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As a direct generalization of our previous work, we construct a manifestly rotation invariant
Hamiltonian describing a system composed of a tensor boson with spin /=2 — such as, for example,
phonon of nuclear quadrupole surface vibration — in which special cubic and quartic self-interactions are
taken into account. All the ground state solutions are obtained. It'is shown that these solutions can be
classified into three classes: The first is the normal vacuum of boson, which is manifestly rotation
symmetry. The second class of solutions can be viewed as generated from a single chosen state by
rotating it into an arbitrary direction. The third one is Goldstone modes built on this chosen ground state.
This chosen state— an exact ground state solution of our rotation invariant Hamiltonian — is not an
eigenstate of angular momentum, but contains infinitely many different angular momentum states in it;
thus, fypifying “spontaneous breakdown” of “rotation symmetry”. It is further shown that this state can
be naturally identified to an “intrinsic” deformed state in nuclear collective model of Bohr and Mottelson.

The results are examined from the standpoint of Goldstone theorem and detailed discussions are given
to explore how Goldstone theorem is modified in our finite dimensional system.

§1. Introduction

After the advent of quantum mechanics, the symmetry and invariance principle has
played an essential role in modern physics.”” A new insight has been recently introduced
into the invariance principle through the concept of spontaneous breakdown of the
symmetry — as familiarly exemplified by Nambu-Goldstone boson and Goldstone theorem
in high energy physics. Another well-known example?® is the ground state of ferromagnet
and associating zero-excitation-energy magnons as Goldstone mode. In all the examples
so far treated, one is concerned with the spontaneous breakdown of a given nfernal
symmetry of the system with infinite degree of freedom.

It is the purpose of the present paper to propose a concrete model of a finite degree
of freedom which explicitly exhibits spontanecous breakdown of rotation symmetry and to
examine thereby how Goldstone theorem is modified in this finite dimensional system.
The model Hamiltonian to be treated here is a direct generalization of thé Hamiltonian
of the many-boson system composed of a single kind of boson — a scalar boson, treated
in our previous paper® —to a system composed of a tensor boson with spin 7(=even).
We shall be concerned mainly with the spin 2 boson system, because the spin 2 boson
naturally arises as the phonon of nuclear surface vibration in the framework of Bohr and
Mottelson model®”. Thus, we consider nuclear rotation motion of intrinsic deformed
nuclei in an ideal limit. Indeed, our Hamiltonian usually appears as a positive definite
part of nuclear phenomenological Hamiltonian in nuclear collective model or of nuclear
microscopic Hamiltonian when sophisticated boson expansion technique® is applied to it.

This paper is organized as follows; the Hamiltonian of our model is presented in the
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next section, which is manifestly rotation invariant and positive definite. Its lowest
eigenvalue is given by zero. All the ground state solutions of the system are obtained in
§ 3. It is shown there that the ground state is infinitely degenerate in the usual sense.
For later convenience, we classify the ground state solutions into three classes. The first
one is the normal vacuum state of the boson, which is manifestly rotation invariant. The
second class of the solutions can be viewed as generated from a single chosen state by
rotating it into an arbitrary direction. This single chosen state — an exact ground state
of our rotation invariant Hamiltonian — is not an eigenfunction of total angular
momentum, but contains infinitely many different angular momentum states in it. Thus,
this state typifies spontaneous breakdown of rotation symwmetry in its literal sense. The
third one can be interpreted as Goldstone modes built on this chosen ground state.

We examine in detail the ground state solutions from the standpoint of Goldstone
theorem. For this purpose, we briefly summarize in the first part of § 4 the Goldstone
theorem in local field theory and, then, discuss the ground state of ferromagnet from the
standpoint of Goldstone theorem. We summarize all our results in parallel to the corre-
sponding ones in the case of ferromagnet in order to clarify the formal analogy and
difference between them. Our conclusion on the Goldstone theorem for the finite dimen-
sional system is stated at the end of §4. In §5, we discuss our ground state from the
conventional standpoint of nuclear structure. We perform angular momentum projection
out of the spontaneous-symmetry breaking ground state. It is shown that this state
contains all the even (including 0) spin states once and only once — that is to say, the
degenerate ground state rotation band. Section 6 is devoted to concluding remarks.

