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where the plus function (�)+ is de�ned as(�)+ = maxf�; 0g;for a real number �. For a vector x, the vector (x)+ denotes the plus function applied to each com-ponent of x. In this sense, the plus function plays an important role in mathematical programming.But one big disadvantage of the plus function is that it is not smooth because it is not di�erentiable.Thus numerical methods that use gradients cannot be directly applied to solve a problem involvinga plus function. The basic idea of this paper is to use a smooth function approximation to the plusfunction. With this approximation, many e�cient algorithms, such as the Newton method, can beeasily employed.There are many Newton-based algorithms for solving nonlinear complementarity problems, vari-ational inequalities and mixed complementarity problems. In [12] a good summary and referencesup to 1988 are given. Generalizations of the Newton method to nonsmooth equations can befound in [34], [35] and [36]. Since then, several approaches based on B-di�erentiable equationswere investigated in [13], [28] and [29]. In addition, an algorithm based on nonsmooth equationsand successive quadratic programming was given [30], as well as a Newton method with a pathfollowing technique [32, 8], and a trust region Newton method for solving a nonlinear least squaresreformulation of the NCP [24]. With the exception of [24], a feature common to all these methodsis that the subproblem at each Newton iteration is still a combinatorial problem. In contrast, byusing the smooth technique proposed here, we avoid this combinatorial di�culty by approximatelyreformulating the nonlinear or mixed complementarity problem as a smooth nonlinear equation.Consequently, at each Newton step, we only need to solve a linear equation. This is much simplerthan solving a mixed linear complementarity problem or a quadratic program.Smoothing techniques have already been applied to di�erent problems, such as, l1�minimizationproblems [21], multi-commodity 
ow problems [31], nonsmooth programming [41, 20], linear andconvex inequalities [5], and linear complementarity problems [4], [5] and [17]. These successfultechniques motivate a systematic study of the smoothing approach. Questions we wish to addressinclude the following. How to generate new smoothing functions? What is a common property ofsmoothing functions?In Section 2, we relate the plus function through a parametric smoothing procedure, to aprobability density function with a parameter �. As the parameter � approaches zero, the smoothplus function approaches the nonsmooth plus function (�)+. This gives us a tool for generating aclass of smooth plus functions and a systematic way to develop properties of these functions. InSection 3, we approximate the NCP by a smooth parametric nonlinear equation. For the stronglymonotone case, we establish existence of a solution for the nonlinear equation and estimate thedistance between its solution and the solution of original NCP. For a general solvable NCP, existenceof an arbitrarily accurate solution to the nonlinear equation, and hence to the NCP, is established.For a �xed value of the smoothing parameter � = 1� , we give a Newton-Armijo type algorithm andestablish its convergence. In Section 4, we treat the MCP, the mixed complementarity problem(21). For the case of a solvable monotone MCP with �nite bounds l; u 2 Rn, we prove that if thesmoothing parameter � is su�ciently small, then the smooth system has a solution. An e�cientsmooth algorithm based on the Newton-Armijo approach with an adjusted smoothing parameter isalso given and convergence is established. In Section 5 we show that exact solutions of our smoothnonlinear equation, for various values of the smoothing parameter � generate an interior path tothe feasible region, di�erent from the central path of the interior point method [19]. We comparethe two paths on a simple example and show that our path gives a smaller error for the same valueof the smoothing parameter �. In Section 6, encouraging numerical testing results are given for2



52 problems from the MCPLIB [9] which includes all the problems attempted in [13], [30] and [8].These problems range in size of up to 8192 variables. These examples include the di�cult vonTh�unen NCP model [30, 39] which is solved here to an accuracy of 1.0e-7.A few words about our notation. For f : R! R and x 2 Rn, the vector f(x) in Rn is de�nedby the components (f(x))i = f(xi); i = 1; � � � ; n. The support set of f(x), which is the set ofpoints such that f(x) 6= 0, will be denoted by supp f f(x) g. The set of m-by-n real matrices willbe denoted by Rm�n. The notation 0 and 1 will represent vectors with all components 0 and 1respectively, of appropriate dimension. The in�nity, l1 and l2 norms will be denoted by k � k1,k � k1 and k � k2 respectively. The identity matrix of arbitrary dimension will be denoted by I .For a di�erentiable function f :Rn ! Rm; rf will denote the m � n Jacobian matrix of partialderivatives. If F (x) has Lipschitz continuous �rst partial derivatives on Rn with constant K > 0,that is krF (x)�rF (y)k � Kkx� yk; 8x; y 2 Rn;we write F (x) 2 LC1K(Rn):2 A Class of Smoothing FunctionsWe consider a class of smooth approximations to the fundamental function (x)+ = maxfx; 0g.Notice �rst that (x)+ = R x�1 �(y)dy, where �(x) is the step function:�(x) = � 1 if x > 00 if x � 0The step function �(x) can in turn be written as, �(x) = R x�1 �(y)dy, where �(x) is the Dirac deltafunction which satis�es the following properties�(x) � 0; Z +1�1 �(y)dy = 1:Figures 1 to 3 depict the above functions. The fact that the plus function is obtained by twiceintegrating the Dirac delta function, prompts us to propose probability density functions as a meansof smoothing the Dirac delta function and its integrals. Hence we consider the piecewise continuousfunction d(x) with �nite number of pieces which is a density function, that is it satis�esd(x) � 0 and Z 1�1 d(x) dx = 1: (1)To parametrize the density function we de�net̂(x; �) = 1�d(x� ) (2)where � is a positive parameter. When � goes to 0, the limit of t̂(x; �) is the Dirac delta function�(x). This motivates a class of smooth approximations as follows:ŝ(x; �) = Z x�1 t̂(t; �)dt � �(x)and p̂(x; �) = Z x�1 ŝ(t; �)dt � (x)+ (3)3



