S- Proof: See Appendix IlI. O
spectrum, Standing for scale. Note that the S-spectral density Note that for a scale stationary input, the condition (3.20a)
function quantifies only the random part, i.e., the generating the sufficiency condition for the stability of a linear scale-
process of a p-self-similar process. As a result, any two jvariant system. Now, we want to examine the output of
self-similar processes generated by the same process havditiear scale-invariant systems driven by a special type of scale
same S-spectral density functions. In additianjs directly stationary process, which we refer to as scale stationary white
associated with the S-period of the modulating functionspise.
which is given bye2™/«, The continuous time ordinary white noise process is in-

To elaborate on the physical meaning of S-spectral densigrpreted as the derivative of the Brownian motion. In our
function, let us examine the spectral behavior of the procedgvelopment, we first introduce a process analogous to the
introduced in Example 3.1. Brownian motion and next interpret its increments as scale

stationary white noise process.
2(t) = atf cos <2_7r Int+ ¢>7 t>0. (3.19a) Definition 3.4: We shall call{Z(w), w > 0} a scale or-
Jo thogonal procesH it satisfies the following conditions:

It is straightforward to show that the S-spectrum of the process E{ Z(w)[m]} -0

IS
E[Z(w)]=1n w, a>1

flw) = %2{5<w - ?) + 6<w + i-”)} (3.19b) andw > 0.  (3.21)
0 0
O

whereé(-) is the delta function. Obviously, the energy of the Note that one can rigorously derive such a process using

process is concentrated at the S-perédd This implies that ilbert space methods [18]. Now, let us define an increment
the process can be realized in the mean square sense by|—u1e ' '

modulated white noise process with variangg’4 in which process.

the modulating function ig72*/fo. As a result, the S-period dZ(w) = Z(wdw) — Z(w), do>1 w>0. (3.22a)
¢/ dominates the second-order behavior of the process. This

observation is also verified by the S-autocorrelation functiddy Definition 3.4,{dZ(w), w > 0} are statistically indepen-
of the generating process given in (3.9¢c). Hence, we cé@nt. Similar to the interpretation of the continuous time white
conclude that given an empirical S-spectral density, the Boise process, we can interpret the following process:

periods at which the spectral peaks occur can be interpreted Z(wdw) — Z(w)
as the dominant or the natural scales of the physical process. Wa(w) = T hde (3.22b)
F. Filtered P-Self-Similar Processes as scale stationary white noise process as the scale factor

dw — 1. The proces§dZ(w), w > 0} can be viewed as a

_ For many practical problems, it may be of considerablgq nastic counterpart of the unit driving force introduced in
interest to develop finite parameter, white noise driven mOd%%ction Il (see (2.9))

for p-self-similar processes since finite parameter models\ya shajl adapt the following shorthand notation:
facilitate the development of efficient estimation and system '
identification methods. In this subsection, we discuss some EldZ(w)]*] = dln w, w > 0. (3.22¢)
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for the variance of the process. Now, let-) be the pseudo stable, i.e.p;; > 0, and consider the following output process:
impulse response function of a linear scale-invariant system

with parametertd. Consider the following output process: y(t) = tH/ hy <)\> dZ(\), t>0 (4.3)
. 0
X(@t)=t" /

g t
o h<}) dZ(A), t>0. (3:238) \here {Z(X\), A > 0} is the scale orthogonal increment

process introduced in Definition 3.4. Then, the output of

Using the properties of the scale stationary white noise procegf Euler—Cauchy system is p-self-similar with the basic
we can easily show thatX(t), ¢ > 0} is wide sense p-self- gutocorrelation function

similar with the basic autocorrelation function

n my

g 2 =iy \H+bi;
() = )\H/ h<§) s x>0 (3.23b) > D el AT 0<Asl
o A\ t INOYIER bt . (4.43)
We will use the results of this subsection as a basis to Z Z“Z‘Qj(ln MW= N>
develop a class of finite parameter p-self-similar processes in §=0 i=0

he followi ion. i .
the following section We shall refer to the process defined in (4.3) asAttb-order

self-similar autoregressivisS-AR) process with parametsr.