§ 2. The rotation invariant Hamiltonian

2. 1. Hamiltonian of spin 2 boson system

Consider the creation and annihilation operators of boson having spin /=2, such as,
for example, the phonon of nuclear surface quadrupole vibration — so-called d-boson,

[dn, d]=38(m,m"), (2-1)

where the suffix m(=2,1,0,—1,—2) denotes the z-component of the spin. In other words,
the creation operator d»"’s are defined such that they transform among themselves under
rotation as a second rank irreducible spherical tensor operator:

Uz, dn'1=mdn and [Js, dn']=V2Fm)3+tm) dphsr, (2-2)

where J is the angular momentum operator of the system. Let us define the spherical
annihilation operator d» through

dim:(*)md—m ,

which transforms correctly as the m-th component of a second rank tensor. We adopt the
usual notation of the tensor product, i.g.,

[d'+d" [P =2022mm’12M Ydn" d2 .
We, then, define the following second rank tensors:

Du'=dyn'+gld"+d"]u®, (2-3a)
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~M:(_)MD—M:JM+Q[07*d~]M(Z). (2'3b)
The model Hamiltonian to be considered is the scalar product of these two tensors:
H=3(=)"Dy'D-y=2Dn'Du, (2-4)

which is, by construction, clearly rotation invariant and positive definite. In the context
of nuclear collective model, this Hamiltonian describes nuclear quadrupole surface
vibration in which the special forms of the cubic and quartic anharmonicity are taken into
account. The leading order anharmonicity (the cubic one) can be viewed as the self-
interaction of d-boson, while the quartic anharmonicity can be regarded as the repulsive
boson-boson interaction in the d-wave channel. It is noted that the system becomes
unstable if we take into account only the cubic term alone. The special form of the
quartic anharmonicity is added so as to make the Hamiltonian positive definite.

The angular momentum operator in this model is represented, in the spherical basis,
as

Ju=v2-5d"*d]u™. (2-5)

2.2. Hamiltonian of spin I boson system

A generalization of the Hamiltonian (2-4) to the system composed of the spin I bosons
can be made straightforwardly. Let a»'"” and a»"’ be the boson creation and annihila-
tion operators of spin I (=even);

lan?, atP1=6(m,m’).

D= (= ymgd)

Defining the spherical annihilation opertor by @ a“n, we introduce the following

spherical tensor operators of the rank I:
Au'=au P+ gla'@ea O], (2-6a)
Aw=au®+g[ad0ea")u® | (2+6b)
We then define the Hamiltonian
H=2(—An'A u=3Au"An . . (2:7)
The angular momentum of this system can be written as

=/IT+DCI+1)/3a" %@ ] . (2-8)

We shall discuss later the ground states of this generalized Hamiltonian in the limit of
infinitely large I.

§3. The ground state solutions

We shall examine in this section the ground state of the Hamiltonian (2-4) of d-boson
system. First of all, we note that, since the Hamiltonian is positive definite, all its
eigenvalues are non-negative. The energy of the ground state is clearly given by £=0.
Further, it is obvious from the structure of H that if there exists a state |¥ ) which
simultaneously satisfies

Dyl ¥)=0; for all M(=2,1,0,—1,—2), (3-1)
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[ %) is a zero-energy solution {a ground state) of our Hamiltonian. Conversely, any zero-
energy solution of H satisfies (3-1), because all D ’s are constructed out of the annihila-
tion operators alone. Let us summarize here the explicit forms of Du’s, together with
that of the angular momentum operator in this 4-boson model.

Do=do(1— Gdo)+ G(drd-1+2d2d-»), (3-2a)
Dir=d(1— Gdo)+v6Gdsid=2, (3-2b)
De2=d+:(1+2Gdo)—v3]2 Gds1dsr (3-2c)

where ;
G=—(2200120)g=v2/7g, (3-2d)
Je=2(ds"dr—d'2d-2)+(d:" dr—dtd ), (3-3a)
Je=2(dtader+ diids2) +V6(do" dei+ dlido). (3-3b)

After these preparations, we now seek the solutions of (3+1).

