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A CLASS OF SINGULARLY PERTURBED
SEMILINEAR DIFFERENTIAL EQUATIONS

WITH INTERIOR LAYERS

P. A. FARRELL, E. O’RIORDAN, AND G. I. SHISHKIN

Abstract. In this paper singularly perturbed semilinear differential equations
with a discontinuous source term are examined. A numerical method is con-
structed for these problems which involves an appropriate piecewise-uniform
mesh. The method is shown to be uniformly convergent with respect to the
singular perturbation parameter. Numerical results are presented that validate
the theoretical results.

1. Introduction

In this paper a class of singularly perturbed semilinear ordinary differential equa-
tions is considered on the unit interval Ω = (0, 1). A single discontinuity in the
source term is assumed to occur at a point d ∈ Ω. It is convenient to introduce the
notation Ω− = (0, d) and Ω+ = (d, 1) and to denote the jump at d in any function
with [ω](d) = ω(d+) − ω(d−). The problem follows.

Find uε ∈ C1(Ω̄) ∩ C2(Ω− ∪ Ω+) such that

− εu′′
ε + b(u)uε = f for all x ∈ Ω− ∪ Ω+,(1.1a)

uε(0) = A, uε(1) = B,(1.1b)
f(d−) �= f(d+), b(0) > 0,(1.1c)

b ∈ C4(−∞,∞), f ∈ C4(Ω̄ \ {d}).(1.1d)

Below we impose further restrictions (2.2), (2.11) on the magnitudes of ‖f‖Ω̄, the
boundary values |uε(0)|, |uε(1)|, and the class of nonlinear functions b(·) that will
be examined. These restrictions are introduced at appropriate locations in the
paper. Because f is discontinuous at d, the solution uε of (1.1) does not necessarily
have a continuous second order derivative at the point d. Thus uε �∈ C2(Ω), but the
first derivative of the solution exists and is continuous. If f ∈ C1(Ω), then under
certain restrictions on the nonlinearity b(u)uε, only boundary layers would appear
in the solution of (1.1). The asymptotic structure of the solutions of singularly
perturbed semilinear differential equations with both boundary and interior layers
is given in [1].
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D’Annunzio [2] examined semilinear problems, whose solutions displayed both
boundary and interior layer phenomena, but D’Annunzio placed restrictions on the
mesh size so the number of mesh intervals employed depended adversely on the
small parameter. In this paper our goal is to design numerical methods which
are parameter uniform. That is, if uε is a solution of (1.1) and Uε is a numerical
approximation, then

‖uε − Uε‖∞ ≤ Cg(N), g(N) → 0 as N → ∞,

where the number of mesh intervals N is independent of ε, and C is a constant in-
dependent of ε and N . Shishkin [12] established parameter-uniform convergence for
a class of quasi-linear parabolic equations with smooth data using finite difference
schemes based on piecewise-uniform meshes. The numerical method presented in
this paper is also based on piecewise-uniform meshes. Singularly perturbed linear
problems with discontinuous data were treated in [13]. A linear version of (1.1)
was studied in [7], where a parameter-uniform numerical method based on a suit-
ably designed piecewise-uniform mesh adapted to the interior layer was shown to
converge with g(N) = N−1 ln N . The methodology in [7] is extended in this pa-
per to the nonlinear problem (1.1). In [5] it was shown that numerical methods
based on uniform meshes cannot be parameter uniform for semilinear singularly per-
turbed problems. Sun and Stynes [14] constructed finite difference schemes based
on piecewise-uniform meshes for semilinear problems whose solutions exhibit only
boundary layer structure. In this paper we are primarily interested in the interior
layer behaviour introduced by the discontinuity of f .

2. The continuous problem

We introduce the concepts of upper and lower solutions, which are useful in
establishing existence and in determining the character of the solution.

Definition 1. A function α ∈ C0(Ω̄) ∩ C2(Ω− ∪ Ω+) is a lower solution of (1.1) if

− εα′′ + b(α)α ≤ f, x �= d(2.1a)
α′(d+) ≥ α′(d−)(2.1b)

α(0) ≤ uε(0), α(1) ≤ uε(1).(2.1c)

An upper solution β is defined in an analogous fashion, with all inequalities reversed.

Theorem 2.1 ([10]). If α, β ∈ C0(Ω̄) ∩ C2(Ω− ∪ Ω+) are, respectively, lower and
upper solutions for the problem (1.1) and α(x) ≤ β(x), ∀x ∈ Ω̄, then there exists a
solution to (1.1) and

α(x) ≤ uε(x) ≤ β(x) ∀x ∈ Ω̄.

Hence, to establish existence we are only required to construct a lower and upper
solution. First we place a restriction on the magnitude of the boundary conditions
and ‖f‖.

Assumption 1. Assume that there exists a θ > 0 such that

(2.2a) b(y) ≥ θ > 0 ∀y ∈ Dθ,K = [−K

θ
,
K

θ
],

where

(2.2b) K = max{‖f‖, θ|uε(0)|, θ|uε(1)|}.
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Note that since b(0) > 0 and b is smooth, then there exists a neighbourhood [−δ, δ]
such that b(y) ≥ θ > 0 ∀y ∈ [−δ, δ]. Requiring that b(z) ≥ θ > 0 ∀z ∈ (−∞,∞) is
considerably more stringent on the extent of the class of nonlinear problems under
consideration.

Theorem 2.2. Problem (1.1), (2.2) has a solution uε ∈ C1([0, 1], Dθ,K) and

‖uε‖ ≤ K

θ
.

Proof. Let α(x) = −1
θ K = −β(x). Then α(0) ≤ uε(0) ≤ β(0) and α(1) ≤ uε(1) ≤

β(1), with εα′′ = εβ′′ = 0. Note also that, by virtue of (2.2),

−εα′′(x) + b(α)α = b(−1
θ
K)(−1

θ
K) ≤ f

and
−εβ′′(x) + b(β)β ≥ f.