Therefore, we can get an approximate plus function by twice integrating a density function. Infact, this is the same as de�ningp̂(x; �) = Z +1�1 (x� t)+t̂(t; �)dt = Z x�1(x� t)t̂(t; �)dt: (4)This formulation was given in [20] and [15, p.12] for a density(kernel) function with �nite support.We will give our results in terms of a density function with arbitrary support. This includes the�nite support density function as a special case.Proposition 2.1 Let d(x) be a probability density function and t̂(x; �) = 1�d(x� ), where � is apositive parameter. Let d(x) satisfy the following assumptions:(A1) d(x) is piecewise continuous with �nite number of pieces and satis�es (1).(A2) E[jxj]d(x) = R +1�1 jxj d(x) dx < +1:Then the de�nitions of p̂(x; �) given by (3) and (4) are consistent.Proof By the de�nition (2) and assumption (A2), we have that p̂(x; �) de�ned by (4) satis�esp̂(x; �) = x Z x��1 d(t)dt� � Z x��1 td(t)dt (5)By direct computation, p̂0(x; �) = Z x��1 d(t)dt (6)= Z x�1 t̂(t; �)dt = ŝ(x; �)Hence the derivatives of p̂(x; �) de�ned by (3) and (4) are the same and the di�erence between thetwo representations of p̂(x; �) is a constant, say c. If we let x approach �1 in both (3) and (4),then p̂(x; �) approaches 0 in both, and hence c = 0. Therefore the de�nitions of p̂(x; �) given by(3) and (4) are consistent.Now we give properties of p̂(x; �) that show that it is an accurate approximation of the plusfunction (x)+ as � approaches zero.Proposition 2.2 Properties of p̂(x; �); � > 0Let d(x) and t̂(x; �) be as in Proposition 2.1, and let d(x) satisfy (A1) and (A2). Then p̂(x; �)has the following properties:(1) p̂(x; �) is continuously di�erentiable. If, in addition, d(x) is k-times continuously di�eren-tiable, p̂(x; �) is (k+2)-times continuously di�erentiable.(2) �D2� � p̂(x; �)� (x)+ � D1�, whereD1 = Z 0�1 jxjd(x)dx (7)and D2 = maxfZ +1�1 xd(x)dx; 0g (8)4
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Figure 1: The plus function (x)+ = maxfx; 0g
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Figure 2: The step function �(x) = 1 if x > 0, 0 if x � 0
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Figure 3: The Dirac delta function �(x)5



(3) p̂(x; �) is nondecreasing and convex. In addition, let d(x) satisfy(A3) supp f d(x) g = R.Then p̂(x; �) is strictly increasing and strictly convex in x for a �xed � > 0.(4) 0 � p̂0(x; �) � 1 and if (A3) is satis�ed, then 0 < p̂0(x; �) < 1.(5) Let (A3) be satis�ed and D2 = 0, then p̂(x; �) > x:Proof (1) By equation (6) in the proof of last proposition, the conclusion follows.(2) If x � 0, by using (5), we have thatp̂(x; �)� (x)+ = x Z x��1 d(t)dt� � Z x��1 td(t)dt� x= �x Z 1x� d(t)dt+ � Z 1x� td(t)dt� � Z 1�1 td(t)dt= � Z 1x� (t � x� )d(t)dt� � Z 1�1 td(t)dtTherefore p̂(x; �)� (x)+ � �� Z 1�1 td(t)dt � ��D2and p̂(x; �)� (x)+ � � Z 1x� td(t)dt� � Z 1�1 td(t)dt� � Z 10 td(t)dt� � Z 1�1 td(t)dt= �� Z 0�1 td(t)dt = � Z 0�1 jtjd(t)dt = �D1:Otherwise, x < 0, then p̂(x; �)� (x)+ = x Z x��1 d(t)dt+ � Z x��1 jtj d(t)dt� � Z 0�1 jtj d(t)dt = D1�and p̂(x; �)� (x)+ = � Z x��1(x� � t)d(t)dt � 0 � ��D2:6



(3) By equation (6) and the fact that d(x) � 0,p̂0(x; �) = Z x��1 d(t)dt � 0and (p̂0(x; �)� p̂0(y; �))(x� y) = (x� y) Z xy d(t)dt � 0Therefore p̂(x; �) is nondecreasing and convex. If, in addition, (A3) is true, thenp̂0(x; �) > 0 and (p̂0(x; �)� p̂0(y; �))(x� y) > 0; for x 6= ySo p̂(x; �) is strictly increasing and strictly convex.(4) By formula (6), it is easy to see that 0 � p̂0(x; �) � 1. If (A3) is true, d(x) > 0 and p̂0(x; �)is strictly increasing. Therefore 0 < p̂0(x; �) < 1.(5) By (A3), we have Z 1x� (t� x� )d(t)dt > 0; x � 0and Z x��1(t� x� )d(t)dt > 0; x < 0By the similar proof of (2), we havêp(x; �)� (x)+ > �D2� = 0Therefore p̂(x; �) > (x)+ � x:Now we have a systematic way for generating a class of smooth plus functions. Given anyprobability density function d(x) satisfying (A1) and (A2) we de�ne t̂(x; �) and p̂(x; �) as in (2)and (3) respectively. The smooth function p̂(x; �) approximates the plus function with increasingaccuracy as the parameter � approaches 0. The properties of the function p̂(x; �) are given inProposition 2.2 above.We now give examples of smooth plus functions. The �rst example, which will be used through-out this paper, is based on the sigmoid function of neural networks [14, 22, 5] and de�ned as follows:s(x; �) = 11 + e��x ; � > 0This function approximates the step function �(x) as � tends to in�nity. Since the derivative withrespect to x of this function tends to the Dirac delta function as � tends to in�nity, it follows that� plays the role of 1� and we shall therefore take� = 1� :7