3.1. The manifestly rotation tnvariant solution

The normal vacuum state |0),
10)=1I 0>, (3-4)

which trivially satisfies Eq. (3-1), is a ground state solution. The rotation invariance is
manifest in this ground state.

3. 2. Symmetry-breaking ground states

To show quickly the degeneracy of our ground states, we first prepare the product of
the vacuum-state for M %0 boson subspaces, Tu+o [0>x%. Our Hamiltonian is then
reduced to the Hamiltonian of the (M =0) boson alone, which is identical in form to that
treated in our previous paper. Explicitly, H =(do'— Gdo' do' do— Gdods). We, there-
fore, obtain the abnormal vacuum solution in addition to the normal vacuum solution
(3-4),

IDefOrm):‘1/G>M=o[]‘w¢ol0>M , (353)
where |1/ G is the coherent state of do-boson; doll/G>e=(1/G)|1/G>s. Namely, we have
|Deform)=exp(—1/2G?*)exp{(1/G)do" }|0). (3-5b)

This zero-energy solution clearly typifies “Spontanecous breakdown of rotation
symmelry”, because this is not an eigenstate of the angular momentum, but contains
infinitely many angular momentum states. Thus, one sees already at this stage the
infinite degeneracy of our ground state. In the context of nuclear Bohr-Mottelson model,
this wave function can be regarded as describing nuclear intrinsic wave function with
prolate deformation (for G>>0).the deformation parameters of Bohr, 5 and 7, being given
by 8=1/G and y=0. In this connection, it is interesting to note that the wave function
{3-5) has been frequently used as a trial wave function in the phenomenological descrip-
tion® of nuclear quadrupole excitation of transition nuclei. On the other hand, this wave
function appears as an exact ground state of our Hamiltonian. Further note the deforma-
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tion becomes larger and larger, as the coupling constant becomes smaller and smaller,
because #=1/G. This is one of typical features of our system, as has been discussed in
detail in L

Several special solutions of (3-1) other than (3-5) can be immediately obtained by
inspection on (3-1). For example, we obtain

[Deform’)=|—(1/2G )0 [0>1 [0>-1 [=(/3/ 2V2G )2 | = (V3/ 2/2G > -2, (3-6)

which, at first sight, may be interpreted as describing the intrinsic deformed state with
oblate deformation (8=—1/G, y=60"). This interpretaion is, however, wrong for G >0,
as shown later on.

The above state is described by the product wave function composed of three coherent
states in the (M =2,0,—2) subspaces and vacua in the (M =1,—1) subspace. We, there-
fore, expect that there should be general solutions of (3-1), whose form can be represented
as product of five coherent states of five different subspaces : Ilx|zx>»=|Z). Introducing
this product wave function into (3+1), we obtain the set of algebraic equations which
determines the five unknown complex numbers 2. This procedure actually works well
to determine the most general form of the solutions under the restriction that the solution
should be a product of coherent states. We do not pursue this treatment until the end of
this subsection. Instead, in order to quickly present the results, we recall “rotation
invariance” of our Hamiltonian:

R(Q)HR Y(2)=H, (3-7)
where R is the rotation operator
R(Q2)=exp{—i¢/-texp{—i0]s} exp{—i¢J:}. (3-8)

Here 2 denotes the set of Euler angles (¢,0,¢). From (3:7), it is obvious that, if |¥') is
an eigenstate of H, R(L)|¥) is also an eigenstate — equivalent or non-equivalent,
depending upon the system under consideration. By taking the above |¥ ) our abnormal
ground state, |Deform), in (3:5), we have

R(82)Deform)=|2;Deform)
=exp(—1/2G*exp{(1/G)ZudBo(0)e™ ™ dr ' }0), (3-9a)

where we have used the transformation property of do' under the rotation R(£2). This
wave function is clearly represented as the product of five coherent states, each in a
different M -subspace;

|2;Deform)=(1/G)dR(0)>l(1/G)di(0)e™*>I(1/ G)dHo(0)e >,
x|(1/ G)dE(0)e™*#>:/(1/ G)dDu(9)e**> . (3-9b)