Hence, α and β are lower and upper solutions with α(x) ≤ β(x) ∀x ∈ [0, 1]. By
the previous theorem there exists a solution to problem (1.1), (2.2) and

α(x) ≤ uε(x) ≤ β(x) ∀x ∈ [0, 1].

Theorem 2.3. Let α, β be lower and upper solutions. Assume that
(2.3)

y < z implies that b(y)y < b(z)z ∀y, z ∈ [−max{‖α‖, ‖β‖}, max{‖α‖, ‖β‖}].
With this assumption,

α(x) ≤ β(x) ∀x ∈ [0, 1].

Proof. Let p be any point at which ω = α − β attains its maximum value in Ω̄.
Assume that ω(p) > 0. If p �= d and p ∈ Ω−∪Ω+, then ω′′(p) ≤ 0, and at this point
x = p,

εα′′(p) ≥ b(α)α − f > b(β)β − f ≥ εβ′′(p),
which implies that ω′′(p) > 0, which is a contradiction. If p = d, then the argument
depends on whether or not ω is differentiable at d. If ω′(d) does not exist, then
[ω′](d) �= 0 and because ω′(d−) ≥ 0, ω′(d+) ≤ 0, it is clear that [ω′](d) < 0.
However, because α and β are lower and upper solutions, we also have that [α′](p) ≥
0 and [β′](p) ≤ 0, which contradicts [ω′](d) < 0. If ω′(d) does exist, then ω′(d) = 0
and one can follow the argument as in the linear problem [7] to arrive again at a
contradiction. Hence, the assumption that ω(p) > 0 always leads to a contradiction.

This result and assumption (2.3) guarantee uniqueness of the solution of (1.1),
(2.2). Let u1, u2 be two solutions of problem (1.1), (2.2). Then, by Theorem 2, we
have that

‖ui‖ ≤ K

θ
, i = 1, 2.

Assuming (2.3), u1, u2 can be viewed as lower and upper solutions and so u1 ≤ u2.
Reversing the roles of u1, u2 provides uniqueness.

Follow the arguments in [9] to get

(2.4) |uε|k,Ω−∪Ω+ ≤ C
K

θ
(1 + ε−k/2), 0 ≤ k ≤ 4,

where the seminorms | · |k,D are defined by

|y|k,Ω−∪Ω+ = ‖dky

dxk
‖Ω−∪Ω+ .
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The reduced problem (i.e., set ε = 0 in (1.1a)) is

(2.5) b(y0)y0 = f(x), x �= d.

Note that if f ≡ 0 on the subinterval x < d (or x > d), then by (1.1c), y0 ≡ 0 is a
solution to the reduced problem on the subinterval x < d (or x > d). By (2.2) we
know that if ‖f‖ �= 0, then

(2.6) b(−‖f‖
θ

)(−‖f‖
θ

) − f ≤ 0 ≤ b(
‖f‖
θ

)(
‖f‖
θ

) − f.

Hence in the interval Dθ,‖f‖ = [−‖f‖
θ , ‖f‖

θ ], for each x �= d, there exists an associated
y such that

b(y)y − f(x) = 0, x �= d.

Thus, it is sufficient for existence of a reduced solution that

(2.7) b(y) ≥ θ > 0 ∀y ∈ [−‖f‖
θ

,
‖f‖
θ

].

This is implied by (2.2), and hence a reduced solution y0 exists, by (2.3) is unique
within the interval Dθ,‖f‖ ⊂ Dθ,K , and

(2.8) b(y0) ≥ θ > 0.

We now impose a further condition on the strength of the nonlinearity. Assume
that given θ in (2.2) there exists a γ > 0 such that

(2.9)
d

dy
(b(y)y) ≥ γ > 0 ∀y ∈ Dθ,‖f‖ = [−‖f‖

θ
,
‖f‖
θ

].

Assuming (2.9) guarantees (via the implicit function theorem) that if f ∈
Ck(Ω− ∪ Ω+), then a reduced solution y0 ∈ Ck(Ω− ∪ Ω+) exists and is unique,
with ‖y0‖ ≤ ‖f‖

θ . For uε to be unique, we can assume that

(2.10)
d

dy
(b(y)y) ≥ γ > 0 ∀y ∈ Dθ,K = [−K

θ
,
K

θ
].

Note that (2.10) implies (2.3), which yields uniqueness of the solution uε.

To establish the parameter-robust properties of the numerical methods involved
in this paper, the following decomposition of uε into regular vε and singular wε

components will be used. The regular component vε is defined as the solution of

−εv′′ε + b(vε)vε = f, x �= d,

b(v0)v0 = f, x �= d,

vε(0) = v0(0), vε(d−) = v0(d−),

vε(d+) = v0(d+), vε(1) = v0(1).

Note that ‖v0‖ ≤ ‖f‖
θ , which implies that |vε(0)|, |vε(d−)| ≤ ‖f‖/θ. Hence, using

the arguments in Theorem 2.2 on Ω−, Ω+ separately, we deduce that vε exists and

‖vε‖ ≤ ‖f‖/θ.

The singular component wε is given implicitly by uε = vε + wε, where uε is the
solution of the problem (1.1). Since the solution of (1.1), (2.2), (2.10) is unique

‖wε‖ = ‖uε − vε‖ ≤ ‖f‖ + K

θ
.
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In order to derive sharp pointwise bounds on the singular component wε, we are
required to strengthen the restriction given in (2.10) to the following assumption.

Assumption 2. Given θ in (2.2), assume that there exists a γ > 0 such that

(2.11a)
d

dy
(b(y)y) ≥ γ > 0 ∀y ∈ Dθ,2‖f‖+K = [−2‖f‖ + K

θ
,
2‖f‖ + K

θ
],

where

(2.11b) K = max{‖f‖, θ|uε(0)|, θ|uε(1)|}.