Example 2.1 Neural Networks Smooth Plus Function [5]Let d(x) = e�x(1 + e�x)2Here D1 = log 2; D2 = 0 and suppfd(x)g = R, where D1 and D2 are de�ned by (7) and (8).Integrating 1�d( x� ) twice gives p̂(x; �) = x+ � log(1 + e� x� )Letting � = 1� , we havep(x; �) = p̂(x; 1�) = Z s(�; �)d� = x+ 1� log(1 + e��x)s(x; �) = ŝ(x; 1�) = 11 + e��x = Z t(�; �)d�t(x; �) = t̂(x; 1�) = �e��x(1 + e��x)2 = �s(x; �)(1� s(x; �))The function p(x; �) above can also be obtained by using an appropriate recession functiongiven in Example 2.2 of [1], or by an exponential penalty function as in [3, p. 313, equation (25)].Figures 4 to 6 depict the functions p(x; 5); s(x; 5) and t(x; 5) respectively.Following are several other smooth plus functions based on probability density functions pro-posed by other authors.Example 2.2 Chen-Harker-Kanzow-Smale Smooth Plus Function [38], [17] and [4]Let d(x) = 2(x2 + 4) 32Here D1 = 1; D2 = 0; suppfd(x)g = R andp̂(x; �) = x+px2 + 4�22Example 2.3 Pinar-Zenios Smooth Plus Function [31]Let d(x) = � 1 if 0 � x � 10 otherwiseHere D1 = 0; D2 = 12 ; suppfd(x)g = [0; 1] andp̂(x; �) = 8><>: 0 if x < 0x22� if 0 � x � �x� �2 if x > �This function can also be obtained by applying the Moreau-Yosida regularization [15, p.13] tothe plus function. 8
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Figure 4: The p function p(x; �) = x+ 1� log(1+ e��x) with � = 5
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Figure 5: The sigmoid function s(x; �) = 11+e��x with � = 5
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Example 2.4 Zang Smooth Plus Function [41]Let d(x) = � 1 if �12 � x � 120 otherwiseHere D1 = 18 ; D2 = 0; suppfd(x)g = [�12 ; 12 ] andp̂(x; �) = 8><>: 0 if x < ��212� (x+ �2 )2 if jxj � �2x if x > �2Note that in Examples 2.3 and 2.4 above, the density function d(x) has compact support whilethe smooth function p̂(x; �) is only once continuously di�erentiable. In Examples 2.1 and 2.2, d(x)has in�nite support while the functions p(x; �) and p̂(x; �) are di�erentiable in�nitely often.We summarize the various functions introduced as follows:p̂(x; �) R � ŝ(x; �) R � t̂(x; �) = 1�d(x� )# � �! 0(x)+ R � �(x) R � �(x)" � �! 1p(x; �) = p̂(x; 1�) R � s(x; �) = ŝ(x; 1�) R � t(x; �) = t̂(x; 1�)Because of our favorable experience with the function p(x; �) [5] on linear complementarityproblems and linear and convex inequalities, we chose it for our numerical experiments. Furthercomparisons using di�erent approximations to the plus function are left for future work.3 The Nonlinear Complementarity ProblemIn this section we consider the nonlinear complementarity problem (NCP) of �nding an x in Rnsuch that 0 � x ? F (x) � 0 (9)Here F (x) is a di�erentiable function from Rn to Rn. By using the smooth function p̂(x; �)introduced in last section, we consider the smooth nonlinear equationR(x) = x � p̂(x� F (x); �) = 0 (10)as an approximation to the following nonsmooth equivalent reformulation of the NCPx = (x� F (x))+ (11)We �rst show that a natural residual for the NCP is easily bounded by a corresponding residualfor the nonlinear equation (10). 10



Lemma 3.1kx� (x� F (x))+kp � kx� p̂(x� F (x); �)kp+ 
pmaxfD1; D2g�; p = 1; 2;1; (12)where 
1 = n; 
2 = pn and 
1 = 1. The constants D1 and D2 depend on the density functionused and are de�ned in (7) and (8).Proofkx� (x� F (x))+kp � kx� p̂(x� F (x); �) + p̂(x� F (x); �)� (x� F (x))+kp� kx� p̂(x� F (x); �)kp+ kp̂(x� F (x); �)� (x� F (x))+kp� kx� p̂(x� F (x); �)kp+ 
pmaxfD1; D2g�:The above result is also true for any monotone norm [27].We �rst consider the strongly monotone NCP, that is there exists a k > 0 such that for anyx; y 2 Rn (F (x)� F (y))T (x� y) � kkx� yk2 (13)Since the NCP is strongly monotone, it has a unique solution [12]. The following error bound forthe strongly monotone NCP is given as Theorem 3.2.1 in [33].Lemma 3.2 Let the NCP be strongly monotone and let F (x) be Lipschitz continuous. Then forany x 2 Rn kx� �xkp � Cpkx� (x� F (x))+kp; p = 1; 2;1; (14)where �x is the unique solution of the NCP and Cp is a condition constant of F independent of x.Now, we give an error bound for the NCP by using the smooth function p̂(x; �). By Lemma3.1 and Lemma 3.2, it is easy to get the following lemma.Lemma 3.3 Let the NCP be strongly monotone and let F (x) be Lipschitz continuous. Then forany x 2 Rn kx� �xkp � Cp(kx� p̂(x� F (x); �)kp + 
pmaxfD1; D2g�); p = 1; 2;1; (15)where �x and Cp are de�ned in Lemma 3.2, and 
p and the constants D1, D2 are de�ned in Lemma3.1.Let the residual f(x) of the nonlinear equation (10) be de�ned as followsf(x) = 12R(x)TR(x) = 12kx� p̂(x� F (x); �)k22 (16)We now prove that if x is a stationary point of f(x) for a monotone F (x), then x must be a solutionof the nonlinear equation (10), and hence by (15), x is an approximate solution of the NCP.Proposition 3.1 Suppose that d(x) satis�es (A1) - (A3) and p̂(x; �) is de�ned by (4). For anymonotone NCP, we have that rR(x) is positive de�nite. In addition, let x be a stationary point off(x), then x must be a solution of the nonlinear equation (10).11