Needless to say, |2; Deform) is our exact ground state solution for any fixed value of Euler
angle 2. If we take (0=71/2,¢=r/2 and ¢ =arbitrary), state (3-9) reduces to |Deform”)
obtained by (3-6). Namely, we have [Deform’)=exp{—i(x/2)/:}exp{—i(x/ 2)]5}|Deform)
for a fixed value of G, from which we conclude that |Deform’) is unitary equivalent to
|Deform) — described by the same intrinsic state. Further, it is noted that our
Hamiltonian is invariant under the simultaneous transformation; G- — G, dn' = —dn'
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and d»— —dn, so that we can always take G positive. From the nuclear structure point
of view, however, it is better to start from |[Deform’) in Eq. (3:6) when G is negative,
because the state |Deform’) can be naturally identified to the nuclear intrinsic state of
oblate deformation with (3=—1/G and y=60"; when G<0).

It remains to show that solution (3-9) is the most general solution of (3-1) under the
restriction that the solution be a single product of five coherent states. To this end, we
adopt here the spherical form of Eq. (3:1) —ie. Dul¢), and restrict |¢) within a product
function of coherent states |Z )= 11| Zu>u- where Zu denotes the eigenvalue of du. We
thus obtain the set of algebraic equations to determine Z4. The first and the most
important step to solve the set of equations is to introduce suitable parametrizations for
Zu. For this purpose, we recall the well-known fact that the eigenvalue of boson
annihilation operator can be viewed as a classical dynamical variable; its real part
corresponds to the coordinate, while its imaginary part to the conjugate momentum. It is
now natural to adopt Bohr’s parametrization : 2= awn +i7u where au’s are coordinates
of Bohr model. As usual, we put an =2 u DB u(Q)an,where ao=8 cos 7, ax1=0 and a.
=(8/v/2)sin 7, with ax=(—)" a-u. 7mu’s are conjugate momenta to @’ which can be
represented in terms of three angular velocities and two momenta associating to 5- and y -
vibrations. Since we are treating the ground states of our Hamiltonian, we may expect
that all the five momenta will vanish in our solution. Under this assumption, we obtain
the set of algebraic equations,

Dule)=2u D@y (2)F=0;  (for all M)

where Fo=p(cos y— GB cos2 y7),F:=0 and Fx,=28(sin y+ GB sin2 y). We, therefore, get
the general solutions, (8=1/G,7=0) or (8=—1/G,y=60") for an arbitrary 2, which are
precisely the same as those previously obtained.

Next, we let all Zu’s complex numbers. It is not too difficult to obtain the most
general solution. It turns out that the most general solution is nothing but the form of
(3-9a), in which all three Euler angles are now taken to be complex numbers. This result
is the expected one, because R(L2) H R™'(£)=H is “formally” valid even for the complex
extension of Euler angles. By the same reason, this type of solution is obviously not
“physically interesting” solution. Thus, we conclude that the solution obtained in (3-9)
is the most general relevant solution of our problem under the restriction that the solution
can be represented as a single product of coherent states.

3. 3. Goldstone-mode solutions

Although we have obtained the general solution of (3-1), we have restricted the form
of the solution within a single product of the coherent states. There are other solutions,
which cannot be represented by such a product form. For example, an inspection on (3:1)
immediately reveals that &:'|Deform) is a solution of (3+1). This wave function can, in
turn, be written as J:|Deform), because of the explict form of J, in (3-3). By repeating
applications of J:+ on |Deform), we obtain

J+Deform)=(v/6/G)d."|Deform)
=(v/6/G)exp{—1/ 2G*d."exp{(1/G)do"}10), ‘ (3-10a)
(J+)Deform)=(v/6/G){2d." +(v6/G)(d." )*}|Deform), (3-10Db)
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(J:)"| Deform) = 3242(/6/ G *[n!/ (n—2k)NR(d>" )*(d, " )" 2% Deform),
(3-10c)

all of which are exact ground states of our Hamiltoinan, as can be verified either by
directly substituting these into Eq. (3-1), or by simply appealing ‘rotation invariance’ of
the Hamiltonian,

(H, J.]=H, J-]=0. (3-11)

Likewise, (J_)*Deform) is also a ground state solution. The explicit form of this state
can be obtained from (3-10c) by replacing d»' to dm,