Theorem 2.4. Let uε be the solution of the problem (1.1), (2.2), (2.11). Then
uε = vε + wε, and for each integer j satisfying 0 ≤ j ≤ 4, the components vε and
wε satisfy the following bounds for ε sufficiently small:

|vε(x)|j ≤
{

C(1 + ε1− j
2 ), x ∈ Ω−,

C(1 + ε1− j
2 ), x ∈ Ω+,

|wε(x)|j ≤
{

C(ε−
j
2 (e−x

√
γ/ε + e−(d−x)

√
γ/ε)), x ∈ Ω−,

C(ε−
j
2 (e−(x−d)

√
γ/ε + e−(1−x)

√
γ/ε)), x ∈ Ω+,

where C is a constant independent of ε and | · |j denotes the maximum pointwise
norm of the jth derivative.

Proof. Note that |v0|j,Ω−∪Ω+ ≤ C. Introduce the notation g(y) = (b(y)y)y and, by
assumption (2.11), g(y) ≥ γ > 0 ∀y ∈ Dθ,2‖f‖. We have that, for some t ∈ [0, 1],

− ε(vε − v0)′′ + (b(vε)vε − b(v0)v0)

= −ε(vε − v0)′′ + g(v0 + t(vε − v0))(vε − v0) = εv′′0 ,

(vε − v0)(0) = (vε − v0)(d−) = (vε − v0)(d+) = (vε − v0)(1) = 0.

Note that both vε, v0 ∈ Dθ,‖f‖ and hence

g(v0 + t(vε − v0)) ≥ γ > 0.

Consider the nonlinear problem

−εy′′ + g(v0 + ty)y = εv′′0 , x ∈ Ω−,

y(0) = A1, y(d) = B1.

Use α = −ε‖v′′0 ‖/γ = −β as lower and upper solutions. For ε sufficiently small,

v0 ± εt‖v′′0‖/γ ∈ Dθ,2‖f‖, 0 < t < 1,

and, hence, g(v0 + tα) ≥ γ and g(v0 + tβ) ≥ γ. Thus, we have that

‖vε − v0‖Ω−∪Ω+ ≤ Cε.

Then, follow the argument in [9] to get the bounds

|vε − v0|j,Ω−∪Ω+ ≤ Cε(1 + ε−j/2), 1 ≤ j ≤ 4.

The singular component is the solution of

−εw′′
ε + b(uε)(vε + wε) = b(vε)vε, x �= d,

wε = uε − vε, x = 0, 1,

[wε](d) = −[vε](d), [w′
ε](d) = −[v′ε](d).
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Note that

−εw′′
ε + (b(uε)uε − b(vε)vε) = −εw′′

ε + g(uε + t(vε − uε))wε = 0.

We have that uε ∈ Dθ,K , vε ∈ Dθ,‖f‖ and hence

g(uε + t(vε − uε)) = g(vε + (1 − t)wε) ≥ γ > 0

from (2.11).
On the interval Ω− consider the nonlinear problem

−εy′′ + g(vε + (1 − t)y)y = 0, x ∈ Ω−

y(0) = A1, y(d) = B1.

Consider the barrier function

φ(x) = max{|wε(0)|, |wε(d−)|}e−x
√

γ/ε + e−(d−x)
√

γ/ε

1 + e−d
√

γ/ε
.

Note that εφ′′ = γφ ≥ 0 and ‖φ‖ ≤ ‖f‖+K
θ . Hence, vε ± (1− t)φ ∈ Dθ,2‖f‖+K and,

by (2.11), this gives
g(vε ± (1 − t)φ) ≥ γ.

Let α = −φ = β. Then

−εα′′ + g(vε + (1 − t)α)α ≤ 0 ≤ −εβ′′ + g(vε + (1 − t)β)β.

Then −φ ≤ wε ≤ φ in the interval Ω−. Follow the arguments in [9] to get bounds
on the derivatives of wε in the interval Ω−. The result for the interval Ω+ can be
obtained in a similar manner.

3. Discrete problem

On Ω− ∪ Ω+ a piecewise-uniform mesh of N mesh intervals, where N is a mul-
tiple of 8, is constructed as follows. The interval Ω

−
is subdivided into the three

subintervals
[0, σ1], [σ1, d − σ1], and [d − σ1, d]

for some σ1 that satisfies 0 < σ1 ≤ d
4 . On [0, σ1] and [d − σ1, d] a uniform mesh

with N
8 mesh intervals is placed, while [σ1, d − σ1] has a uniform mesh with N

4
mesh intervals. The subintervals [d, d + σ2], [d + σ2, 1 − σ2], [1 − σ2, 1] are treated
analogously for some σ2 satisfying 0 < σ2 ≤ 1−d

4 . The interior points of the mesh
are denoted by

ΩN
ε = {xi : 1 ≤ i ≤ N

2
− 1} ∪ {xi :

N

2
+ 1 ≤ i ≤ N − 1}.

Clearly xN
2

= d and Ω
N

ε = {xi}N
0 . Note that, for the case d = 1/2, this piecewise-

uniform mesh is a uniform mesh when σ1 = d
4 and σ2 = 1−d

4 . It is fitted to the
singular perturbation problem (1.1) by choosing σ1 and σ2 to be the functions
(3.1)

σ1 = min
{

d

4
, M

√
ε ln N

}
, σ2 = min

{
1 − d

4
, M

√
ε ln N

}
, M ≥ 1

√
γ

,

of N and ε, where γ is specified in (2.11). On the piecewise-uniform mesh Ω
N

ε a
standard centred finite difference operator is used. Then the fitted mesh method
for problem (1.1) follows.
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Find a mesh function Uε such that

−εδ2Uε(xi) + b(Uε(xi))Uε(xi) = f(xi) for all xi ∈ ΩN
ε ,(3.2a)

Uε(0) = uε(0), Uε(1) = uε(1),(3.2b)

D−Uε(xN
2
) = D+Uε(xN

2
),(3.2c)

where

δ2Zi =
(Zi+1 − Zi

xi+1 − xi
− Zi − Zi−1

xi − xi−1

) 1
xi+1 − xi−1

.