Since the filter is causal, SS-AR processes are Markov. For the
In this section, we introduce a special class of p-self-similéirst-order SS-AR process, the basic autocorrelation function

processes, which we refer to as self-similar autoregressigegiven by

models and investigate their practical value in modelirig 2\ Ho

signals. Proposed models have two distinct advantages. First, INGVES {UQAH_,. 0<A<L 1

we show that any wide sense p-self-similar processes can be oAV A

approximated by a self-similar autoregressive model with gquation (4.1) is a symbolic representation of SS-AR pro-
finite number of parameters. Therefore, they are rich enoughd@sses and does not lend itself to a data synthesis method.
be useful in modeling broad range bff physical phenomena. Therefore, SS-AR processes basically serve as covariance
Second, they are linear in the sense that they are generategndels. To synthesize an SS-AR process, we utilize the S-
white noise driven linear scale-invariant systems. As a resgfftocorrelation function and Gaussian random generator. The
of this linear structure, it may be possible to develop effsampling interval for the realizations are taken to be 1. Figs. 7
cient parameter estimation methods analogous to the methgglg 8 shows sample paths of first— and second-order SS-AR
developed for ordinary ARMA models. processes with various parameter values. As expected, the
As is well known, ordinary continuous-time autoregressivgample paths get smoother as the order of the model increases.

processes are generated by the ordinary white noise driv@ste that in a similar fashion, one can define self-similar
linear time-invariant systems whose dynamics can be repggrtoregressive moving average models.

sented by a linear constant coefficient differential equations.For any real valued p-self-similar proce$X (¢), t > 0}
Motivated by this observation, we introduce a special C|a§ﬁth continuous, square summable S_spectra| derysny is

of wide sense p-self-similar processes generated by the wijigssible to find apth-order SS-AR process whose spectral
noise driven Euler-Cauchy system introduced in Section Hensity function is arbitrarily close tg. This suggests that
Recall that the generalized Euler—CaUChy SyStem is given W{(t% t> 0} can be approximated in some sense by an SS-

IV. SELF-SIMILAR AUTOREGRESSIVEMODELS

daN d AR model. This result is rigorously stated by the following
ant? BN y(&) + -+ it T y(t) + aoy(t) theorem.
JM Theorem 4.1:Let f be a continuous, square summable S-
= B tMHH T o(t) + -+ prtt T spectral density of a wide sense p-self-similar process with
d t parametetd ande > 0; then, there exists ath-order SS-AR
g z(t) + Bt z(t). (4.1) process with parametdd such that

For M = 0, the pseudo impulse response function of the sys- |far(w) = f(w)| <&, forall —oco<w <oo  (4.5)

it:n;qc;nglretzpondmg to the generalized Euler—Cauchy equat{/?/ﬂere far is the S-spectral density of the SS-AR process.

Proof: See Appendix Ill. O
nomy In many cases, it may be sufficient to consider the properties
= Z aij(ln t)t t2>1 of the SS-AR processes because Theorem 4.1 may provide the
J=0 =1 means to prove similar results for a wide range of wide sense
and p-self-similar processes through appropriate approximations.
= As we proposed in the introduction, the p-self-similar pro-
N = jzo(mj +1) 4-2) cesses may provide a framework for the analysislpf

physical signals. Now, we shall focus on SS-AR processes
wherem;, j = 1,---, nis the number of the repeated poles imnd justify our claim heuristically. Since/f processes are
the transfer function of the system. Assume that the systenclsgaracterized by their empirical Fourier spectrum, we shall
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Fig. 8. Sample paths of the second order SS-AR process.

study the first-order SS-AR processes in the shift stationaritye S-autocorrelation function. L§tX (¢), ¢ > 0} be a wide
framework. Consider the covariance function of the first-ordeense p-self-similar process with paramet&rand letl” be

SS-AR process represented in terms of time lag. its basic autocorrelation function, i.e.,
2 TNTY 2H T\ 24 T
EX®X(t+n]=o*(1+3) EIX@®X(¢+n)] = (14 7) " R(1+7)
7,t>0andy > 0. (4.6) T>—t (5.2)
Consider the Fourier cosine transform of the covariance funwhere R is the S-autocorrelation function of the underlying
tion in (4.6). generating process. To ensure the slow decay of the lag-based
- correlation function, we require (5.1) to be infinite for each
ﬁ(f) _ / o2 (1 + I) AXFT (4.72) flxed_t_ > 0. This requirement is equivalent to the following
0 t condition:

