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Abstract

We propose a class of parametric smooth functions that approximate the fun-
damental plus function, (z); =max{0, z}, by twice integrating a probability density
function. This leads to classes of smooth parametric nonlinear equation approx-
imations of nonlinear and mixed complementarity problems (NCPs and MCPs).
For any solvable NCP or MCP, existence of an arbitrarily accurate solution to the
smooth nonlinear equation as well as the NCP or MCP, is established for sufficiently
large value of a smoothing parameter «. Newton-based algorithms are proposed
for the smooth problem. For strongly monotone NCPs, global convergence and
local quadratic convergence are established. For solvable monotone NCPs, each
accumulation point of the proposed algorithms solves the smooth problem. Exact
solutions of our smooth nonlinear equation for various values of the parameter «,
generate an interior path, which is different from the central path for interior point
method. Computational results for 52 test problems compare favorably with those
for another Newton-based method. The smooth technique is capable of solving
efficiently the test problems solved by Dirkse & Ferris [8], Harker & Xiao [13] and
Pang & Gabriel [30].

1 Introduction

The complementarity condition
0<2ly>0,

where z and y are vectors in R™ and the symbol L denotes orthogonality, plays a fundamental role
in mathematical programming. Many problems can be formulated by using this complementarity
condition. For example, most optimality conditions of mathematical programming [26] as well as
variational inequalities [6] and extended complementarity problems [23, 11, 40] can be so formulated.
It is obvious that the vectors  and y satisfy complementarity condition if and only if

v =(r =y,
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where the plus function (-); is defined as

(€)+ = max{f, 0}7

for a real number £. For a vector z, the vector (z)4 denotes the plus function applied to each com-
ponent of z. In this sense, the plus function plays an important role in mathematical programming.
But one big disadvantage of the plus function is that it is not smooth because it is not differentiable.
Thus numerical methods that use gradients cannot be directly applied to solve a problem involving
a plus function. The basic idea of this paper is to use a smooth function approximation to the plus
function. With this approximation, many efficient algorithms, such as the Newton method, can be
easily employed.

There are many Newton-based algorithms for solving nonlinear complementarity problems, vari-
ational inequalities and mixed complementarity problems. In [12] a good summary and references
up to 1988 are given. Generalizations of the Newton method to nonsmooth equations can be
found in [34], [35] and [36]. Since then, several approaches based on B-differentiable equations
were investigated in [13], [28] and [29]. In addition, an algorithm based on nonsmooth equations
and successive quadratic programming was given [30], as well as a Newton method with a path
following technique [32, 8], and a trust region Newton method for solving a nonlinear least squares
reformulation of the NCP [24]. With the exception of [24], a feature common to all these methods
is that the subproblem at each Newton iteration is still a combinatorial problem. In contrast, by
using the smooth technique proposed here, we avoid this combinatorial difficulty by approximately
reformulating the nonlinear or mixed complementarity problem as a smooth nonlinear equation.
Consequently, at each Newton step, we only need to solve a linear equation. This is much simpler
than solving a mixed linear complementarity problem or a quadratic program.

Smoothing techniques have already been applied to different problems, such as, {{ —minimization
problems [21], multi-commodity flow problems [31], nonsmooth programming [41, 20], linear and
convex inequalities [5], and linear complementarity problems [4], [5] and [17]. These successful
techniques motivate a systematic study of the smoothing approach. Questions we wish to address
include the following. How to generate new smoothing functions? What is a common property of
smoothing functions?

In Section 2, we relate the plus function through a parametric smoothing procedure, to a
probability density function with a parameter 3. As the parameter 3 approaches zero, the smooth
plus function approaches the nonsmooth plus function (). This gives us a tool for generating a
class of smooth plus functions and a systematic way to develop properties of these functions. In
Section 3, we approximate the NCP by a smooth parametric nonlinear equation. For the strongly
monotone case, we establish existence of a solution for the nonlinear equation and estimate the
distance between its solution and the solution of original NCP. For a general solvable NCP, existence
of an arbitrarily accurate solution to the nonlinear equation, and hence to the NCP, is established.
For a fixed value of the smoothing parameter & = %, we give a Newton-Armijo type algorithm and
establish its convergence. In Section 4, we treat the MCP, the mixed complementarity problem
(21). For the case of a solvable monotone MCP with finite bounds [, u € R", we prove that if the
smoothing parameter [ is sufficiently small, then the smooth system has a solution. An efficient
smooth algorithm based on the Newton-Armijo approach with an adjusted smoothing parameter is
also given and convergence is established. In Section 5 we show that exact solutions of our smooth
nonlinear equation, for various values of the smoothing parameter 3 generate an interior path to
the feasible region, different from the central path of the interior point method [19]. We compare
the two paths on a simple example and show that our path gives a smaller error for the same value
of the smoothing parameter 3. In Section 6, encouraging numerical testing results are given for



52 problems from the MCPLIB [9] which includes all the problems attempted in [13], [30] and [8].
These problems range in size of up to 8192 variables. These examples include the difficult von
Thiinen NCP model [30, 39] which is solved here to an accuracy of 1.0e-7.

A few words about our notation. For f: R — R and z € R", the vector f(z) in R" is defined
by the components (f(z)); = f(x;),i = 1,---,n. The support set of f(z), which is the set of
points such that f(z) # 0, will be denoted by supp { f(x) }. The set of m-by-n real matrices will
be denoted by R™*™. The notation 0 and 1 will represent vectors with all components 0 and 1
respectively, of appropriate dimension. The infinity, {; and /3 norms will be denoted by || - ||co,
|| - |l1 and || - ||z respectively. The identity matrix of arbitrary dimension will be denoted by I.
For a differentiable function f: R* — R™, V[ will denote the m x n Jacobian matrix of partial
derivatives. If F'(z) has Lipschitz continuous first partial derivatives on R" with constant K > 0,
that is

IVF() - VE)| < Kllo - yll, o,y € B,

we write F(z) € LC}(R™).

2 A Class of Smoothing Functions

We consider a class of smooth approximations to the fundamental function (z); = max{x,0}.
Notice first that (z)4 = [ _o(y)dy, where o(z) is the step function:

_ 1 ifz>0
o) =1 if 2 <0

o0

The step function o(x) can in turn be written as, o(z) = [*_ 8(y)dy, where §(x) is the Dirac delta
function which satisfies the following properties

+oo
d(z) > 0, / d(y)dy = 1.
— 00
Figures 1 to 3 depict the above functions. The fact that the plus function is obtained by twice
integrating the Dirac delta function, prompts us to propose probability density functions as a means
of smoothing the Dirac delta function and its integrals. Hence we consider the piecewise continuous
function d(x) with finite number of pieces which is a density function, that is it satisfies

d(z) >0 and / d(z) de = 1. (1)
To parametrize the density function we define
. 1 =z
t(z,0) = =d(= 2
(2,8) = 5d(3) (2)

where 3 is a positive parameter. When 3 goes to 0, the limit of (x, 3) is the Dirac delta function
d(z). This motivates a class of smooth approximations as follows:

$(z,0) = /l’ t(t, 3)dt =~ o ()

and



Therefore, we can get an approximate plus function by twice integrating a density function. In
fact, this is the same as defining

pesd)= [ nsitmi= [ @i sa )

o0 — 00

This formulation was given in [20] and [15, p.12] for a density(kernel) function with finite support.
We will give our results in terms of a density function with arbitrary support. This includes the
finite support density function as a special case.