Proof By de�nition,rR(x) = diag(p̂0(x� F (x); �))(diag(p̂0�1(x� F (x); �)� 1) +rF(x))By (4) of Proposition 2.2, we have 0 < p̂0(x; �) < 1 and hence the diagonal matrices above arepositive de�nite. Since rF (x) is positive semide�nite, it follows that rR(x) is positive de�nite.Let x be a stationary point of f(x), thenrf(x) = rR(x)TR(x) = 0:Since rR(x) is nonsingular, R(x) = 0, it follows that x satis�es (10).When F (x) is strongly monotone and Lipschitz continuous, then the level sets of f(x) arecompact. We state this result as the following proposition.Proposition 3.2 Consider the strongly monotone NCP with Lipschitz continuous F (x). Thenf(x) de�ned by (16) has compact level sets.Proof Suppose not, then there exists a sequence fxkg � Rn and a positive number M such thatkxkk2 !1 as k!1, and kxk � p̂(xk � F (xk); �)k2 �M . Then by Lemma 3.3 ,kxk � �xk2 � C2(M + 
2maxfD1; D2g�);where x is the unique solution of the NCP. Let k �! 1, the left hand side of the above inequalitygoes to1 and the right hand side stays �nite. This is a contradiction. Hence the level sets of f(x)are compact.We now show that, for the strongly monotone NCP with Lipschitz continuous function F (x),the nonlinear equation (10) always has a unique solution.Theorem 3.1 Suppose that d(x) satis�es (A1) - (A3), p̂(x; �) is de�ned by (4), F (x) is stronglymonotone and Lipschitz continuous. Then the nonlinear equation (10) has a unique solution.Proof By Proposition 3.2, the level sets of f(x) are compact. So minx2Rn f(x) must have a solutionx, which is a stationary point of f(x). By Proposition 3.1 we get that x satis�es (10). If y is anothersolution of (10), then0 = (x� y)(R(x)�R(y)) = (x� y) Z t=1t=0 rR(x+ t(y � x))dt(x� y)for some t 2 [0; 1]. Since rR is positive de�nite by Proposition 3.1, it follows that x = y. Thereforeequation (10) has a unique solution.Let x(�) be a solution of (10). Then x(�) = p̂(x(�)� F (x(�)); �). By Lemma 3.3, we have thefollowing theorem which bounds the distance between the solution x(�) of (10) and the solutionpoint of the original NCP (9).Theorem 3.2 Consider a strongly monotone NCP with Lipschitz continuous F (x). Let x(�) be asolution of (10). Then, for the solution �x of the NCP (9), we have thatkx(�)� �xkp � Cp
pmaxfD1; D2g�; p = 1; 2;1:Here Cp is the condition constant de�ned in Lemma 3.2, 
p and D1, D2 are constants de�ned inLemma 3.1. 12



By the above result, we know that if � is su�ciently small, a solution of (10) can approximatethe solution of NCP to any desired accuracy. Hence we can solve (10) to get an approximatesolution of the NCP.For most part of this remaining section, we consider only the function p(x; �) de�ned in Example2.1. We explore further the property of real numbers x and y that approximately satisfy thefollowing equation x = p(x� y; �)which is related to equation (10) that generates an approximate solution of the NCP. We claimthat such x and y will approximately satisfy0 � x ? y � 0:In order to prove this fundamental fact we establish the following lemma, the proof of which isrelegated to the Appendix 1.Lemma 3.4 Let h(x) be de�ned as follows:h(x) = �x log(1 + � � e�x); � � 0(i) If 0 < � < 1, then maxx2[0;� log �]h(x) � 2:(ii) If � � 1, then maxx2[� log �;0]h(x) � maxf� log2 �; 1eg:(iii) If � = 0, then maxx2[0;1)h(x) � 2e :We will now show that if an x and y satisfy��1� � x� p(x� y; �) � 0;where �1 � 0, then the complementarity condition 0 � x ? y � 0 is approximately satis�ed forlarge �, in the following sense(�x)+ � �1� ; (�y)+ � �1� ; (xy)+ � C(�1)�2 ;where C(�1) is the constant de�ned in Proposition 3.3. Note that as � �! 1, the complementaritycondition 0 � x ? y � 0 is exactly satis�ed.Proposition 3.3 Let x; y 2 R satisfy��1� � x� p(x� y; �) � 0;where �1 � 0. Then (�x)+ � �1� ; (�y)+ � �1� ; (xy)+ � C(�1)�2 ;where C(�1) = maxf2; (e�1 � 1) log2(e�1 � 1)g:13



Proof Let � = e��x + e��y � 1, since��1� � x� (x� y)� 1� log(1 + e��(x�y)) � 0;we have 1 � e��x + e��y � e�1Hence 0 � � � e�1 � 1. Since e��x � e��x + e��y = 1 + � � e�1 ;we have x � � �1� . Hence (�x)+ � �1� :Similarly, (�y)+ � �1� :Now we consider the estimate of (xy)+. Since e��x + e��y = 1 + �, we havey = � 1� log(1 + � � e��x);Therefore y � 0() 1 + � � e��x � 1() e��x � � (17)and y � 0() 1 + � � e��x � 1() e��x � � (18)Case 1 0 < � < 1.If y � 0, then by (17), x � � 1� log �:Hence (xy)+ � maxx2[0;� log �� ]�x� log(1 + � � e��x)= 1�2 maxy2[0;� log �] h(y) (Let y = �x)� 2�2 (By (i) of Lemma 3.4)Otherwise y � 0, then x � � 1� log � � 0:Hence xy � 0, (xy)+ = 0.Case 2 � � 1.If y � 0, then by (17), x � � 1� log � � 0:14