= fr e 2 0), foro0<v <1 (4.70) o
/ (V) dA — 0. (5.2)
where C is a complex-valued function ofv [20, pp. 0
1151-1152]. Equation (4.7b), together with Theorem 4.This condition limits the range of the self-similarity parameter
justify heuristically that the Fourier spectrum of a p-selfand the range of the parameters governing the generating
similar process can be approximated by a linear combinatiprocess. In addition to the above condition, one can impose
of 1/f spectrums. further restrictions on the parameters by imposing a hyperbolic
decay on the lag-based correlations. For the sinusoidal model
introduced in Example 3.1, the basic autocorrelation function
V. LONG-TERM CORRELATIONS is not summable for anyd. However, hyperbolic decay
As we have shown in Example 3.3, not all wide sensequirement restricts the range Hf to the negative real axis.
p-self-similar processes are long-term correlated. In statistiésr the first-order SS-AR process, the long-term correlation
literature, long-term dependence is characterized in two waysiteria is translated intor — 1 < H < v, v > 0, where
i) by the empirical correlation function decaying hyperbolH is the self-similarity parameter, and is the parameter
ically 7=, v > 0 as the lagr — oo and ii) by the of the generating process. In Fig. 9, we illustrate the validity
sum of the lag based correlations increasing without limit &g the long-term correlation criterion chosen by the empirical
the lag increases. In order to identify those with long terfRourier spectra of various p-self-similar processes. Note that
correlations, we reinterpret the lag based criteria in terms fof H = 0, the Fourier spectrum of the first-order SS-AR
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Fig. 9. Empiricial Fourier spectrum of the first order SS-AR process for various parameters.
process contains high energy at low frequencies/folose to Then
0. Forv close to 1, the spectral energy of the process spreads e . 2 1 dlu
over the entire frequency range. o )" 2 dln
w00 w00 .
VI. CONCLUSION _ / { / hH()\l)a:<)\—> dln A,
In this paper, we have proposed a class of statistically 0 0 1
self-similar processes for the modeling and analysid of 0 n
phenomena. In addition, we have developed a mathematical ' / hH()‘2)37<)\_> dln Ay pdlnt.  (1.2a)
analysis framework whose foundation is based on the exten- . 0 2
sions of the basic concepts of classical time series analysis. R Fubini’'s theorem
introduced new concepts, and practical analysis tools, such as _ [Tt b dlu ¢ Rl e
S-periodicity, S-autocorrelation, and S-spectral density, which /o t A t Ao 1 o Jo
allow us to understand the structure of the proposed class rOOREO2) dln Ar dln As. (1.2b)

of self-similar processes and guide us to devise practical . ]
signal processing schemes. We have established a relation§tiyvever, by the Cauchy-Schwartz inequality
between the theory of linear scale-invariant systems and the [~ t t e 5
analysis framework of the proposed class, which leads to a /0 x()\_l)“’();) dln ¢ 5/0 [z@®)F dlnt.  (1.3a)
concrete physical understanding of the proposed class. As Weaddition
discussed and illustrated by several examples, the proposed oo poo
class of models are suitable for a variety Iff processes / /
including Gaussian, non-Gaussian, generative, and Markovian o 70 5
processes. In particular, we introduced self-similar autoregres- < </ (V)] dln )\) ) (1.3b)
sive models by which an arbitrary p-self-similar process can ~ \Jo
be approximated. Hence

There are several promising directions for further research
_buildir_19 on our form_a_lism. In particular, _esse_ntial topics for /Oo |y(t)|2i dln t < oo. 0O
investigation are efficient parameter estimation methods for 24
self-similar autoregressive models and discrete approxima-
tions. In addition, we expect that these models should be
of value for segmentation of signals and, in two dimensions,
for the identification of textures based on their self-similarity Proof of Theorem 3.1:Let
parameter. Work on these areas, as well as several applications B
of our formalism, is proceeding and will be reported in the X(t) = t¥ X(#), ¢ >0 and some-oco < H < oc. (Il.1)
future.

hH()\l)hH()\Q) dln )\1 dln )\2

APPENDIX Il

Assume{X(t), t > 0} is a strictly scale stationary process.

APPENDIX |
fa%e) < e )< T
Proof of Theorem 2.1:Supposehy satisfies [~ |l (t)] d PriX(t) =L ’_fl((t]\) = xf\] Ly
lnt < co. = Pr[ ~(t1) <tV e, X~(tN) <ty an]

Let =PriX(\t) <77z, -, X(Mn) <tz

e f— v _H _H CEEEY
y(t) = tH/ hH(A)x<3> dln A (1) = PriX(M)(e) =" < 8 T, oo

0 A X(OMtx)Xtn) ™ <txfzn]. (1.2)
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Now, assume{X(t), ¢ > 0} is a self-similar process with  Proof of Theorem 3.3:It  suffices to show that

parameterH. E[Y(#)Y(1)] = ti+H2 R(t), whereR is the S-autocorrelation
. . of some scale stationary process. By Fubini's theorem
PriX(t) <y, -+, X(tnv) < anl
P ¢ H ElY (@)Y (
=PriX(t;) <ty @, -+, X(tn) < tyan]
= Pr[X()\tl))\_H <tHpy, o XOE)AH < tilzy] —tHz/ / i, (M), (A2)
:Pr[ ()\tl) <z, "',X()\t]\r) S.’IZN]. (1.3) 1
E{X( )X( )} dln A1 dIn A, (11.12)
I:‘ )\1 )\2