Proposition 2.1 Let d(z) be a probability density function and t(z,3) = %d(%), where 3 is a
positive parameter. Let d(x) satisfy the following assumptions:

(A1) d(z) is piecewise continuous with finite number of pieces and satisfies (1).
(A2) Flla|lyw = 72 |2] d(z) do < +oo.
Then the deﬁnitions of p(x, B) given by (3) and (4) are consistent.

Proof By the definition (2) and assumption (A2), we have that p(z, 3) defined by (4) satisfies
A 5 5
plz, ) = w/ d(t)dt — ﬂ/ td(t)dt (5)

M%@z[EWMt (6)

By direct computation,

= [ isde= s

Hence the derivatives of p(z, 3) defined by (3) and (4) are the same and the difference between the
two representations of p(x, ) is a constant, say c. If we let & approach —oo in both (3) and (4),
then p(z,3) approaches 0 in both, and hence ¢ = 0. Therefore the definitions of p(z, 3) given by
(3) and (4) are consistent. 0

Now we give properties of p(z, ) that show that it is an accurate approximation of the plus
function (2)4 as § approaches zero.

Proposition 2.2 Properties of p(x,3), 5 > 0
Let d(z) and t(x,3) be as in Proposition 2.1, and let d(x) satisfy (A1) and (A2). Then p(z,3)
has the following properties:

(1) p(x, ) is continuously differentiable. If, in addition, d(z) is k-times continuously differen-
tiable, p(z, 3) is (k+2)-times continuously differentiable.

(2) —=D2f < px, B) — (v)4 < D18, where

D, :/ |z|d(z)d (7)

— 00

and

+oo
Dy = max{/ z)dz,0} (8)
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Figure 1: The plus function (x); = max{x,0}
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Figure 3: The Dirac delta function §(x)



(3) p(x, ) is nondecreasing and convex. In addition, let d(x) satisfy
(AB) supp { d(x) } = R

Then p(x, B) is strictly increasing and strictly convex in & for a fived 3 > 0.

(4) 0 < p'(x,8) <1 and if (A3) is satisfied, then 0 < p'(x,3) < 1.
(5) Let (A3) be satisfied and Dy = 0, then

plz, B) > =.

Proof (1) By equation (6) in the proof of last proposition, the conclusion follows.

(2) If > 0, by using (5), we have that

p@ﬁy4@+:x[iaoa—ﬁ[iM@ﬁ—x
z—w/_ dt+ﬁ/ dt—ﬁ/

8

—ﬂ/ D=5 [

Bz, ) — ﬂ/ fydt > —BD,

p( <ﬂ/ dt—ﬂ/
<g/ ﬁ—ﬂ/
:_g/ Bt = ﬁ/)um 0t = BDs.

8

Therefore

and

Otherwise, z < 0, then

o) = =a [ e+ s [ o

0
gﬂ/ It] d(t)dt = Dy

and

B, 8) - (2)s = B / T (5 - 0 2 02 5Dy,



(3) By equation (6) and the fact that d(z) > 0,

and

03 - Flo. e =) = (e =w) [ o=
y
Therefore p(z, 3) is nondecreasing and convex. If, in addition, (A3) is true, then

P(x,8) >0 and (§'(z,8) — §'(y, 8))(x —y) >0, for x £y

So p(x, ) is strictly increasing and strictly convex.

(4) By formula (6), it is easy to see that 0 < p'(z, 3) < 1. If (A3) is true, d(z) > 0 and p'(z, )
is strictly increasing. Therefore 0 < p/(z, §) < 1.
(5) By (A3), we have

/WQ—EM@M>OwZO
2 B

and

w8

[m@—%M@ﬁ>0w<0

By the similar proof of (2), we have

ple,B) = (2)s > —Daf = 0

Therefore
ﬁ(xvﬁ) > ($)_|_ > .

0
Now we have a systematic way for generating a class of smooth plus functions. Given any
probability density function d(z) satisfying (A1) and (A2) we define ¢(x,3) and p(z, 3) as in (2)
and (3) respectively. The smooth function p(z, 3) approximates the plus function with increasing
accuracy as the parameter § approaches 0. The properties of the function p(z, ) are given in
Proposition 2.2 above.
We now give examples of smooth plus functions. The first example, which will be used through-
out this paper, is based on the sigmoid function of neural networks [14, 22, 5] and defined as follows:

1

=\ a>0
T+eon @

s(z, o)
This function approximates the step function o(z) as « tends to infinity. Since the derivative with
respect to z of this function tends to the Dirac delta function as « tends to infinity, it follows that
« plays the role of % and we shall therefore take

| =



Example 2.1 Neural Networks Smooth Plus Function [5]
Let

e—l’

Here Dy = log2, Dy = 0 and supp{d(z)} = R, where Dy and Dy are defined by (7) and (8).
Integrating %d(%) twice gives

d(z) =

ple, ) = 2 + Blog(1 + ¢ 7)

Letting o = %, we have

o) = i 1) = [ sl€ )ds =+ S log(1+ =)
1 1
s(e,a) = 3o, ) = e = [ G
1 ae” "

oye) 8o, ) = 7

= as(z,a)(1 — s(z, a))

The function p(z,«) above can also be obtained by using an appropriate recession function
given in Example 2.2 of [1], or by an exponential penalty function as in [3, p. 313, equation (25)].
Figures 4 to 6 depict the functions p(z,5), s(z,5) and t(z,5) respectively.

Following are several other smooth plus functions based on probability density functions pro-
posed by other authors.

Example 2.2 Chen-Harker-Kanzow-Smale Smooth Plus Function [38], [17] and [4]

Let
2

dlz) = ——
W=

Here D1 =1, Dy =0, supp{d(z)} =R and

Bz, 8) = @+ e+ 452

2

Example 2.3 Pinar-Zenios Smooth Plus Function [31]
Let

0 otherwise

d(x):{ 1 ifo<z<1

Here Dy =0, Dy = %, supp{d(z)} =10, 1] and

0 if e <0
ple,B) =4 &  if0<a<p
x—g if x> 0

This function can also be obtained by applying the Moreau-Yosida regularization [15, p.13] to
the plus function.
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Example 2.4 Zang Smooth Plus Function [41]

Let ) )
[t ib<e<t
d(x) = { 0 otherwise

Here Dy = %, Dy =0, supp{d(z)} = [_%7 %] and

0 ife<-%
ple,B) =1 gzl +5) iflel <5
x ifx>§

Note that in Examples 2.3 and 2.4 above, the density function d(z) has compact support while
the smooth function p(z, ) is only once continuously differentiable. In Examples 2.1 and 2.2, d(x)
has infinite support while the functions p(z, o) and p(z, 3) are differentiable infinitely often.