Hence xy � 0, (xy)+ = 0. Otherwise y � 0, then x � � 1� log �. If x � 0, then (xy)+ = 0. Now weonly consider the case x < 0. Therefore(xy)+ � maxx2[� log �� ;0]�x� log(1 + � � e��x) = 1�2 maxy2[� log �;0]h(y) (Let y = �x):By (ii) of Lemma 3.4,(xy)+ � 1�2 maxf1e ; � log2 �g � 1�2 maxf1e; (e�1 � 1) log2(e�1 � 1)g:Case 3 � = 0.In this case, we have x � 0 and y � 0. By using (iv) of Lemma 3.4,(xy)+ � 1�2 maxx2[01)h(x) � 1�2 2eCombining the above three cases, we get (xy)+ � C(�1)�2 :Even in the case of a solvable monotone nonlinear complementarity problem (e.g. 0 � x ?F (x) � 0; F (x) := 0), the nonlinear equation (10) may not necessarily have a solution. However,for all �1 � D1, and �2 � D2, the following system of inequalities��1�1 � x� p̂(x� F(x); �)� �2�1; (19)always has a solution for � > 0. In particular, for the p(x; �) de�ned in Example 2.1 we have thatfor all �1 � log 2, the following system of inequalities��1� 1 � x� p(x� F(x); �) � 0; (20)always has a solution. Hence by Proposition 3.3, a solution of (20) will approximately satisfy theNCP condition x � 0; F (x) � 0; xTF (x) = 0:Consequently, Proposition 3.3 can be used to establish the following useful theorem.Theorem 3.3 Consider a solvable nonlinear complementarity problem (9). Let �1 � log 2 and� > 0. There exists x satisfy (20), and consequently the NCP conditions are approximately satis�edas follows: (�x)+ � �1� 1; (�F(x))+ � �1� 1; (xTF(x))+ � nC(�1)�2 ;where C(�1) is de�ned in Proposition 3.3.We now specify our computational algorithm for solving the NCP by smoothing. The algorithmconsists of a Newton method with an Armijo line search with parameters � and � such that 0 < � < 1and 0 < � < 12 .Algorithm 3.1 Newton NCP AlgorithmGiven x0 2 Rn and let k = 0. 15



(1) If krf(xk)k < �, stop.(2) Direction dk dk = �rR(xk)�1R(xk)(3) Stepsize �k ( Armijo )xk+1 = xk + �kdk; �k = maxf1; �; �2; � � �g; s.t.f(xk)� f(xk+1) � ��kjdTkrf(xk)jk = k + 1 go to step (1).The above algorithm is well de�ned for a monotone NCP with a continuously di�erentiableF (x). We will state the following convergence theorem [7]. We omit the proof that is similar to theproof of Theorem 4.3.Theorem 3.4 Consider a solvable monotone nonlinear complementarity problem (9) with F (x) 2LC1K(Rn). Then(1) The sequence fxkg de�ned in Algorithm 3.1 is will de�ned.(2) Any accumulation point of the above sequence solves the nonlinear equation (10).(3) If an accumulation point exists, the whole sequence fxkg converges to �x quadratically.(4) If, in addition, F is strongly monotone and Lipschitz continuous, then the sequence fxkgconverges to �x, the solution of (10), at a quadratic rate.4 The Mixed Complementarity ProblemThe mixed complementarity problem (MCP) is de�ned as follows [8]:Given a di�erentiable F : Rn �! Rn; l; u 2 �Rn; l < u, where �R = R [ f+1;�1g, �ndx; w; v 2 Rn, such that F (x)� w + v = 00 � x� l ? w � 00 � v ? u� x � 0 (21)This MCP model includes many classes of mathematical programming problems, such as nonlinearequations, nonlinear programming, nonlinear complementarity problems and variational inequali-ties.By using the smooth function p̂(x; �) instead of the plus function, we reformulate the MCPapproximately as follows.For i = 1; � � � ; n:Case 1. li = �1 and ui =1: Fi(x) = 0Case 2. li > �1 and ui =1: xi � li � p̂(xi � li � Fi(x); �) = 016



Case 3. li = �1 and ui <1: xi � ui + p̂(ui � xi + Fi(x); �) = 0 (22)Case 4. li > �1 and ui <1: Fi(x)� wi + vi = 0xi � li � p̂(xi � li � wi; �) = 0ui � xi � p̂(ui � xi � vi; �) = 0:We will denote the above 4 cases collectively by the nonlinear equationR(x; w; v) = 0 (23)Note that the natural residual for the MCP is given by the left hand side of above relation withthe p̂ function replaced by the plus function. We denote collectively this natural residual byr(x; w; v) (24)Now we give a lemma that bound the natural residual for MCP by residual of the equation (23) isvice versa. The proof is a simple application of the properties of the p function.Lemma 4.1 Let N be number of equations in (23) and p(x; �) de�ned in Example 2.1. ThenkR(x; w; v)k2 � kr(x; w; v)k2+ pN log 2�0and kr(x; w; v)k2 � kR(x; w; v)k2+ pN log 2�0Let f(x; w; v) be the residual function of the nonlinear equation (23) de�ned as followsf(x; w; v) = 12R(x; w; v)TR(x; w; v) (25)Now we state an existence result for the monotone MCP with l; u 2 Rn.Theorem 4.1 Suppose that d(x) satis�es (A1) - (A3) and p̂(x; �) is de�ned by (4). Consider asolvable mixed complementarity problem (21) with monotone F (x) and l; u 2 Rn. The nonlinearequation (23) has a solution for su�ciently small �.Proof We shall prove that a level set of f(x; w; v) is nonempty and compact. First we will provethat the set X = fxjf(x; w; v)� Cg is compact for all C 2 R. Since f is continuous, the level set Xis closed. Hence we only need the show the set X is bounded. Suppose not, there exists fxkg 2 Xand there exists 1 � i � n such that xki goes to +1 or �1. Without loss of generality, we assumethat xki goes to +1. Then the residual corresponding to the following equation approaches 1:ui � xi � p̂(ui � xi � vi; �) = 0:17