(J_)YDeform)=223(/6/G)" *[n!/ (n—2kNE(d1:)*(d}1)" **Deform).
(3-12)

All the states in (3:10) and (3-12) are not only orthogonal to the chosen ground state
Deform), but also mutually orthogonal. Indeed, we have

(Deform|(J_ )" (J.)*|Deform) =23 (n,n )28 [(#!)?/k(n—2k)N](6/G?)"* (3-13)
=0(n,n )N (n).
We note, further, that
J={(J+)[Deform)} = (£ )n{(J-)"|Deform)}, (3-14)
from which, together with (3-13), we obtain the expectation value of J%
v[(Deforml|(/-)"17%[(J+)*Deform)]y =[N (n+1)/N (n)]+n(n+1). (3-15)

Here, N (#) has been defined by the last line of Eq. (3-13) and [(/+)"|Deform)]~ denotes the
normalized wave function. '

§4. Goldstone theorem for finite dimensional system

We shall show that the mutually orthogonal states obtained in § 3.3 can be interpreted
as Goldstone modes built on the chosen ground state [Deform). For this purpose and, at
the same time, to examine how Goldstone theorem is modified in our finite dimensional
system, we shall first summarize Goldstone theorem in relativistic field theory. Since our
problem. is non-relativistic one, we next briefly discuss the ground state property of
Heisenberg ferromagnet from the standpoint of Goldstone theorem as the simplest non-

" relativistic example of Goldstone theorem. We summarize all our results obtained in the

preceding section in parallel to the corresponding ones in ferromagnet, in order to clarify
the formal analogy and difference between them.
GOLDSTONE THEOREM in Relativistic Field Theory Consider a field theory govern-
ed by a Lagrangian L, which is assumed to be invariant under a given internal continuous
symmetry. Associated with this symmetry, there exists a conserved current — the space
integral of the time-component of the current defines a “charge” ¢. The commutator of
each component of field, ¢,, with this charge can be written down explicitly; symbolically,
we have a set of commutators
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[Q, ¢a]:i8¢a. (4'1)

We summarize Goldstone theorem in somewhat inexpert way as follows:

(I) There are possibilities that the vacuum expectation values of some of the com-
mutators in set (4+1) are non-vanishing. We call “Goldstone commutator” the above-
mentioned commutator whose vacuum expectation value is non-vanishing.

When the “Goldstone commutator” exists, the internal symmetry is said to be sponia-
neously broken in this vacuum. The charge cannot annihilate the vacuum, in contrast
to the normal case.
(IT) Associated with this spontaneous breakdown of symmetry, there arises massless
spin 0" boson — Nambu-Goldstone boson. The action of “charge” on this abnormal
vacuum can be interpreted as creations of Nambu-Goldstone boson out of the vacuum.
(II1) All the vacuum states definable within this field theory other than the chosen
vacuum in (1) are unitary non-equivalent to this chosen vacuum.
The conventional proof of (II) utilizes the spectrum representation of Green function and,
then, by examining its behavior in the limit of (E, p)=0, shows that the spectrum function
in this limit is just proportional to the non-vanishing vacuum expectation value of the
Goldstone commutator. Lorentz invariance of the theory restricts this massless particle
appearing at this pole of Green function to 0*-boson. In the non-relativistic theories such
as ours and the ferromagnet, there are no such restrictions on the spin-statistics of this
zero-excitation energy mode. Although statement (III) may be regarded as an axiom in
the constructive field theory, it can be easily proved in the case of ferromaget, as will be
shown later. We think of it as heart of Goldstone theorem for any infinite dimensional
system. Indeed, it is this statement (III) that is modified in our finite dimensional system.