Let G : RN+1 → RN+1 be the mapping associated with this finite difference scheme.
For mesh function Y we have an associated vector Y ∈ RN+1, where Yi = Y (xi).
Let

(GY )i =

⎧⎪⎪⎨
⎪⎪⎩

Y (0), i = 0,
−εδ2Yi + b(Yi)Yi, i �= N/2, 1 ≤ i ≤ N,
−εδ2Yi, i = N/2,
Y (1), i = N + 1.

We also define a vector F by

Fi =
{

A, 0, B, i = 0, N/2, N + 1,
f(xi), otherwise.

The finite difference scheme (3.2a) can then be written in the form

GUε = F.

Definition 2. Given any vector H ∈ RN+1, a lower mesh solution V for the
problem GW = H is a mesh function which satisfies

GV ≤ H.

There is an analogous definition for an upper mesh solution to GW = H.

Theorem 3.1. If Φ, Ψ are lower and upper mesh solutions, respectively, for the
problem GW = H with Φ(xi) ≤ Ψ(xi) ∀xi ∈ Ω̄N , then there exists a solution to
GW = H such that

Φ(xi) ≤ W (xi) ≤ Ψ(xi) ∀xi ∈ Ω̄N .

Proof. We follow the argument from Lorentz [3]. Let Φ1, Φ2 be two lower mesh
functions. Define the mesh function Φ3 by Φ3(xi) = max{Φ1(xi), Φ2(xi)}. At some
point xj , we assume without loss of generality that Φ3(xj) = Φ1(xj). Note that
−Φ3(xi) ≤ −Φ1(xi) ∀xi, and

−εδ2Φ3(xj) + b(Φ3)Φ3(xj) ≤ −εδ2Φ1(xj) + b(Φ1)Φ1(xj) ≤ H(xj), xj �= d,

−εδ2Φ3(xj) ≤ −εδ2Φ1(xj) ≤ H(d), xj = d,

Φ3(0) ≤ H(0), Φ3(1) ≤ H(1).

Then Φ3 is also a lower mesh solution. Let L = {φ : Gφ ≤ H, Φ ≤ φ ≤ Ψ}. Define
U(xi) = supφ∈L{φ(xi)}. First note that U ∈ L exists and GU ≤ H. Assume that
we do not have equality, then there exists some j such that GU(xj) < F (xj). If
U �= Ψ, construct a new vector Y = U + γδi,j , γ > 0. Then γ can be chosen
sufficiently small so that Y ∈ L, U < Y, GY < H. This is a contradiction. Note
that if U = Ψ, then U is both an upper and a lower solution, and so we are done.
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Theorem 3.2. Let Φ, Ψ be lower and upper mesh solutions of GW = H and
M2 = max{‖Φ‖, ‖Ψ‖}. Assume that (2.3) holds over the interval [−M2, M2], then

Φ(xi) ≤ Ψ(xi) ∀xi ∈ Ω̄N .

Proof. Let xj be that mesh point at which Φ − Ψ attains its maximum value in
Ω̄N . Assume that Φ(xj) > Ψ(xj). If xj �= d, then, since Φ, Ψ are lower and upper
mesh solutions,

εδ2Φ(xj) ≥ b(Φ)Φ − H > b(Ψ)Ψ − H ≥ εδ2Ψ(xj),

which contradicts δ2(Φ−Ψ)(xj) ≤ 0, which would occur if Φ−Ψ had its maximum at
xj . If xj = d, then since Φ, Ψ are lower and upper mesh solutions, δ2(Φ−Ψ)(d) ≥ 0.
To avoid a contradiction,

(Φ − Ψ)(d) = (Φ − Ψ)(xN/2−1) = (Φ − Ψ)(xN/2+1),

and apply the first part of the argument to (Φ − Ψ)(xN/2−1).

Corollary 3.3. Assuming (2.2) and (2.11), there exists a unique solution Uε to
the problem (3.2a) and

‖Uε‖ ≤ K

θ
.

Proof. Follow an analogous argument to that used in the proof of Theorem 2.2.

4. Error analysis

We begin by looking at the truncation error. By classical estimates, for all
xi ∈ ΩN ∩ Ω−,

| − ε(
d2

dx2
− δ2)vε(xi)| ≤

ε

3
(xi+1 − xi−1)|vε|3 ≤ C

√
εN−1,

and from [8] we have

| − ε(
d2

dx2
− δ2)wε(xi)| ≤

⎧⎪⎨
⎪⎩

ε(xi+1 − xi−1)|wε|3, (a)

2ε max
x∈[xi−1,xi+1]

|w′′
ε (x)|, (b)

Using (b) outside the layers and at x = σ1, x = d − σ1 gives

| − ε(
d2

dx2
− δ2)wε(xi)| ≤ εCε−1 max

x∈[xi−1,xi+1]
(e−x

√
γ/ε + e−(d−x)

√
γ/ε) ≤ CN−1.

Using (a) inside the layers gives, as above for vε,

| − ε(
d2

dx2
− δ2)wε(xi)| ≤ Cε

σ1

N
ε−

3
2 ≤ CN−1 ln N.

Similar bounds on the truncation error are valid for all xi ∈ ΩN ∩ Ω+. Hence,

(4.1a) | − ε(
d2

dx2
− δ2)uε(xi)| ≤ CN−1 ln N, xi �= d.