We summarize the various functions introduced as follows:

Bz, B) L 5@, L w8y = Laz)
}6—0
(2)4 L s L s
Toao—
o) =pe ) o swa)=se ) i) =i(e )

Because of our favorable experience with the function p(z,«) [5] on linear complementarity
problems and linear and convex inequalities, we chose it for our numerical experiments. Further
comparisons using different approximations to the plus function are left for future work.

3 The Nonlinear Complementarity Problem

In this section we consider the nonlinear complementarity problem (NCP) of finding an z in R"

such that
0<zl F(z)>0 9)

Here F(z) is a differentiable function from R™ to R™. By using the smooth function p(z, )
introduced in last section, we consider the smooth nonlinear equation

R(z) =2 —-p(e — F(2),8) =0 (10)
as an approximation to the following nonsmooth equivalent reformulation of the NCP
v = (@ - P@)y (1)

We first show that a natural residual for the NCP is easily bounded by a corresponding residual
for the nonlinear equation (10).

10



Lemma 3.1
lz = (z = F(2))4ll, < |z — pla — F(z), B)||, +vp max{Dy, Da}3, p=1,2,00, (12)

where y1 = n, v = /n and v, = 1. The constants Dy and Dy depend on the density function
used and are defined in (7) and (8).

Proof

e = (@ = F())4ll, <z = bl = F(z), 8) + ple — F(2), 5) — (x = F(2))+],
< lz = ple = F(2), B)|lp + lp(z = F(2), ) = (2 = F(2))+[lp
< lz = ple = F(x), B)[lp + vp max{ Dy, Dy} 5. O

The above result is also true for any monotone norm [27].
We first consider the strongly monotone NCP, that is there exists a & > 0 such that for any
z,y € R”
(F(z) = F(y))" (x = y) > K[|z = y]® (13)
Since the NCP is strongly monotone, it has a unique solution [12]. The following error bound for
the strongly monotone NCP is given as Theorem 3.2.1 in [33].

Lemma 3.2 Let the NCP be strongly monotone and let F(x) be Lipschitz continuous. Then for
any z € R"*
o= &l < Cylle = (@ = F(@))4lle p=1,2,00, (14)

where T is the unique solution of the NCP and C'), is a condition constant of I’ independent of x.

Now, we give an error bound for the NCP by using the smooth function p(z, ). By Lemma
3.1 and Lemma 3.2, it is easy to get the following lemma.

Lemma 3.3 Let the NCP be strongly monotone and let F(x) be Lipschitz continuous. Then for
any z € R"*

o = all, < Collle = ple = F(a), B)ll, + 3 max{Dy, D)), p=1,2,, (15)

where T and C), are defined in Lemma 3.2, and v, and the constants Dy, Dy are defined in Lemma
3.1.

Let the residual f(z) of the nonlinear equation (10) be defined as follows

1

f(2) = 3RETRE) = Slle — ple - (), 53 (16)

We now prove that if  is a stationary point of f(z) for a monotone F'(z), then  must be a solution
of the nonlinear equation (10), and hence by (15), z is an approximate solution of the NCP.

Proposition 3.1 Suppose that d(x) satisfies (A1) - (A3) and p(x, 3) is defined by (4). For any
monotone NCP, we have that V R(z) is positive definite. In addition, let & be a stationary point of
f(2), then & must be a solution of the nonlinear equation (10).

11



Proof By definition,
VR(x) = diag(§'(x — F(v), ) (diag(#~ (& — F(z), 8) — 1) + VF(x))

By (4) of Proposition 2.2, we have 0 < p'(z, ) < 1 and hence the diagonal matrices above are
positive definite. Since VF'(z) is positive semidefinite, it follows that VR(z) is positive definite.
Let 2 be a stationary point of f(z), then

Vf(z)=VR(z)TR(z) =0.

Since VR(z) is nonsingular, R(z) = 0, it follows that z satisfies (10). 0
When F(z) is strongly monotone and Lipschitz continuous, then the level sets of f(z) are
compact. We state this result as the following proposition.

Proposition 3.2 Consider the strongly monotone NCP with Lipschitz continuous F(x). Then
f(z) defined by (16) has compact level sets.

Proof Suppose not, then there exists a sequence {z;} C R™ and a positive number M such that
|zk|l2 = 0o as k — oo, and ||z — p(ay — F(2k), B)||2 < M. Then by Lemma 3.3,

lzx — 2[|2 < Co(M + y2 max{ Dy, D2} f),

where T is the unique solution of the NCP. Let & — oo, the left hand side of the above inequality
goes to oo and the right hand side stays finite. This is a contradiction. Hence the level sets of f(z)
are compact. d

We now show that, for the strongly monotone NCP with Lipschitz continuous function F(z),
the nonlinear equation (10) always has a unique solution.

Theorem 3.1 Suppose that d(x) satisfies (A1) - (A3), p(x,3) is defined by (4), F(x) is strongly
monotone and Lipschitz continuous. Then the nonlinear equation (10) has a unique solution.

Proof By Proposition 3.2, the level sets of f(z) are compact. So mingepn f(2) must have a solution
z, which is a stationary point of f(z). By Proposition 3.1 we get that 2 satisfies (10). If y is another
solution of (10), then

0= (o~ ) (Rle) = (@) = (« =) [ TR+ tly =~ 0)iGe — )

for some t € [0, 1]. Since VR is positive definite by Proposition 3.1, it follows that = y. Therefore
equation (10) has a unique solution. 0

Let () be a solution of (10). Then z(8) = p(z(5) — F'(2(3)), #). By Lemma 3.3, we have the
following theorem which bounds the distance between the solution z(5) of (10) and the solution
point of the original NCP (9).

Theorem 3.2 Consider a strongly monotone NCP with Lipschitz continuous F(z). Let 2(f) be a
solution of (10). Then, for the solution & of the NCP (9), we have that

H$(ﬁ) - ij S Cp%D maX{DlvDZ}ﬁv p= 172700'

Here C, is the condition constant defined in Lemma 3.2, v, and Dy, Dy are constants defined in
Lemma 3.1.

12



By the above result, we know that if 3 is sufficiently small, a solution of (10) can approximate
the solution of NCP to any desired accuracy. Hence we can solve (10) to get an approximate
solution of the NCP.

For most part of this remaining section, we consider only the function p(z, @) defined in Example
2.1. We explore further the property of real numbers z and y that approximately satisfy the
following equation

v=plr—y )
which is related to equation (10) that generates an approximate solution of the NCP. We claim
that such z and y will approximately satisfy

0<z1ly>0.

In order to prove this fundamental fact we establish the following lemma, the proof of which is
relegated to the Appendix 1.