Since the above theorem in local field theory is rather abstract, it seems better to use
a simple non-relativistic example, in which the essential points of the theorem can easily
be understood. We now discuss the ground states of Heisenberg ferromagnet as such an
example. All our results obtained in §3 will be compared to the results of the ferromagnet
is each appropriate position in order to make the formal correspondence clear. Consider
the Heisenberg Hamiltonian

H:‘Eu’](l, l/)S(”S([’), (4'2)

where S is the spin operator for the atom on the /-th lattice site, J(I, ") being the
nearest neighbor exchange interaction. A ground state of the system at the absolute zero
temperature can be taken to be the state in which all the spins are aligned into a definite
direction — the z-direction. Let |[Ferro) denote the wave function of this state. Obvious-
ly, we have S|Ferro)=0, where ‘

SZZZZSz(l) and Si:ZLS(i” (43)
is total spin operator of the system. From
(i, S:1=[H, S:]1=0, ' (4-4)

it follows that all the states constructed by repeating applications of S_ on the chosen
ground state |Ferro), (S-)"|Ferro), are degenerate to this ground state and that they are
all mutually orthogonal.

The fact that these states are Goldstone modes built on |Ferro) can be proved in just
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the same way as in the field theory. Namely, first set up Green function of the system —
in this case, by employing an approximation; such as, Tyablikov decoupling=a kind of
RPA — and, then, examine its behavior at £=0. We need not pursue this standard
procedure. Instead, suffice it to say that the Goldstone mode is the zero-energy limit of
the elementary excitation mode of the system — i.e., the spin-density wave (magnon), and
that S_|Ferro) is nothing but the long wavelength limit of this spin-density wave. The
Goldstone commutator is identified to

[S+, S—]:zs.z ) (4'5)

Its expectation value with respect to our chosen ground state |Ferro) is, of course, non-
vanishing. We note that this non-vanishing expectation value can be used as the order
parameter to specify the phase of this ground state.

It is now obvious that our ground state solutions obtained in § 3.3. can be naturally
identified as Goldstone modes built on the chosen ground state |Deform); |Deform) corre-
sponds to |Ferro) in the ferromagnet. Further, the Goldstone commutator in our model is
identified to '

[]i, Ji]:\/gdo. (4'6)
Indeed, we have
(Deform|[J+, d+1]Deform)=v6/G . (4-7)

It is interesting to note that this expectation value is just v6 times the value of the
“intrinsic quadrupole moment” of this state in the context of Bohr-Mottelson model.
Further, all the states in §3.3, (J+)"*|Deform) — when correctly normalized — give the same
expectation value of this Goldstone commutator. Namely, these mutually orthogonal
states can be specified by the same value of this order parameter. Needless to say, the
normal ground state of our Hamiltonian in §3.1 gives us the vanishing expectation value
of the commutator (4-6).

Returning to the ferromagnet, we now discuss another ground state in which all spins
are directed in another direction, (&, ¢) measured from the z-axis. For simplicity, we
take ¢ =0 and denote the wave function of this ground state as |§;Ferro). In terms of the
previously chosen ground state |[Ferro), |8;Ferro) is “formally” represented as

|§: Ferro)=exp{— i6S,}|Ferro). (4-8)

Qur problem is now to prove the unitary non-equivalence of these two chosen ground
states. For this purpose, we rewrite the spin-rotation operator in an ordered form;

exp{—i0S,}=exp{—(0/2)(S.—S-)}
=exp{tan(6/ 2)S-}exp{(2 log cos(6/ 2)S:}exn{—tan(4/ 2)S.}. (4-9)
Because S.|Ferro)=0=(Ferro|S-, we obtain
(Ferrol|@; Ferro)=II.[cos(6/ 2)]*™" (4-10)
(m“being the eigenvalue of S:¥)

which obviously vanishes in the limit of infinitely many-spin system. We, thus, complete

220z 1snBny 9| uo Jasn sansnr Jo Juawedaq 'S'N Aq £260061/9.1/1/0./2101e/d)d/woo"dno-oiwepese/:sdny Wwoly papeojumoq



A Class of Simple Hamiltonians with Degenervate Ground State.ll 185

the proof of the umitary non-equivalence of these two differently chosen ground states.
Physically, this means that it is absolutely impossible to bring all spins into a different
direction from the state |Ferro) to obtain |f; Ferro), how many Goldstone modes are
mobilized onto |Ferro).