At the point xi = d,

(D+ − D−)(Uε − uε)(d) = −(D+ − D−)uε(d).
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Let h± be the mesh interval sizes on either side of the point x = d and h =
max{h−, h+}. Then

|(D+ − D−)uε(d)| ≤ |(D+ − d

dx
)uε(d)| + |(D− − d

dx
)uε(d)|

≤ 1
2
h+|uε|2 +

1
2
h−|uε|2.

Thus,

(4.1b) |(D+ − D−)(Uε − uε)(d)| ≤ Ch

ε
.

We are now ready to bound the nodal error |(uε − Uε)(xi)|.

Theorem 4.1. Let uε be the solution of problem (1.1), (2.2), (2.11) and Uε the
solution of (3.2a). Then, for ε sufficiently small,

max
xi∈Ω̄N

ε

|Uε(xi) − uε(xi)| ≤ CN−1 ln N,

where C is a constant independent of ε and N .

Proof. At the internal mesh points,

−εδ2Uε(xi) + b(Uε(xi))Uε(xi) = (−εu′′
ε + b(uε)uε)(xi),

−εδ2(Uε − uε)(xi) + b(Uε(xi))Uε(xi) − b(uε)uε = (−εu′′
ε + εδ2uε)(xi).

Note that by (2.11),

b(Uε(xi))Uε(xi) − (b(uε)uε)(xi) = g(Z)(Uε(xi) − uε(xi)),

where, since uε, Uε ∈ Dθ,K ,

Z = uε + ti(Uε − uε) ∈ Dθ,K ,

and
g(Z) ≥ γ > 0 ∀0 < ti < 1.

Define the linear operator LN
U as follows.

For any mesh function V

LN
U V (xi) = −εδ2V (xi) + g(uε(xi) + ti(U − u))V (xi), xi �= d,

LN
U V (d) = D−V (d) − D+V (d).

From [7] we have the following discrete comparison principle. If V is a mesh
function such that V (0) ≥ 0, V (1) ≥ 0, LN

U V ≥ 0, xi ∈ ΩN , and D+V (d) −
D−V (d) ≤ 0, then V (xi) ≥ 0 for all xi ∈ Ω̄N . By the truncation error estimates
(4.1),

|LN
U (U − u)| ≤ CN−1 ln N, xi �= d,

and at the mesh point xi = d

|LN
U (u − U)(d)| ≤ C

h

ε
.

Consider the mesh function

Ξ(xi) = C1N
−1 ln N + C2

h√
ε
Φd(xi) ± U − u,
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where C1 and C2 are suitably large constants and Φd is defined as the solution of

−εδ2Φd(xi) + γΦd(xi) = 0 for all xi ∈ ΩN
ε ,

Φd(0) = 0, Φd(d) = 1, Φd(1) = 0.

On the interval [0, d] consider the barrier function

ω(xj) =
Πj

i=1(1 +
√

γhi/
√

2ε)

ΠN/2
i=1 (1 +

√
γhi/

√
2ε)

, ω(0) = 0, ω(d) = 1,

where hi = xi − xi−1. Note that

D+ω(xi) =
√

γ√
2ε

ω(xi), D−ω(xi) =
√

γ√
2ε(1 +

√
γhi/

√
2ε)

ω(xi),

which implies that

−εδ2ω(xi) + γω(xi) < 0, 0 < xi < d.

Hence, Φd(xi) ≤ ω(xi) and then

D−Φd(d) =
1 − Φd(d − h)

h
≥ 1 − ω(d − h)

h
=

√
γ/

√
2ε)

(1 +
√

γh/
√

2ε)
≥ C√

ε
.

From this and using an analogous argument on the interval [d, 1], we have that√
ε(D+Φd(d) − D−Φd(d)) ≤ −C2. We conclude that

‖uε − Uε‖ ≤ CN−1 ln N.

5. Numerical results

In this section we present numerical results, which validate the theoretical results
established in the previous section. In order to solve the nonlinear difference scheme
we use a variant of the continuation method from [6, §10.3].

(−εδ2
x + b(Uε(xi, tj−1)) + D−

t )Uε(xi, tj) = f(xi), xi �= d, j = 1, . . .K,(5.1a)
D−

x Uε(d, tj) = D+
x Uε(d, tj), j = 1, . . . K,(5.1b)

Uε(0, tj) = uε(0), Uε(1, tj) = uε(1) for all j,(5.1c)
Uε(x, 0) = uinit(x).(5.1d)

In all cases in this paper the initial guess for the nonlinear solver is taken to be
u(0) + (u(1) − u(0))x. We can interpret (5.1) as a discretization of the following
time-dependent version of the problem

Find u ∈ C1([0, 1] × [0, T ]) such that(5.2a)

−εuxx + b(u(x, t))u + ut = f(x), (x, t) ∈ (0, 1) \ {d} × (0, T ],(5.2b)

u(0, t) = uε(0), u(1, t) = uε(1), t ≥ 0,(5.2c)

u(x, 0) = uinit(x), 0 < x < 1.(5.2d)

The choices of the uniform time-like step k = tj − tj−1 and the number of iterations
K are determined as follows. Defining

(5.3a) e(j) ≡ max
1≤i≤N

|Uε(xi, tj) − Uε(xi, tj−1)|/k, for j = 1, 2, . . . , K,

the time-like step k is chosen sufficiently small so that

(5.3b) e(j) ≤ e(j − 1), for all j satisfying 1 < j ≤ K.
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Then the number of iterations K is chosen such that