This contradicts the fact that xk 2 X . Let C = 14nmaxfD1; D2g2�2, where D1 and D2 arenonnegative constants de�ned in (7) and (8), it is easy to show that the level set LevC(f) =f(x; w; v)jf(x; w; v)� Cg is not empty. Now we will prove that LevC(f) is compact for� < min1�i�n(ui � li)pnmaxfD1; D2g :We have proven that the x part must be bounded. Therefore, if the level set LevC(f) is unbounded,there exists (xk; wk; vk) 2 LevC(f) such that (wk; vk) are unbounded. Without loss of generality,we assume xk �! �x and there exist 1 � i � n such wki �! +1 or �1 as k �! 1. If wki �! �1,the residual corresponding to the equationxi � li � p̂(xi � li � wi; �) = 0:goes to 1 as k �! 1. But (xk; wk; vk) 2 LevC(f), which is a contradiction. Otherwise, wki �!+1. By the equation Fi(x)� wi + vi = 0and the fact that xk is bounded, we get that as k �! 1, vki �! +1. Hence, as k �! 1,f(xk ; wk; vk) � 12((ui � xki � p̂(ui � xki � vki ; �))2 + (xki � li � p̂(xki � li � wki ; �))2)�! 12((ui � �xi)2 + (�xi � li)2) � 14(ui � li)2 > 14nmaxfD1; D2g2�2 = Cfor all � < min1�i�n(ui � li)pnmaxfD1; D2g :This contradicts that (xk; wk; vk) 2 LevC(f). Hence there exists a level set of f(x; w; v) which isnonempty and compact. Therefore the problemminx;w;v f(x; w; v)must have a minimum, which satis�esrf(x; w; v) = rR(x; w; v)TR(x; w; v) = 0:Let �1 = diag(p̂0(x� l � w; �)) and �2 = diag(p̂0(u� x� v; �)), thenrR(x; w; v) = 24 rF (x) �I II � �1 �1 0�2 � I 0 �2 35Notice that24 I ��11 ���120 I 00 0 I 35rR(x; w; v) = 24 rF (x) + ��11 +��12 � 2I 0 0I � �1 �1 0�2 � I 0 �2 35and 0 < p̂0(x� l �w; �)); p̂0(u � x � v; �)) < 1. When F is monotone, the Jacobian rR(x; w; v)is nonsingular. Therefore rf(x; w; v) = 0 =) R(x; w; v) = 0From now on, we only consider the function p(x; �) de�ned in Example 2.1. The followingtheorem is a direct application of Proposition 3.3. that can be proved by applying the Proportion3.3 to each equation. 18



Theorem 4.2 Consider a solvable mixed complementarity problem (21). Let �1 � log 2 and � > 0.Then the following system of inequalities For i = 1; � � � ; n:Case 1. li = �1 and ui =1: ��1� � Fi(x) = 0 � �1�Case 2. li > �1 and ui =1: ��1� � xi � li � p̂(xi � li � Fi(x); �) � 0Case 3. li = �1 and ui <1: 0 � xi � ui + p̂(ui � xi + Fi(x); �) � �1� (26)Case 4. li > �1 and ui <1: ��1� � Fi(x)� wi + vi � �1���1� � xi � li � p̂(xi � li � wi; �) � 0��1� � ui � xi � p̂(ui � xi � vi; �) � 0:where p(x; �) is de�ned in Example 2.1, always has a solution (x; w; v) and a solution (x; w; v)satis�es the MCP conditions approximately in the following senseFor i = 1; � � � ; n:Case 1. li = �1 and ui =1: jFi(x)j � �1�Case 2. li > �1 and ui =1:(li � xi)+ � �1� ; (�Fi(x))+ � �1� ; ((xi � li)Fi(x))+ � C(�1)�2 ;Case 3. li = �1 and ui <1:(xi � ui)+ � �1� ; (Fi(x))+ � �1� ; (�(ui � xi)Fi(x))+ � C(�1)�2 ;Case 4. li > �1 and ui <1: jFi(x)� wi + vij � �1� ;(li � xi)+ � �1� ; (�wi)+ � �1� ; ((xi � li)wi)+ � C(�1)�2 ;(xi � ui)+ � �1� ; (�vi)+ � �1� ; ((ui � xi)vi)+ � C(�1)�2 ;where C(�1) is de�ned in Proposition 3.3. 19



Now we state the smooth method for the mixed complementarity problem based on the NewtonAlgorithm 3.1 in which the smoothing parameter will be adjusted. In the algorithm, we adjust thesmoothing parameter � in reverse proportion to the natural residual r(x; w; v) of (24) for the MCPin the following way. Let N be the total number of nonlinear equations in (23) and (x; w; v) becurrent point. Let �(x; w; v) = 8<: pNkr(x;w;v)k2 if kr(x; w; v)k2 < pNq pNkr(x;w;v)k2 otherwise (27)The following smooth algorithm generates an ��accurate solution for the MCP, in the sense thatthe natural residual r(x; w; v) of (24) satis�es kr(x; w; v)k1 � �.In order to get an ��accurate solution for the MCP. We need � su�cient large. We will establisha simple lemma before we get the �.Lemma 4.2 Let real numbers a and b satisfy(�a)+ � �1� ; (�b)+ � �1� and (ab)+ � C(�1)�2 ;then jmin(a; b)j � maxf�1;pC(�1)g� ;where C(�1) is de�ned in Proposition 3.3.Proof Without loss of generality, we assume that a � b. If a � 0, then (ab)+ � a2. Thereforejmin(a; b)j= a �p(ab)+ � pC(�1)� :If a < 0, jmin(a; b)j= �a = (�a)+ � �1� :Combining the above two cases, the conclusion follows.Therefore to satisfy jmin(a; b)j � �, we choose � � maxf�1;pC(�1)g� . By using �1 = log 2, weobtain from the de�nition of C(�1), when � � �max � p2� , that jmin(a; b)j � �.Algorithm 4.1 Smooth Algorithm for MCP Input tolerance �, parameter �1 � � > 1 andinitial guess x0 2 Rn(1) Initialization For 1 � i � n of Case 4 of (22), let wi0 = (Fi(x0))+, vi0 = (�Fi(x0))+, k = 0and �0 = �(x0; w0; v0). Choose �max � p2�(2) If kr(xk; wk; vk)k1 � �, stop.(3) Newton Armijo Step Find (xk+1; wk+1; vk+1) by a Newton-Armijo step applied toR(x; w; v) = 0:20