Lemma 3.4 Let h(x) be defined as follows:
hz)=—zlog(l+d—e""), §>0

(i) If 0 < 6 < 1, then

max h(z) < 2.
z€[0,—log §]

(ii) If § > 1, then

1
h(z) < §log? s, —}.
el () S max{dlog™0, )

(iii) If 6 =0, then

hiz) <
) <

[ ]

We will now show that if an 2 and y satisfy

o
- §$—p($—y704) §07
[8%

where 61 > 0, then the complementarity condition 0 < x 1 y > 0 is approximately satisfied for
large «, in the following sense

o
(87

(e <D ar sl (s

where C'(87) is the constant defined in Proposition 3.3. Note that as @« — oo, the complementarity
condition 0 < z 1 y > 0 is exactly satisfied.

Proposition 3.3 Let 2,y € R satisfy

where &; > 0. Then

(—z)4 <

where

C'(61) = max{2, (¢’ — 1) log?(e®t — 1)}.

13



Proof Let § = e % 4 7% — 1, since

we have

~L<s-(@-y)

o1

[a%

1< 7O T < 651

Hence 0 < § < ¢’ — 1. Since

we have x > —% . Hence

Similarly,

Now we consider the estimate of (zy);. Since e™** 4+ e7%Y = 1 + §, we have

Therefore
and

Case 1 0<d<1.
If y > 0, then by (17),

Hence

Otherwise y < 0, then

Hence 2y <0, (zy)4+ = 0.
Case 2 6 > 1.
If y > 0, then by (17),

_ _ _ §
e LM e W =1406<e,

3
— <
( 90)+_a
3
— < =
(=y)+ <

1
y=——log(145 - ™),
(0%

y>0<=1+0—e <l >4

Yy<0<=1+d0—e " >1=e <6

1
z < ——logé.
«

(zy)+ < max =z log(l1 46§ —e %)
zefo,~ 8l @

1
= — h Let y =
o e g (v)  (Let y = o)

2

S

(By (i) of Lemma 3.4)
o

1
x> ——logd > 0.
«

1
< ——logd <0.
«

14

1
— —log(1 4 e~ *"=¥)) < p,
«



Hence 2y <0, (zy)4+ = 0. Otherwise y < 0, then 2 > —élog 0. If > 0, then (2y); = 0. Now we
only consider the case z < 0. Therefore

x Cory 1 _
(e S _max, ~Tlog( 45— = e () (Lety = ao)

By (ii) of Lemma 3.4,
(29)s < — max{, 8log? 8} < — max{=, (% — 1) log?(e" — 1)}
T a2 e’ = a2 o .

Case 3 §=0.
In this case, we have z > 0 and y > 0. By using (iv) of Lemma 3.4,
12

1
ke S Gl M =

Combining the above three cases, we get

d

Even in the case of a solvable monotone nonlinear complementarity problem (e.g. 0 < z L

F(z) >0, F(z):=0), the nonlinear equation (10) may not necessarily have a solution. However,
for all 8 > Dy, and &3 > Do, the following system of inequalities

—0151 <x—p(x—F(x),) <501, (19)

always has a solution for 8 > 0. In particular, for the p(z, @) defined in Example 2.1 we have that
for all §; > log 2, the following system of inequalities

_i_llgx—p(x—F(X),Oé)SO, (20)

always has a solution. Hence by Proposition 3.3, a solution of (20) will approximately satisfy the
NCP condition
x>0, F(z)>0, 2TF(x)=0.

Consequently, Proposition 3.3 can be used to establish the following useful theorem.

Theorem 3.3 Consider a solvable nonlinear complementarity problem (9). Let é; > log2 and
a > 0. There exists x satisfy (20), and consequently the NCP conditions are approximately satisfied
as follows:

01

(—2)4 < (;—117 (-F(x))+ < L xTF(x)); < nC(%1)

o2

9

where C'(81) is defined in Proposition 3.3.

We now specify our computational algorithm for solving the NCP by smoothing. The algorithm
consists of a Newton method with an Armijo line search with parameters é and ¢ such that0 < ¢ < 1
and 0 < o < %

Algorithm 3.1 Newton NCP Algorithm
Given vg € R™ and let k = 0.

15



(1) VI ()l < stop.

(2) Direction dj
dp, = —VR(xk)_lR(xk)

(3) Stepsize A\, ( Armijo )
Tpe1 = Tk + Apdp, Ap = max{l, 0, 52, <o}y st
Flar) = Faigr) 2 oMV f ()]
k=k+1 go to step (1).

The above algorithm is well defined for a monotone NCP with a continuously differentiable
F(z). We will state the following convergence theorem [7]. We omit the proof that is similar to the
proof of Theorem 4.3.

Theorem 3.4 Consider a solvable monotone nonlinear complementarity problem (9) with F(z) €

LC}-(R"™). Then
(1) The sequence {x1} defined in Algorithm 3.1 is will defined.
(2) Any accumulation point of the above sequence solves the nonlinear equation (10).
(3) If an accumulation point exists, the whole sequence {x} converges to & quadratically.

(4) 1If, in addition, F is strongly monotone and Lipschitz continuous, then the sequence {zy}
converges to T, the solution of (10), at a quadratic rate.

4 The Mixed Complementarity Problem

The mixed complementarity problem (MCP) is defined as follows [8]:

Given a differentiable F' : R* — R", l,u € R*,] < u, where R = R U {400, —00}, find
x,w,v € R™, such that
Flz) —w+4+v=0
0<z—-IlLlLw>0 (21)
0<vlu—2>0

This MCP model includes many classes of mathematical programming problems, such as nonlinear
equations, nonlinear programming, nonlinear complementarity problems and variational inequali-
ties.

By using the smooth function p(z, ) instead of the plus function, we reformulate the MCP
approximately as follows.
Forv=1,.---,n:

Case 1. [; = —o0 and u; = oc:

Case 2. [; > —oo0 and u; = oc:



Case 3. [; = —o0 and u; < oc:

x; —u; + plu; —x; + Fi(x),5) =0 (22)

Case 4. [; > —o0 and u; < oo
Fi(z) —w;+v, =0

v =l = plei = li —w;, ) =0
w —x; — plu; — & — v, 5) = 0.
We will denote the above 4 cases collectively by the nonlinear equation
R(z,w,v)=0 (23)

Note that the natural residual for the MCP is given by the left hand side of above relation with
the p function replaced by the plus function. We denote collectively this natural residual by

r(z,w,v) (24)

Now we give a lemma that bound the natural residual for MCP by residual of the equation (23) is
vice versa. The proof is a simple application of the properties of the p function.

Lemma 4.1 Let N be number of equations in (23) and p(x,a) defined in Frample 2.1. Then

VvV Nlog?2
1Bz, w,0)[l2 < [Ir(z, w, o)l + 2=
Qo
and o
Nlog?2
|7 (2, w,v)|l2 < [|R(x, w,v)||2+ Tg

Let f(z,w,v) be the residual function of the nonlinear equation (23) defined as follows
1
f(wivv) = §R($7wvv)TR($7wvv) (25)
Now we state an existence result for the monotone MCP with [,u € R".