(5.3c) e(K) ≤ TOL,

where TOL is a suitably prescribed small tolerance. In the case of this paper the
tolerance TOL is chosen to be 10−7. The numerical solution is computed using the
following algorithm. Start from t0 with the initial time step k = 1.0. If, at some
value of j, (5.3b) is not satisfied, then discard the time step from tj−1 to tj and
restart from tj−1 with half the time step, that is knew = k/2, and continue halving
the time step until one finds a k for which (5.3b) is satisfied. Assuming that (5.3b)
is satisfied at each time step, continue until either (5.3c) is satisfied, tj = 1000, or
the tj − tj−1 < .000001. If (5.3c) is not satisfied, we assume that the time stepping
process stalled due to a too large choice of the initial time step. In this case we
repeat the entire process again from t0, halving the initial time step k to k = 0.5.
If the process stalls again, we restart from t0, halving the initial time step again. If
(5.3c) is satisfied, the resulting values of Uε(x, K) are taken as the approximations
to the solution of the continuous problem. Numerical results are presented for the
problem

εu′′
ε (x) − (1 − u2

ε)uε(x) = f(x),(5.4a)

f(x) =
{

δ1 + x(0.5 − x), x < 0.5,
−δ2 + (x − 0.5)(x − 1), x > 0.5,

(5.4b)

uε(0) = A, uε(1) = B.(5.4c)

Let us examine in more detail the effects of the various constraints, such as those
necessary for existence, in this particular case. Note first that for the problem (5.4)

b(y) = 1 − y2 ≥ θ > 0 for |y| ≤
√

1 − θ.

In this case the restriction (2.7) on ‖f‖ sufficient for existence of the reduced solu-
tion is

(5.5a) ‖f‖ ≤ θ
√

1 − θ.

The range of f allowed by this constraint is maximized when θ = 2/3, in which
case it becomes

‖f‖ ≤ 2
3
√

3
≈ 0.3849.

We remark that in order to guarantee that the solution uε exists, for all ε, we
require in addition that (2.2) be satisfied; that is,

(5.5b) |A|, |B| ≤
√

1 − θ,

which for this choice of θ = 2/3 gives

|A|, |B| ≤ 1√
3
≈ 0.57735026919.

However, the restriction (2.11) when K = ‖f‖, required to prove convergence of
the numerical method, imposes the additional condition

(5.5c) ‖f‖ ≤ θ
√

1 − γ

3
√

3
, 0 < γ < 1.



1770 P. A. FARRELL, E. O’RIORDAN, AND G. I. SHISHKIN

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.2 0.4 0.6 0.8 1

y

x

e=.01
e=.0001

e=.000001
e=.000000001

(a)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

y

x

e=.01
e=.0001

e=.000001
e=.000000001

(b)

Figure 1. Solutions of (5.4) with (a) A = B = 0 and δ1 =
−0.1, δ2 = 0.15 and (b) −A = B = 0.57735 and δ1 =
−0.3849001794597, δ2 = 0.15 for ε = 10−2, 10−4, 10−6, 10−9.

Note that the parameter M in the definition of the transition points of the mesh is
bounded below by

M ≥ 1
√

γ
.

There is a trade-off between two competing constraints on γ. To allow maximum
flexibility on choice of the mesh, we would like γ to be as large as possible. However,
to maximize the range of f values, it is better to choose γ smaller. To maximize
the acceptable range of f , while keeping γ as large as possible, we choose to make
(5.5a) and (5.5c) equal. Requiring this, we obtain

θ
√

1 − θ =
θ
√

1 − γ

3
√

3
,

which implies, using the fact that γ > 0, that

θ >
26
27

≈ 0.962963.

Assume θ = 26
27 , then the restrictions (2.2), (2.11) on the data for the particular

problem (5.4), (that is (5.5a), (5.5b), and (5.5c)) become

‖f‖ < 26
81

√
3
≈ 0.1853,(5.6a)

max{|u(0), |u(1)|} ≤ 1
3
√

3
≈ 0.19245.(5.6b)
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With these restrictions the parameter in the transition point for the mesh is given
by

(5.7) M ≥ 1
√

γ
, where γ = 1 − 273

262
‖f‖2.

Figure 1 shows the solution of problem (5.4) using method (5.1) on a mesh with M =
2.5 and N = 1024. The solution is shown for homogeneous boundary conditions
A = B = 0 and δ1 = −0.1, δ2 = 0.15 on the left, and for A = −0.57735, B = 0.57735
and δ1 = −0.3849001794597, δ2 = 0.15 on the right. The left-most plot satisfies
conditions (5.6). The data for the right-most plot are close to the extremes of the
condition (2.2) for the existence of the solution uε.

Tables 1, 2, and 3 present numerical results generated using the scheme (3.2c),
where

σ1 = min
{

1
8
, M

√
ε ln N

}
, σ2 = min

{
1
8
, M

√
ε ln N

}
, and M = 1.75,

to solve problem (5.4) with A = −0.14, B = 0.12, δ1 = −0.1, δ2 = 0.15. Table
1 gives the errors EN

ε and the uniform errors EN with respect to the finest mesh.
Table 2 displays the computed rates of convergence pN

ε with respect to the finest
mesh and the uniform rates of convergence pN . Table 3 presents the number of
iterations taken by the nonlinear solver. See [6] for details on how the quantities
EN

ε , EN , pN
ε , and pN are calculated. Note that in this case the condition on γ (5.7)

is

γ = 1 − 273

262
‖f‖2 ≈ 0.344871

and
M ≥ 1

√
γ
≈ 1.7028.

Table 1. Computed maximum pointwise errors with respect to
the finest mesh for A = −0.14, B = 0.12 and δ1 = −0.1, δ2 = 0.15
and M = 1.75.