(4) Parameter Update If �(xk+1; wk+1; vk+1) � ��k, set�k+1 = �(xk+1; wk+1; vk+1);otherwise if krf(xk+1; wk+1; vk+1)k2 � �, set�k+1 = �1�k :If �k+1 > �max, set �k+1 = �max. Let k = k + 1, go to step (2).Let I denote the index set of the Fi of Case 1, J of Case 2, K of Case 3 and L of Case 4 of (22).In order to characterize the nonsingularity of rR, we now give a de�nition of a regular MCP. Notethat the monotone NCP is regular. More generally, an NCP with a P0 Jacobian matrix is regular.De�nition 4.1 An MCP is called regular if2664 rFI(x)rFJ (x)rFK(x)rFL(x) 3775+ 2664 0 DJ DK DL 3775is nonsingular, for all positive diagonal matrices DJ ,DK and DL, that has the dimension of jJ j,jKj and jLj respectively.Theorem 4.3 Consider a solvable regular mixed complementarity problem (21) with with F (x) 2LC1K(Rn). Then(1) The sequence fxk; wk; vkg de�ned in Algorithm 4.1 exists.(2) Any accumulation point of the above sequence is an ��accurate solution of the MCP (21).(3) If an accumulation point exists, the whole sequence fxk; wk; vkg converges to an ��accuratesolution quadratically.(4) If, in addition, the level set f(x; w; v) j kr(x; w; v)k2 � kr(x0; w0; v0)k2 + �� � 1 2pN log 2�0 g iscompact, the sequence fxk; wk; vkg converges to an ��accurate solution at a quadratic rate.Proof We denote (xk; wk; vk) by yk and (�x; �w; �v) by �y.(1) Let �J = diag(p0(xJ�lJ�FJ (x); �)), �K = diag(p0(uK�xK�FK(x); �)), �L1 = diag(p0(xL � lL � w; �))and �L2 = diag(p0(uL � xL � v; �)), thenrR(x; w; v) = 26666664 I �J �K I I I 3777777526666664 rIFI(x) rJFI(x) rKFI(x) rLFI(x)rIFJ(x) rJFJ (x) rKFJ(x) rLFJ(x)rIFK(x) rJFK(x) rKFK(x) rLFK(x)rIFL(x) rJFL(x) rKFL(x) rLFL(x) �I II � �L1 �L1�L2 � I �L2 3777777521



+26666664 0 I � �J I � �K 0 0 0 37777775Therefore 26666664 I I I I ��1L1 ���1L2I I 37777775rR(x; w; v) =26666664 I �J �K I I I 37777775 (26666664 rFI(x) 0rFJ (x) 0rFK(x) 0rFL(x) 00 00 0 37777775+26666664 0 ��1J � I ��1K � I ��1L1 +��1L2 � 2II � �L1 �L1�L2 � I �L2 37777775)Hence rR(x; w; v) is nonsingular if the MCP is regular. If F 2 LC1K(Rn), then f(xk; wk; vk)g arewell de�ned.(2) For an accumulation point �y, we have yki �! �y. Since the parameter � can be changedonly �nite many times, then �k = ��, for all k � �k. Therefore, without loss generality, we considerthe sequence fykig for �xed ��. In case that f(�y) = 0, for ��, we have �� = �max. Otherwise, sincekrf(yki)k2 �! 0, there exists an �i such that krf(yk�i)k2 � �. By (4) of Algorithm 4.1, �� willchange to �1 ��. That contradicts the de�nition of ��. Hence R(�y) = 0 for �� = �max, �y is an ��accurate solution of the MCP (21). The other case is that f(�y) > 0 for ��. Since F 2 LC1K(Rn), fora compact set S whose interior contains fykig and �y, we have that R(y) 2 LC1K1(S) for some K1.By Quadratic Bound Lemma [27, p.144], we havekf(yki + �kidki)� f(yki)� rf(yki)T�kidkik2 � K12 k�kidkik22:Since rR(y) is nonsingular, on the compact S, there exists K(S) and k(S) such thatxTrR�T (y)rR�1(y)x � K(S)xTx; 8y 2 S; x 2 Rnand xTrR�1(y)rR�T (y)x � k(S)xTx; 8y 2 S; x 2 Rn:Consequentlyf(yki)� f(yki + �kidki) � ��kirf(yki)Tdki � K12 �2kiR(yki)TrR(yki)�TrR(yki)�1R(yki)� ��kirf(yki)Tdki � K1K(S)2 �2kiR(yki)TR(yki) = �ki(1� K1K(S)2 �ki)jrf(yki)Tdki j22