Proof of Theorem 3.2:This is a straightforward corollary However
of the classical theorem of Bochner and the isometry rela- 1 1 t\" /1 Ao
tionship between the wide sense p-self-similar and the wide £|X| — JX| +— )| = | + R t—

: . : A1 A2 A1 A2 A1
sense shift stationary processes. Classical theorem of Bochner

) ! ; : . .13
states thak? is the autocorrelation function of a shift stationary ( )
process if and only if there is a symmetric, non-negatiier some S-autocorrelation functiad®. Then, (11.12) becomes

distribution £' on (—oo, o) such that E[Y(B)Y(1)]
R(T) = / 7 dF(w). (1.4) = it / / <t—>hH2 (A1)
—Hl —H2
Since for any wide sense p-self-similar procéag(t), t > 0}, Hhir(A)ATTEA T dIn A din Ay, ) (I1-142)
there is a shift stationary procegd’(t), —oco < t < oo} < tHe+H R(1) /°° o, ()A~H dln A
satisfying = o '
[1.14b
Y(t) =t7HX(). (1.5) ( )
O
The autocorrelation functio®? of Y is related to the basic
autocorrelation functioi® of X by IX. APPENDIX IlI
R(r) = ¢~ HTD(e"). (11.6) Proof of Theorem 4.1t is sufficient to show that for a

given £ > 0, there is apth-order polynomialP with roots
Hence, by suitable change of variables, (11.4) becomes  on the left half plane satisfying
1
m - f(w)
The proof depends the following two results:

Proof of Corollary 3.1: A f the classical a) Given any continuous spectral densft@u) —7<vr<
root of Loroflary S a consequence of the classica 7 [19], there is aK > 0, and apth-order polynomial

theorem of Bochner, any wide sense shift stationary process A such that
can be represented as

<e for —oo < w < 0. (1n.2)

L)) = /_Oo Nt gp(w), A > 0. (I.7)

p
)= [Ta-me

oo . GJ
Y(t) = / J“'dB(w), —oco<t<oo  (I.8)
= 1 +ared” + -+ a,?  (I1.2a)

— o0

where the integral is defined in the mean square sense, and

{B(w), —00 < w < oo} is the orthogonal increment process W'tth k| <1, anday are real valued fok =1, -, p
satisfying satisfying
K = .
E[|B(w)|2] :F(w), (1.9a) W - f(l/) <eg for a givene > 0. (lll.2b)
E{B(w)[B(w+A) - B(w)]} =0, A >0 and b) The basic device to extend the result stated in part i) is
—0 < w < oo, (11.9b) the following mapping of the closed unit disc onto the
o . left half plane, which can be achieved by
Moreover, if /' is absolutely continuous, we have Y1
== (111.3)
flw) = @) o
dw - This maps the boundary = ¢’% onto the boundary
:i e_j‘”]:?('r) dr. (11.10) 5 = jw, and we havec_u = tan v/2. For a gi\_/en
27 J oo continuous spectral densiffw), —oo < w < o0, define
where R is the shift autocorrelation function. The corollary fw) = f<tan ”)7 r<v<m. (I11.4)
follows by the isometry relation (3.3) and (11.10). O 2
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It is easy to check thaf is continuous, symmetric, [17] E. J. Hannan,Multiple Time Series. New York: Wiley Series in

positive, and square summable. Therefore, by i), it i Probability and Mathematical Statistics, 1970. . .
' ' ' ES] E. Parzen, “Regression analysis of continuous parameter time series,”

immediate that there is gth-order polynomial with real in Proc. 4th. Berkeley Symp. Math. Statist. Prdbniv. of Calif. Press,
coefficients and roots on the left-hand plane satisfying 1961, vol. I, pp. 469-489.
[19] P. J. Brockwell, Time Series: Theory and MethodsNew York:
Springer-Verlag, 1991.
- f(w)‘ <e€ oral—00 < w < 0o, [ [20] I. S. Gradshteyn and M. RyznikTables of Integrals, Series, and
Products. New York: Academic, 1994.
(I.5)  [21] B. Yazici and R. L. Kashyap, “A class of second order stationary self-
similar processes fot/f phenomena,” irProc. ICASSP1995, vol. 2,
pp. 1573-1576.
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