Number of Mesh Points N
ε 32 64 128 256 512 1024 2048

2−1 0.000161 0.000079 0.000039 0.000019 0.000009 0.000004 0.000001
2−2 0.000236 0.000115 0.000056 0.000027 0.000013 0.000005 0.000002
2−3 0.000281 0.000136 0.000066 0.000032 0.000015 0.000006 0.000002

2−4 0.000258 0.000123 0.000059 0.000028 0.000013 0.000006 0.000002
2−5 0.000237 0.000081 0.000039 0.000018 0.000008 0.000004 0.000001
2−6 0.000338 0.000086 0.000022 0.000007 0.000003 0.000001 0.000000

2−7 0.000566 0.000142 0.000036 0.000009 0.000002 0.000001 0.000000
2−8 0.001046 0.000265 0.000066 0.000017 0.000004 0.000001 0.000000
2−9 0.001895 0.000517 0.000130 0.000032 0.000008 0.000002 0.000001

2−10 0.003859 0.001019 0.000258 0.000065 0.000016 0.000004 0.000001
2−11 0.006815 0.001881 0.000513 0.000129 0.000032 0.000008 0.000002
2−12 0.007478 0.003205 0.001016 0.000257 0.000064 0.000015 0.000003

2−13 0.007477 0.003204 0.001141 0.000370 0.000116 0.000030 0.000006
2−14 0.007477 0.003208 0.001132 0.000373 0.000117 0.000034 0.000021
2−15 0.007481 0.003209 0.001133 0.000373 0.000117 0.000034 0.000021
2−16 0.007483 0.003211 0.001133 0.000373 0.000117 0.000034 0.000021

. . . . . . . .

. . . . . . . .

. . . . . . . .
2−25 0.007491 0.003215 0.001135 0.000374 0.000117 0.000034 0.000021

EN 0.007491 0.003215 0.001141 0.000374 0.000117 0.000034 0.000021
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Table 2. Computed rates of convergence for A = −0.14, B = 0.12
and δ1 = −0.1, δ2 = 0.15 and M = 1.75.

Number of Mesh Points N
ε 32 64 128 256 512 1024

2−1 1.02 1.03 1.05 1.10 1.22 1.59

2−2 1.03 1.03 1.05 1.10 1.22 1.59
2−3 1.05 1.04 1.06 1.10 1.22 1.59
2−4 1.07 1.05 1.06 1.11 1.23 1.59

2−5 1.55 1.07 1.07 1.11 1.23 1.59
2−6 1.98 1.97 1.56 1.12 1.23 1.59
2−7 1.99 2.00 2.00 2.02 2.07 2.32
2−8 1.98 2.00 2.00 2.02 2.05 1.65

2−9 1.87 1.99 2.00 2.02 2.07 1.73
2−10 1.92 1.98 2.00 2.02 2.07 1.98
2−11 1.86 1.88 1.99 2.01 2.07 2.25

2−12 1.22 1.66 1.99 2.01 2.07 2.32
2−13 1.22 1.49 1.62 1.67 1.94 2.32
2−14 1.22 1.50 1.60 1.67 1.80 0.71

2−15 1.22 1.50 1.60 1.67 1.80 0.71
2−16 1.22 1.50 1.60 1.67 1.80 0.71
2−17 1.22 1.50 1.60 1.67 1.80 0.71

2−18 1.22 1.50 1.60 1.67 1.80 0.71
2−19 1.22 1.50 1.60 1.67 1.80 0.71
2−20 1.22 1.50 1.60 1.67 1.80 0.72
2−21 1.22 1.50 1.60 1.67 1.80 0.72

2−22 1.22 1.50 1.60 1.67 1.80 0.72
2−23 1.22 1.50 1.60 1.67 1.80 0.72
2−24 1.22 1.50 1.60 1.67 1.80 0.72

2−25 1.22 1.50 1.60 1.67 1.80 0.72

pN 1.22 1.50 1.61 1.67 1.80 0.72

Table 3. Number of iterations for A = −0.14, B = 0.12 and
δ1 = −0.1, δ2 = 0.15 and M = 1.75.

Number of Mesh Points N
ε 32 64 128 256 512 1024 2048

2−2 3 3 3 3 3 3 3
2−4 4 4 4 4 4 4 4

2−6 4 4 4 4 4 4 4
2−8 5 5 5 5 5 5 5

2−10 5 5 5 5 5 5 5

2−12 6 6 6 6 6 6 6
2−14 6 6 6 6 6 6 6
2−16 6 6 6 6 6 6 6

2−18 6 6 6 6 6 6 6
2−20 6 6 6 6 6 6 6
2−22 7 7 7 7 6 6 6

2−24 7 7 7 7 7 7 7

To determine the sensitivity of the rates of convergence to the choice of the value
M , in Table 4 we present a summary of the maximum errors over all values of ε
above with respect to the finest mesh, and the double mesh rates of convergence
for various values of M for the same problem. In all cases the number of iterations
taken was the same as in Table 3.

It is of some interest to the computational scientist to see if the method still
converges in the region where there is no formal theoretical proof. This is, in fact,
the case. Although the theory guarantees existence and uniqueness of the solution
and convergence of the numerical method if (5.6) holds, in practice, the numerical
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Table 4. Maximum pointwise errors EN and computed rates of
convergence pN for A = −0.14, B = 0.12 and δ1 = −0.1, δ2 = 0.15
for several values of M .