Again, it becomes clear that our ground state |2; Deform) obtained in § 3.2 can be
compared to the ground state |@; Ferro) of the ferromagnet. Namely, we have correspon-
dence; |2; Deform) to |0; Ferro). 1t is also clear that all the |2; Deform) are wunitary
equivalent to the chosen ground state [Deform), because of the unitarity of the finite
dimensional representation of the rotation operator. From this unitary equivalence, we
can transform the chosen state |Deform) into an arbitrary direction by appropriately
mobilizing the Goldstone modes.

Let us summarize the results in the following table:

Ferromagnet Our Model
Hamilton; Heisenberg Hamiltonian d-boson model
amiltonian (4-2) (2-4)
[H, 8}=0 [H,J]=0
Symmetry of H spin symmetry rotation symmetry
A chosen symmetry |[Ferro) [Deform) in (3+5)
breaking state all spins in z-axis do -boson condensates
Goldstone mode S. |Ferro) J:|Deform), J-[Deform)
Goldstone Commutator (4-5) (4-6)
Order Parameter magnetization in z intrinsic quadrupole moment
Another V [; Ferro) [2; Deform) in (3+9)
nother Vacuum all spins in @ direction bose-condensates in five M
Unitary Equivalence non-equivalent equivalent

or Non-eqivalence

From the above, one now sees how Goldstone theorem is modified in the finite
dimensional system. Namely, in the last statement (III) of the theorem, “unitary non-
equivalent” should be replaced by “unitary equivalence”, while first two statements (1) and
(I1) remain unchanged.

To show more precisely the above statement, we finally discuss the ground states of
the generalized Hamiltonian (2:7) composed of the spin [ tensor boson. By letting the
spin 7 of the boson infinity, the system becomes infinite dimensional, because infinitely
many kinds of boson ax® (M =0 to infinity ) take part in this model. All the ground state
solutions of the model can be obtained in the same way as in § 3. We have the chosen

vacuum which is a condensate of a%-o-boson;

[Deform, I)=exp{—(1/2G*)}exp{(1/ G )aiL}0),

where G=-—(I100{/0)g. Another symmetry-breaking vacuum corresponding to |&;
Deform) can be “formally” represented as |2; Deform, I)=R(2) |Deform, I).
The overlap between these two vacua is given by

(Deform, 1|2; Deform, I )=exp{—1/G?)}exp{(1/G?)- P/(cos §)}, (4-11)
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which can be easily proved to vanish by making use of asymptotic limits of P;(cos 8) and
of the Clebsch-Gordan coefficients (Z700[70) for a large 7. Thus, one observes the
“unitary nonequivalence” between these two vacua in the limit of infinitely large [.

An additional REMARK: In the case of ferromagnet treated in this section, finite dimen-
sional model can be constructed by restricting the number of the spins finite. In this
model, the degeneracy of the ground states is finite and, moreover, the chosen state [Ferro)
becomes an eigenstate of the total spin operator S. Thus, the model is trivial from our
standpoint. On the other hand, in our &-boson model, the ground state is infinitely
degenerate and that the chosen state |Deform) — an exact ground state solution of the
rotation invariant Hamiltonian — is not an eigenstate of angular momentum, but contains
infinitely many different eigenstates in it. Hence, our model #ypifies “Spontaneous Break-
down” of rotation symmetry in its literal sense.

Our conclusions on Goldstone theorem in this section may be stated as follows.
When speaking of the spontaneous breakdown of symmetry, it is usually said that the
Goldstone mode appears so as to restore the broken symmetry. From our results, we
would say — ironically — that the Goldstone mode appears as a manifestation of Nature’s
effort to restore the symmetry. But — alas! — Her effort is endless — the complete resto-
ration is impossible in infinite dimensional system (unitary non-equivalence); so remains
Goldstone on the ground state forever. While, in a finite dimensional system, her effort
is finally requited leading to the complete restoration of the symmetry. As a result, after
completing his duty, he — poor Goldstone! — fades away into not heaven, but into “under-
ground” — “under” graduate level of physics, as will be shown in the next section.