Theorem 4.1 Suppose that d(z) satisfies (A1) - (A3) and p(z, 3) is defined by (4). Consider a
solvable mized complementarity problem (21) with monotone F(x) and l,u € R". The nonlinear
equation (23) has a solution for sufficiently small 3.

Proof We shall prove that a level set of f(z,w,v) is nonempty and compact. First we will prove
that the set X = {z|f(z,w,v) < C}is compact for all C' € R. Since f is continuous, the level set X
is closed. Hence we only need the show the set X is bounded. Suppose not, there exists {z*} € X
and there exists 1 < i < n such that 2% goes to +00 or —co. Without loss of generality, we assume
that xf goes to +00. Then the residual corresponding to the following equation approaches oco:

w —x; — plu; — & — v, ) = 0.
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This contradicts the fact that 2F € X. Let C' = nmaX{Dl,Dg} 232, where D; and D, are
nonnegative constants defined in (7) and (8), it is easy to show that the level set Levc(f) =
{(z,w,v)|f(z,w,v) < C} is not empty. Now we will prove that Levc(f) is compact for

mlnl<2<n(uZ - 1)

Vrmax{Dy, Dy}

We have proven that the 2 part must be bounded. Therefore, if the level set Levc(f) is unbounded,
there exists (wk w*, v*) € Leve(f) such that (w*, v¥) are unbounded. Without loss of generality,
we assume z° — 7 and there exist 1 < i < n such w® — 400 or —00 as k — oo. If wF — —oc,
the residual corresponding to the equation

— ;= pla; — l; —w;, B) = 0.

g <

goes to oo as k — oco. But (z*, w* v*) € Levc (f), which is a contradiction. Otherwise, w® —
+00. By the equation
Fi(z) —w;+v, =0

and the fact that 2* is bounded, we get that as &k — oo, vf — +o0o. Hence, as k — oo,
1
f(a®, w0k > 5 (i = af = plup = af = o 5)) 4 (@f = i = plef = L = w, 5))?)

(u; — 1;)* > %n max{Dy, Dy}?3* = C

|

— S((wi=2)" + (3 - 1)) 2
for all
m1n1<2<n (uz - lz)
Vrmax{Dy, Dy}’
This contradicts that (2%, w* v¥) € Levo(f). Hence there exists a level set of f(z,w,v) which is
nonempty and compact. Therefore the problem

g <

min f(z,w,v)
W,

must have a minimum, which satisfies
Vf(z,w,v)=VR(z,w, U)TR(JU, w,v) = 0.
Let Ay = diag(p'(z — | — w, 3)) and Ay = diag(p'(u — x — v, 3)), then

VP(z) —I I
VR(z,w,v)=| I-A1 Ay 0
Ay—1T 0 A

Notice that

I AT A VF@)+ A7 +A =21 0 0
0 I 0 VR(z,w,v)= | T - Ay Ay 0
0 0 1 Ay =1 0 A

and 0 < p'(x —1—w,f3)),p'(u —x —v,53)) < 1. When F' is monotone, the Jacobian VR(z, w,v)
is nonsingular. Therefore
Vfiz,w,0)=0= R(z,w,v)=0
d
From now on, we only consider the function p(z,«) defined in Example 2.1. The following
theorem is a direct application of Proposition 3.3. that can be proved by applying the Proportion
3.3 to each equation.
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Theorem 4.2 Consider a solvable mized complementarity problem (21). Let §; > log2 and o > 0.

Then the following system of inequalities For v = 1,---,n:
Case 1. [; = —o0 and u; = oo: 5 5
L <F@=0<2
o o

Case 2. l; > —o0 and u; = oo:

Case 3. [; = —o0 and u; < oo:
(26)

Case 4. l; > —o0 and u; < oo:

where p(x,a) is defined in Frample 2.1, always has a solution (x,w,v) and a solution (z,w,v)
satisfies the MCP conditions approximately in the following sense
Fori=1,---,n:

Case 1. [; = —o0 and u; = oo: 5
1
: < =
Fifa)] < 2
Case 2. l; > —o0 and u; = oo:
&y &y C(d1)
li—zie < — (FE@)+ < (@i W) E@)+ < — 5
Case 3. [; = —o0 and u; < oo:
&y &y C'(61)
(@i —ui)p < = (Fi(e)e < 0 (Slui—2) Fil2))y < =5
Case 4. l; > —o0 and u; < oo:
oy
— s <
|E($) w; +UZ| 047
o o C(é
Gmade < 2 e <2 (it < S,
o o C(é
@imwr <2 (e O (- me)s < SO,

where C'(81) is defined in Proposition 3.3.
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Now we state the smooth method for the mixed complementarity problem based on the Newton
Algorithm 3.1 in which the smoothing parameter will be adjusted. In the algorithm, we adjust the
smoothing parameter « in reverse proportion to the natural residual r(z, w, v) of (24) for the MCP
in the following way. Let N be the total number of nonlinear equations in (23) and (z,w,v) be
current point. Let

if ||r(z, w,v)|]2 < VN

VN
alz,w,v) = ”r(x’w’\;mz) (27)
N otherwise

llr (zw,v)]2

The following smooth algorithm generates an e—accurate solution for the MCP, in the sense that
the natural residual r(z, w, v) of (24) satisfies ||r(z, w, v)||o < €.

In order to get an e—accurate solution for the MCP. We need « sufficient large. We will establish
a simple lemma before we get the a.

Lemma 4.2 Let real numbers a and b satisfy

(—a)y < 6_17 (=b)+ < 6—1 and (ab)y < C(é1)

o o o’

9

then

| min(a, b)| < max{dy, /C(01)}

where C'(81) is defined in Proposition 3.3.

Proof Without loss of generality, we assume that a < b. If @ > 0, then (ab)y > a?. Therefore

| min(a, b)| = a < \/(ab)4 < Cloy.

o
If a <0,
o
[ min(a, )| = —a = (—a)3 < 2L,
o
Combining the above two cases, the conclusion follows. 0

max{dy, /C(d1)}
Y €

obtain from the definition of C'(d1), when o > apax > —, that | min(a,b)| < e.
€

Therefore to satisfy | min(a,b)| < ¢, we choose o > . By using §; = log 2, we

Algorithm 4.1 Smooth Algorithm for MCP Input tolerance €, parameter vy > v > 1 and
initial guess xg € R"

(1) Initialization For 1 < i < n of Case 4 of (22), let wh = (Fi(z0))+, vy = (—F;(20))4, k=0
V2

and ag = oo, wo, Vo). Choose apay > —

(2) If |Ir(zk, wg, v)||eo < €, stop.