N 32 64 128 256 512 1024
M = 0.5

EN 0.049406 0.034813 0.024206 0.016368 0.010443 0.005868
pN 0.51 0.52 0.56 0.65 0.83 1.30

M = 1.0
EN 0.009245 0.004683 0.002345 0.001147 0.000534 0.000224
pN 0.98 1.00 1.03 1.10 1.26 1.65

M = 1.3
EN 0.004766 0.001751 0.000628 0.000231 0.000088 0.000031
pN 0.98 1.00 1.03 1.10 1.26 1.65

M = 1.5
EN 0.006024 0.002331 0.000836 0.000275 0.000086 0.000025
pN 1.37 1.48 1.60 1.68 1.79 0.66

M = 1.75
EN 0.007491 0.003215 0.001141 0.000374 0.000117 0.000034
pN 1.22 1.50 1.61 1.67 1.80 0.72

M = 2.0
EN 0.008770 0.004153 0.001458 0.000490 0.000153 0.000044
pN 1.08 1.51 1.57 1.68 1.79 0.78

M = 2.5
EN 0.010592 0.006047 0.002178 0.000743 0.000239 0.000068
pN 0.81 1.47 1.55 1.64 1.81 0.86

M = 5.0
EN 0.011589 0.011489 0.007467 0.002870 0.000942 0.000269
pN 0.01 0.62 1.38 1.61 1.81 1.28

method converges for a wider range of choices of f , u(0), and u(1). Tables 5 and 6
give examples of problems which just satisfy condition (2.2) but not (5.6a) and/or
(5.6b), and hence (2.11), which was required for the proof of the convergence of the
numerical solutions. Table 5 is for the problem (5.4) with homogeneous boundary
conditions A = B = 0 and δ1 = −0.3849, δ2 = 0.15, and thus the condition (5.6a)

Table 5. Maximum errors EN and computed rates of convergence
pN for A = B = 0 and δ1 = −0.3849, δ2 = 0.15 for several values
of M .

N 32 64 128 256 512 1024

M = 0.5
EN 0.180983 0.143453 0.110390 0.080335 0.052783 0.028672
pN 0.34 0.38 0.46 0.61 0.88 1.45

M = 1.0
EN 0.085538 0.061915 0.043604 0.028841 0.016853 0.007813
pN 0.47 0.51 0.60 0.78 1.11 1.74

M = 1.5
EN 0.045875 0.030817 0.020145 0.012320 0.006583 0.002730
pN 0.57 0.61 0.71 0.90 1.27 1.91

M = 2.0
EN 0.026008 0.016078 0.009638 0.005387 0.002621 0.000987
pN 0.69 0.74 0.84 1.04 1.41 2.05

M = 2.5
EN 0.023249 0.013408 0.007045 0.003548 0.001730 0.000779
pN 0.79 0.93 0.99 1.04 1.15 1.48

M = 5.0
EN 0.038897 0.026724 0.015550 0.007945 0.003770 0.001650
pN 0.54 0.78 0.97 1.08 1.19 1.53
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Table 6. Maximum errors EN and computed rates of convergence
pN for A = 0.0, B = −0.3849 and δ1 = −0.1, δ2 = 0.15 for several
values of M .

N 32 64 128 256 512 1024

M = 0.5
EN 0.044614 0.031580 0.022031 0.014935 0.009546 0.005371

pN 0.50 0.52 0.56 0.65 0.83 1.30

M = 1.0
EN 0.008456 0.004289 0.002150 0.001052 0.000490 0.000205
pN 0.98 1.00 1.03 1.10 1.26 1.65

M = 2.5
EN 0.007947 0.003913 0.001323 0.000441 0.000170 0.000073
pN 1.02 1.56 1.58 1.37 1.22 1.36

M = 5.0
EN 0.009141 0.008955 0.005072 0.001631 0.000543 0.000153
pN 0.03 0.82 1.64 1.59 1.83 0.75

on f is violated. Table 6 is for the problem (5.4) with A = 0.0, B = −0.3849, and
δ1 = −0.1, δ2 = 0.15, which satisfy condition (2.2) with θ = 2/3.

We remark that in these cases where the right-hand side and the boundary
conditions are such that condition (2.2) is close to being violated, the number of
iterations also increases dramatically. Table 7 gives the iteration counts for M = 2.5

Table 7. Number of Iterations for A = B = 0 and δ1 =
−0.3849, δ2 = 0.15 and M = 2.5.

Number of Mesh Points N
ε 32 64 128 256 512 1024 2048

2−2 3 3 3 3 3 3 3

2−4 4 4 4 4 4 4 4
2−6 7 7 7 7 7 7 7
2−8 11 11 11 11 11 11 11

2−10 14 14 14 14 14 14 14
2−12 17 17 17 17 17 17 17
2−14 21 21 21 21 21 21 21

2−16 28 27 26 26 26 26 26
2−18 37 35 34 33 33 33 33
2−20 50 47 44 42 42 42 42

2−22 67 63 59 55 53 53 53
2−24 89 83 78 73 69 67 66

Table 8. Number of Iterations for A = −0.57735, B = 0.57735
and δ1 = −0.3849001794597, δ2 = 0.15 and M = 2.5.

Number of Mesh Points N
ε 32 64 128 256 512 1024 2048

2−2 5 5 5 5 5 5 5

2−4 6 6 6 6 6 6 6
2−6 7 7 7 7 7 7 7
2−8 13 13 13 13 13 13 13

2−10 17 17 17 17 17 17 17

2−12 20 20 20 20 20 20 20
2−14 25 25 25 25 25 25 25
2−16 33 32 31 31 31 31 31

2−18 45 42 40 40 40 40 40
2−20 62 57 53 51 51 51 51
2−22 84 77 72 68 65 64 64

2−24 113 104 97 91 85 82 82
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for the case A = B = 0 and δ1 = −0.3849, δ2 = 0.15. Table 8 gives the iteration
counts for the case A = −0.55735, B = 0.55735, δ1 = −0.3849001794597, δ2 = 0.15,
and M = 2.5. The iteration counts for other values of M also increased to similar
numbers. In these cases, however, the number of iterations did vary somewhat with
the choice of M . On the other hand, if the sufficient condition for existence of the
reduced solution, that is,

|f | ≤ 2
3
√

3
= 0.38490017945975050967,

is exceeded, then for sufficiently small ε the algorithm does not converge. For
example, for A = 0.0, B = 0.0, δ1 = −0.39, δ2 = 0.15, and M = 2.5, the algorithm
fails to converge for ε < 2−19.
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