§ 5. Discussion

We have already discussed in some detail in § 3.2 the ground states of our system from
the standpoint of nuclear collective model. We now treat the same problem one step
further from the conventional standpoint of nuclear structure. Namely, we shall perform
the angular momentum projection out of the chosen ground state, [Deform) in (3+5), which
typifies the spontaneous breakdown of rotation symmetry. The method of angular
momentum projection to be employed is essentially the same as that of Peierls and
Yoccoz; namely, first suppose to expand the state, [Deform), into the angular momentum
eigenstates. Then, (1), firstly by rotating whole wave function, each eigenstate of angular
momentum will transform definitely as the basis of rotation group. Next, (2), we read off
the angular momentum states contained in it, by examining the transformation properties
of the rotated wave function. Usually, step (2) mentioned above is done by multiplying
representation function of the rotation group to the rotated wave function and, then,
performing the integration over whole group manifold —1ie. over all Euler angles.
Because of the simple structure of our wave function [Deform), this second step can be
performed much simpler in our case, as will be done shortly.

The result of rotation R(2) on |Deform) has been already given by Eq. (3:9). In
order to read off the transformation properties of this rotated state, we take the scalar
product of the rotated state and the unrotated state to obtain

(Deform|R(2)|Deform)=exp{—(1/G*)}exp{(1/G?)- P:(cos 8)}. (5-1)
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Expansion of the above formula into spherical harmonics can be made straightforwardly:
(Deform|R (2 )Deform)=X1a: Y1o(8, ), (5-2)

where

a:=Y/Er2L+Dexp{—3/2)(1/GH}V3/2(1/ G}
X Sp™{(3/2)(1/ GHY (L +2p )t/ {(L/ 2)+p}]/ [2pNQL+2p+1)M1]
L if L is even
and
a:=0 ;if Lisodd.

Thus, one observes that the state [Deform) consists of all the even spin states including
L =0 to infinity.

Several remarks are now in order. (i) As already shown, the action of /- on the state
Deform) can be regarded as creation of Goldstone modes built on this state. Once the
state is expanded into eigenstates of angular momentum, the results of the operation of J-
on “each” eigenstate are now apparently contained in any textbook of elementary
quantum mechanics — namely, undergraduate level of physics, as stated in the last sen-
tence of the preceding section. (ii) By comparing the above formula (4-11) to (5-1), one
sees immediately that the angular momentum projection is impossible in the case of
infinite dimensional system. (iii) The method of angular momentum projection usually
employed in nuclear structure theory including ours can be used without any care, only if
the state under consideration is multiplicity-free in angular momentum states. To show
that our state [Deform) is multiplicity-free, we recall the fact that [Deform) can be
identified to the “intrinsic” deformed state of Bohr and Mottelson model with the definite
values of deformation parameters 8=1/G and y=0",(G>0). Further, the K-quantum
number is clearly given by K =0. We, thus, conclude the state [Deform) contains all L
=even states from L =0 to infinite once and only once.

Further projection of |Deform) into a definite number state of d-bosons is possible,
which has been done by Gheorghe et al.” in group theoretical context. In this case, we
have all the states contained in the full dynamical group of the d-boson system: Sp(10R)
DO0(5)xSU(1,1).2 Itis, however, noted that each number-projected state is no longer an
eigenstate of our Hamiltonian.

§6. Concluding remarks

In discussing nuclear structure, in which rotational spectra appear very regularly, one
usually starts by presupposing that the nucleus has well-defined intrinsic deformed shape.
Although there are no problems in defining deformed shape in classical physics, the concept
of “intrinsic deformation” is not necessarily clear” within the framework of quantum
mechanics. It seems to the authors that this concept of “intrinsic deformation” within
quantum mechanical framework is intimately connected to the concept of the “spontane-
ous breakdown of rotation symmetry”. Indeed, such a point of view has been emphasized
by the very inventor of the concept of the “intrinsic deformation” — Bohr, who in his
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Nobel lecture'® deliberately stated:

“In a general theory of rotation, symmetry plays a central role. Indeed, the very
occurence of collective rotational degree of freedom may be said to originate in the
breaking of rotational invariance, which introduces a “deformation” that makes it pos-
sible to specify an orientation of the system. Rotation represents the collective mode
associated with such a spontaneous symmetry breaking (Goldstone boson).”

In the present paper, we have established a specific model example within quantum
mechanical framework, which explicitly exhibits essential point of such an idea.
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