(3) Newton Armijo Step Find (241, Wkt1, Vk+1) by a Newton-Armijo step applied to

R(z,w,v)=0.
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(4) Parameter Update If a(zg41, Wkt1, Vkt1) > Vg, set
A1 = 04($k+17 Whk41, Uk-|—1)7
otherwise if ||V f(Z k41, Wit1, Vit1)]]2 < €, set
Qp1 = V1 Q.
If a1 > max, S€t Qg1 = Omax. Let k =k + 1, go to step (2).

Let I denote the index set of the F; of Case 1, J of Case 2, K of Case 3 and L of Case 4 of (22).
In order to characterize the nonsingularity of VR, we now give a definition of a regular MCP. Note
that the monotone NCP is regular. More generally, an NCP with a F, Jacobian matrix is regular.

Definition 4.1 An MCP is called regular if

VI (2)

VFJ(ac) n Dy

VFK(JU) Dg
VFL(QC) Dy,

is nonsingular, for all positive diagonal matrices Dy, Dy and Dy, that has the dimension of |.J|,
| K| and |L| respectively.

Theorem 4.3 Consider a solvable reqular mized complementarity problem (21) with with F(z) €
LC}-(R"™). Then

(1) The sequence {xy, wy, vy} defined in Algorithm j.1 exists.
(2) Any accumulation point of the above sequence is an e—accurate solution of the MCP (21).

(3) If an accumulation point exists, the whole sequence {xy, wy,vi} converges to an e—accurate
solution quadratically.

v 2vNlog2. .
}is
-1 o

compact, the sequence {x, wy, vr} converges to an e—accurate solution at a quadratic rate.

(4) 1If, in addition, the level set {(z,w,v) | ||r(z,w,v)||z < ||r(zo, wo, vo)||2 +
v

Proof We denote (z, wg, vi) by yx and (z,w,v) by y.
(1) Let Ay = diag(p/(zyj—l1—Fy(z),a)), Ak = diag(p'(ux—2x—Fr (2),a)), AL, = diag(p'(z, — 1, — w, @)
and Az, = diag(p'(ur, — 2r, — v, @)), then

i 11 VilFr(z) ViFr(z) ViFr(z) VpF(z) 1
Ay ViFj(z) VyFj(z) ViFjz) VipFj(z)
VR(z, w,v) = Ax ViFr(x) ViFr(z) VibFr(z) VipFg()
) I ViFp(e) VyFp(e) VgFp(e) ViFp(e) —I I
T T—An, A
i I |1 Ap, —1 Ar, |

21



0 _
I—Ay
I—Ag
+ K 0
0
i 0]
Therefore
- _
I
I
_ _ VR(x,w,v) =
IoApt gt | VA e
I
i I i
1 1 [ VFi(z) 07 [0 -
Ay VFEp(z) 0 AFY T
A ( VFEk(z) 0 N At =1
I VF(z) 0 AL+ AL =21
I 0 0 I—)p, Az,
I Il Lo 0] L Ar, — I Ar,

Hence VR(z,w,v) is nonsingular if the MCP is regular. If F' € LC}(R"), then {(zy, wg, vg)} are
well defined.

(2) For an accumulation point y, we have yx, — y. Since the parameter «a can be changed
only finite many times, then a; = @, for all & > k. Therefore, without loss generality, we consider
the sequence {y, } for fixed a. In case that f(y) = 0, for &, we have & = aax. Otherwise, since
IV f(yr:)|l2 — 0, there exists an i such that ||V f(ys)|l2 < €. By (4) of Algorithm 4.1, & will
change to vya. That contradicts the definition of &. Hence R(y) = 0 for & = amayx, ¥ is an e—
accurate solution of the MCP (21). The other case is that f(y) > 0 for &. Since F' € LC}.(R™), for
a compact set S whose interior contains {yx,} and 7, we have that R(y) € LC% (S) for some K.
By Quadratic Bound Lemma [27, p.144], we have

Ky

I f(yr: + Aridr,) — flyr,) — Vf(yki)T/\kidkiH2 < TH/\kldle%

Since VR(y) is nonsingular, on the compact S, there exists K(S) and k(5) such that
tIVRT(y)VR Y y)x < K(S)2Te, VyeS,z€R"

and
e'VRT Y VR ()2 = k(S)a"z, VyeS,ae R
Consequently

K
Flyr) = flug, + Ardy,) > _/\kivf(yki)Tdki - 71/\%]%(91%)TVR(yki)_TVR(yki)_lR(yki)

KiK(5)
2

_ KiK(5)

> _/\kivf(yki)Tdki - 5

/\ziR(yki)TR(yki) = /\ki(l /\ki)|vf(yki)Tdki|
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2(1 - o)

> Ao |V f () T (), A S TR

By the rule of choosing Ag,, we have Ay, > 513(13 (Cg)) where ¢ is the constant used in Armijo stepsize.

Therefore L

fQurk) = Sy, + Akdi) > 2051117()|Vf(yk ) d(y,)]
1—
= 200 1V £ ) TV Ro) ™V R T )
1—
> 205K() g oy IV o)

Since yx, — y, we have V f(y) = 0. Thus R(y) = 0 and f(y) = 0. This contradicts the assumption
f(y) > 0. This case cannot occur.

(3) By the analysis in (2), we have yy, — y, R(y) = 0 and R(y) € LCk,(5). Therefore

1By +d) ~ Bly) ~ VR ] < a3

for y,y+d € S. Ford = VR(y) 1 R(y), we have

IR - 18+ DI > 1RE)E - (a2 = (o - K5O pe) )i
= (1= SRR 2 oV S R <

Hence, if y is close enough to y, the Newton step accepted. According to the standard result of
local quadratic convergence for Newton Method, Theorem 5.2.1 in [7], the conclusion follows.

(4) Let o',i=0,1,---, be the sequence of different parameters o used in Algorithm 4.1. Let
{k;}, i=0,1,---, with kg = 0, be the indices such that the parameter a changes, that is for
ki <k <kgys—1, ap =o' For ag and yg, by Lemma 4.1, we have

V/N log 2
1R (o)ll2 < (I (wo)ll2 + ————
0
For ko < k < kq, since f(yr) < f(yo) with ao,
V/N log 2
12yl < 17 (yo)ll2 < lIr(vo)ll2 + —2—==
By Lemma 4.1,
VN log 2 2v/Nlog 2
I (yllz < [[R(w)llz + ———= < lIr(wo)llz + ———
0 Qo
For o' and y, 1, by Lemma 4.1,
\/_logQ 2V Nlog2 +/Nlog?2
1RG0l <l -0l + 2 B2 < o) + 2B 4 YO0
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For k1 < k < ko, since f(yx) < f(yg,—1) with ay,

2v/Nlog2 +/Nlog2
12 (yllz < 17 (e -0l < lIr(yo)lla + ===+

vog

By Lemma 4.1,

VN log 2 +2\/ﬁlog2+2\/ﬁlog2
aq (&%)

vog

I (yi)llz < 1R (yw)ll2 + < I (yo)ll2

Inductively, for o' and yx. _1,

1B (yr—~1)ll2 < [Ir(yo)ll2 +

2v/Nlog2 2v/Nlog?2 2v/Nlog2 +/Nlog?2
" + 4+ +
0

voy vi—lay Vi

for k, <k < ki-|—17

2v/Nlog2 2v/Nlog?2 2/Nlog2 +/Nlog?2
1B (ye)[l2 < lIr(yo)[l2 + aog + 82 L .4 g2 g

vog v lag viag

2v/Nlog2  2v/Nlog? 2vNlog2 2N log?2
17 (ys)ll2 < [l (o) ll2 + aog + 82 .4 82 g

voy vi—lay Vi

Therefore, for all & we have

2v/ N log 2 1 1 v 2vNlog?2
< Nt i )<
Irlls < Irolla + 252204 g L) < el + 2 2
2v/' N log 2
If the level set {y|||r(y)llz < |Ir(yo)|l2 + v I °8 } is compact, there exists an accumulation
v— e

point. By (2) and (3), the whole sequence converges to an ¢—accurate solution of MCP (21). O
We shall give our numerical test results for Algorithm 4.1 in Section 6, after relating our smooth
approach to the central path of the interior point method [19] in Section 5.

5 Relation to the Interior Point Method

In this section, we consider the NCP (9). Let the density function d(z) satisfy (Al)-(A3) and
Dy =0, and let let p(x, 3) be defined by (4). If & solves the nonlinear equation (10) exactly, then

v = e F(),0) > 2~ F(2)
where the last inequality follows from the fact that p(&, 5) > £, (5) of Proposition 2.2. Hence
x>0 F(z) >0,

and z belongs to the interior of the feasible region {z | F'(z) > 0,2 > 0} of the NCP. Hence an exact
solution of (10) is interior to the feasible region. However the iterates of the smooth method, which
are only approximate solutions of (10), are not necessarily feasible. For the function p defined in
Example 2.2 [38, 17, 4] , the exact solution z of the equation (10) satisfies

x>0, F(z)>0, aF(x)=p* i=1,---,n
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which is precisely the central path of the interior point method for solving NCP. Methods that
trace this path but allow iterates to be exterior to the feasible region have been proposed in [38],
[4] and [17]. In [18], the relation between Smale’s method [38] and the central path was pointed
out. For our function p defined in Example 2.1, the solution @ of the nonlinear equation (10), for
different values of 3, constitutes another path in the interior of the feasible region that satisfies:

x>0, F(z)>0, aF(x)<26% i=1,---,n

We now compare our path and the central path of the interior point method by using a very simple
example.

Example 5.1 Let F'(z) = Mz + q, where

1 2 -1
M = =
23]
The unique solution is (1,0). Figure 7 depicts the central path of the interior point method
as well as the smooth path generated by an exact solution of the smooth nonlinear equation (10).
Figure 8 depicts the error along the central path and along our smooth path as a function of the
smoothing parameter 5. The error is measured by the distance to the solution point. For this

example, the error along our smooth path is smaller than that along the central path for the same
value of the parameter .

6 Numerical Results

In this section, we give our computational experience with the smooth Algorithm 4.1 for the MCP.
We implemented the smooth Algorithm 4.1 with an SOR preprocessor if all diagonal elements of the
Jacobian matrix are positive. An initial scaling of the function F;(z), inversely proportional to the
absolute value of the diagonal elements of the Jacobian matrix, is performed if |V, F;(zo)| > 100.
The details of implementing the smooth algorithm are given in Appendix 2. For comparison, we
also give the results for the PATH solver [8]. Both algorithms were run on a DECstation 5000/125.
Among the 52 test problems, which includes all the problems attempted in [13], [30] and [8], 51
problems are from the MCPLIB [9], and one is the generalized von Thiinen model from [30] and [39].
Our smooth algorithm was run using one set of default parameters and so was the PATH solver.
The smooth algorithm is written in the C language and implemented by using the GAMS/CPLIB
[10]. A MINOS routine [25] was used to perform a sparse LU decomposition for solving sparse
linear equations. Both algorithms use the same convergence tolerance of ¢ = 1.0e — 6.
Table 1 gives a simple description of the test problems [9].
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Table 1: MCPLIB Problems

‘ Model origin ‘ GAMS file ‘ Size ‘
Distillation column modeling (NLE) hydroc20.gms 99
Distillation column modeling (NLE) hydroc06.gms 29
Distillation column modeling (NLE) methan08.gms | 31
NLP problem form Powell (NLP) powell_mcp.gms | 8
NLP problem form Powell (NLP) powell.gms 16
NLP test problem form Colville (NLP) colvnep.gms 15
Dual of Colville problem (NLP) colvdual.gms 20
Obstacle problem (NLP)(6 cases) obstacle.gms < 5625
Obstacle Bratu problem (NLP)(6 cases) bratu.gms < 5625
(NCP) cycle.gms 1
(NCP) josephy.gms 4
(NCP) kojshin.gms 4
(LCP) explep.gms 16
Elastohydrodynamic lubrication (NCP) ehl_kost.gms 101
Nash equilibrium (VI) nash.gms 10
Nash equilibrium (VI) choi.gms 13
Spatial price equilibrium (VI) sppe.gms 27
Spatial price equilibrium (VI) tobin.gms 42
Walrasian equilibrium (VI)(2 cases) mathi*.gms 4
Walrasian equilibrium (VI)(2 cases) scarfa*.gms 14
Walrasian equilibrium (VI)(2 cases) scarfb*.gms 40
Traffic assignment (VI) gafni.gms 5
Traffic assignment (VI) bertsekas.gms 15
Traffic assignment (VI) freebert.gms 15
Invariant capital stock (VI) hanskoop.gms 14
Project Independence energy system (VI) pies.gms 42
Optimal control (Extended LQP)(6 cases) opt_cont.gms < 8192
Optimal control from Bertsekas (MCP)(6 cases) | bert_oc.gms < 5000

The average CPU times taken by PATH solver and smooth algorithm for all small problems
are depicted in Figure 9. Figures 10, 11 and 12 depict the CPU times for all remaining problems
except the von Thiinen model. We note that the PATH solver [8] is faster than Josephy’s Newton
method [16] and Rutherford’s GAMS [10] mixed inequality and linear equation solver (MILES)
[37] which is also Newton-based. Figures 9 to 12 indicate that our smooth algorithm is faster than
PATH solver for the larger problems, whereas PATH solver is faster on smaller problems.

The newest version of PATH (PATH 2.7) that uses a Newton method on the active set [2] as a
preprocessor, improves solution times on the larger problems. Our smooth method can be similarly
improved by adding the projected Newton preprocessor. We have compared PATH and SMOOTH
with a Newton preprocessor on a Sun SPARCstation 20. The results are given in Figures 13 to 16.
It can be seen that with a Newton preprocessor, the solution times are very similar for PATH and
SMOQTH for larger problems, whereas PATH is still better for the smaller problems.

As mentioned in [30], the generalized von Thiinen model is an NCP with 106 variables. This
is a very difficult problem that has challenged many of the recently proposed algorithms [30, 39].
In order to guarantee that the function F(z) is well defined, we added a lower bound of 1.0e-7 to
variables @1 to x4 as suggested by Jong-Shi Pang. We used three starting points. In the first, we
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Figure 16: Smooth with Newton preprocessor versus PATH 2.7 for Obstacle Problems
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set all variables to 1, as suggested by Michael C. Ferris; the second one is a starting point suggested
n [39], while the third is the point suggested in [39] and modified by Jong-Shi Pang. SMOOTH,
with or without the Newton preprocessor, solved the problem from all the three starting points.
Solution times did not change by adding the Newton preprocessor. We report times for SMOOTH
with the preprocessor. Starting with the first point, SMOOTH took a long time, 95.44 seconds
to solve the problem. From the second point, we obtained a solution in 36 iterations and 3.70
seconds and from the third point, we obtained a solution in 49 iterations and 7.01 seconds. PATH
2.7 solved the problem 7 times out of 10 from the first starting point, 6 times out of 10 from the
second starting point, and 5 times out of 10 from the third starting point. The average times of the
successful PATH runs were 2.59, 3.94 and 3.21 seconds for the first, second and third starting points
respectively. We note that when the artificially imposed lower bounds on z; to 295 were removed,
PATH failed from all starting points and SMOOTH failed from the first and second starting points.
However from the third starting point, SMOOTH generated a solution with some small negative
components which, when set to 1.0e-9, gave a solution accurate to 1.79539e-7.

Summing up the numerical experiments with PATH and SMOOTH, we believe that compar-
isons between the two methods without a Newton preprocessor is more indicative of their relative
effectiveness. With the Newton preprocessor, a lot of the work for the larger problems is performed
by the Newton preprocessor and hence the nearly equal performance of the two methods on these
problems.

7 Conclusion

Smoothing is an effective approximate reformulation for a wide range of complementarity problems
to any desired degree of accuracy. Newton-type methods for solving smooth problems constitute
a powerful computational approach for solving these problems. Parallelization of smooth methods
for large-scale problems and their extension to other nonconvex and nonsmooth problems, are two
promising research areas worth investigating.

Appendix 1
In order to prove Lemma 3.4, we need the following lemma.
Lemma 7.1 (i) Let t(z) = ze™™, then

max_t(z) < max{t(a),t(b), %}

r€[a,b]
(ZZ) Let
2
X
- 5>0. -
9) = e 020, ~logl1+8) £ a.l]
then

2 2 2

xrg[%?z]g(x) < max{g(a), g(b), 1+ 5t(a)7 14+ 5t<b)7 (14 5)6}‘

(iii) Let h(z) be defined in Lemma 3.4, —log(1+ &) & [a,b], then

2 2 2
mas hir) < max{h(a), A(5). o(0).90). 7 5t0), 750 g
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Proof (i) By definition, t'(z) = ¢™ —2e™" = (1 — 2)e~ ", hence t'(2) = 0 implies 2 = 1. Therefore

xrg[%?z]t(x) < max{t(a),t(b), (1)} = max{t(a),t(b), %}

(ii) Notice —log(1+ 9) & [a,b] and § > 0, we know

b 2e((T48)e" —1) — a2 (14 8)e”
gle) = (1+d)e” — 1)2 ‘

Hence ¢'(2) = 0 implies 2 = 0 or

By (i) and ¢(0) =0

xrg[%]g(w) < max{g(a), g(b),g(0), H—(;xrg[%]t(@}
2 2 2

< max{g(a),g(b), (@), 751(0), (1+6)e}'

(iii) Since
re ¥

Wz)=—-log(l+§—e ") - ————
(#) = —log(1 45— ™) =
the point z is a stationary point of h(z) if and only if

oy ze * _ x
log(l+d6—e%) = TFo—e=  (1de—1

Therefore, by (ii),

max_h(z) < max{h(a), h(b), max g(z)}
r€[a,b] r€[a,b]

< max{h(a), h(b),g(a),g(b), 1 j_ 5t(a), 1 j_ 5t<b)’ (1 —E(S)e}'

Proof of Lemma 3.4
i) f0< o<1, —log(l+6)¢[0,—logd]. By (iii) of Lemma 7.1 and notice

h(0) = 0, h(—logé) = 0, g(0) = 0, g(— log§) = &log® 4§, t(0) = 0, t(—log ) = —§log,

we have 05 )
hiz) < §log? 6, — logé, ———— 1.
xe[gl?l)c()gé] (z) < max{dlog™9, 1446 80 (14 5)6}
It is easy to get
4
max dlog?§ < max — logé < 2.

5€[0,1] €2’ seoa] 140

Combining the above inequalities, we get the conclusion.
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(ii) If § > 1, —log(1 + &) ¢ [—logd, 0]. Similarly with (i), we know
h(0) = 0, h(—logéd) = 0, g(0) = 0, g(— log§) = &log® 4§, t(0) = 0, t(—log ) = —&log é.
By (iii) of Lemma 7.1,

26 2 1
< 25 — K 25 = .
xe[r_nlaoé(&o]h(x) < max{dlog” 4, T log 4, i+ 5)6} < max{dlog* 4, e}

(iv) If § = 0,

t(z) =0, lim t(z)=0,

0 r—>00
For any ¢ > 0, we have 0 = —log(1 + §) & [¢,+00). And there exists ¢y > 0 such that

2 2 1
hie) < =, gle) < =, t(e) < =, for 0 < e< ¢
e e e
Therefore, for 0 < € < ¢
max h(z) <

z€le,00) B

[ ]

Let € approaches 0, we have

h(z) < =
) ") =

o

Appendix 2
Here is the actual implementation of the smooth algorithm 4.1. In the following algorithm (z, wg, vi)
is simply denoted by .

Algorithm 7.1 Smooth Algorithm for MCP Input tolerance ¢ = 1.0e — 6, and initial guess
rg € R"

(1) Initialization For 1 <i < n of Case 4 of (22), let wl = (Fj(z0))s, vy = (—Fi(z0))y, k=0
and ag = a(yo).

(2) Il (yo)llee < ¢, stop.

(3) Newton Direction d
dp = =V R(yx) " R(yr)

In order to avoid nonsingularity, for the Case 2-4 of (22), if ViR;(yx) < 1.0e — 9, let
ViRi(yk) = 1.0e — 9.

(4) Stepsize A\, ( Armijo )
Yr+1 = Yk + Aedi, Ap = max{1, 9, 52, <o}y st

Frs1) < flyr)
where 6 = 0.75.
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(5) Parameter Update If a(yry1) > ag, set

g1 = (Yrt1),

otherwise if ||V f(yg41)|l2 < €, set
01 = 20.

Let k =k +1, go to step (2).

For some of the test problems, the function is not well defined outside the feasible region. In
such cases, the line search step (5) may fail. If this occurs, we will try to push the next point inside
the feasible region by setting the smooth parameter o to a very small value, such as 1.0e-10.
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