� �ki�jrf(yki)Td(yki)j; if �ki � 2(1� �)K1K(S)By the rule of choosing �ki , we have �ki � � 2(1��)K1K(S) , where � is the constant used in Armijo stepsize.Therefore f(yki)� f(yki + �kidki) � 2�� 1� �K1K(S) jrf(yki)Td(yki)j= 2�� 1� �K1K(S)jrf(yki)TrR(yki)�1rR(yki)�Trf(yki)j� 2��k(S) 1� �K1K(S)krf(yki)k22Since yki �! �y, we have rf(�y) = 0. Thus R(�y) = 0 and f(�y) = 0. This contradicts the assumptionf(�y) > 0. This case cannot occur.(3) By the analysis in (2), we have yki �! �y, R(�y) = 0 and R(y) 2 LCK1(S). ThereforekR(y + d)�R(y)�rR(y)Tdk2 � K12 kdk22for y; y + d 2 S. For d = rR(y)�1R(y), we havekR(y)k22� kR(y + d)k22 � kR(y)k22� (K12 kdk22)2 � (1� K21K(S)24 kR(y)k22)kR(y)k22= (1� K21K(S)24 kR(y)k22)jrf(y)Tdj � �jrf(y)Tdj; if kR(y)k2 � 2p1� �K1K(S)Hence, if y is close enough to �y, the Newton step accepted. According to the standard result oflocal quadratic convergence for Newton Method, Theorem 5.2.1 in [7], the conclusion follows.(4) Let �i; i = 0; 1; � � �, be the sequence of di�erent parameters � used in Algorithm 4.1. Letfkig; i = 0; 1; � � �, with k0 = 0 , be the indices such that the parameter � changes, that is forki � k � ki+1 � 1, �k = �i. For �0 and y0, by Lemma 4.1, we havekR(y0)k2 � kr(y0)k2 + pN log 2�0For k0 � k < k1, since f(yk) � f(y0) with �0,kR(yk)k2 � kR(y0)k2 � kr(y0)k2 + pN log 2�0By Lemma 4.1, kr(yk)k2 � kR(yk)k2 + pN log 2�0 � kr(y0)k2 + 2pN log 2�0For �1 and yk1�1, by Lemma 4.1,kR(yk1�1)k2 � kr(yk1�1)k2 + pN log 2�1 � kr(y0)k2 + 2pN log 2�0 + pN log 2��023



For k1 � k < k2, since f(yk) � f(yk1�1) with �1,kR(yk)k2 � kR(yk1�1)k2 � kr(y0)k2 + 2pN log 2�0 + pN log 2��0By Lemma 4.1,kr(yk)k2 � kR(yk)k2 + pN log 2�1 � kr(y0)k2 + 2pN log 2�0 + 2pN log 2��0Inductively, for �i and yki�1,kR(yki�1)k2 � kr(y0)k2 + 2pN log 2�0 + 2pN log 2��0 + � � �+ 2pN log 2�i�1�0 + pN log 2�i�0for ki � k < ki+1,kR(yk)k2 � kr(y0)k2 + 2pN log 2�0 + 2pN log 2��0 + � � �+ 2pN log 2�i�1�0 + pN log 2�i�0kr(yk)k2 � kr(y0)k2 + 2pN log 2�0 + 2pN log 2��0 + � � �+ 2pN log 2�i�1�0 + 2pN log 2�i�0Therefore, for all k we havekr(yk)k2 � kr(y0)k2 + 2pN log 2�0 (1 + 1� + 1�2 + � � �) � kr(y0)k2 + �� � 1 2pN log 2�0If the level set fyjkr(y)k2 � kr(y0)k2 + �� � 1 2pN log 2�0 g is compact, there exists an accumulationpoint. By (2) and (3), the whole sequence converges to an ��accurate solution of MCP (21).We shall give our numerical test results for Algorithm 4.1 in Section 6, after relating our smoothapproach to the central path of the interior point method [19] in Section 5.5 Relation to the Interior Point MethodIn this section, we consider the NCP (9). Let the density function d(x) satisfy (A1)-(A3) andD2 = 0, and let let p̂(x; �) be de�ned by (4). If x solves the nonlinear equation (10) exactly, thenx = p̂(x� F (x); �) > x� F (x)where the last inequality follows from the fact that p̂(�; �) > �, (5) of Proposition 2.2. Hencex > 0 F (x) > 0;and x belongs to the interior of the feasible region fx j F (x) � 0; x � 0g of the NCP. Hence an exactsolution of (10) is interior to the feasible region. However the iterates of the smooth method, whichare only approximate solutions of (10), are not necessarily feasible. For the function p̂ de�ned inExample 2.2 [38, 17, 4] , the exact solution x of the equation (10) satis�esx > 0; F (x) > 0; xiFi(x) = �2; i = 1; � � � ; n24



which is precisely the central path of the interior point method for solving NCP. Methods thattrace this path but allow iterates to be exterior to the feasible region have been proposed in [38],[4] and [17]. In [18], the relation between Smale's method [38] and the central path was pointedout. For our function p̂ de�ned in Example 2.1, the solution x of the nonlinear equation (10), fordi�erent values of �, constitutes another path in the interior of the feasible region that satis�es:x > 0; F (x) > 0; xiFi(x) � 2�2; i = 1; � � � ; nWe now compare our path and the central path of the interior point method by using a very simpleexample.Example 5.1 Let F (x) = Mx+ q, whereM = � 1 22 5 � ; q = � �1�1 �The unique solution is (1; 0). Figure 7 depicts the central path of the interior point methodas well as the smooth path generated by an exact solution of the smooth nonlinear equation (10).Figure 8 depicts the error along the central path and along our smooth path as a function of thesmoothing parameter �. The error is measured by the distance to the solution point. For thisexample, the error along our smooth path is smaller than that along the central path for the samevalue of the parameter �.6 Numerical ResultsIn this section, we give our computational experience with the smooth Algorithm 4.1 for the MCP.We implemented the smooth Algorithm 4.1 with an SOR preprocessor if all diagonal elements of theJacobian matrix are positive. An initial scaling of the function Fi(x), inversely proportional to theabsolute value of the diagonal elements of the Jacobian matrix, is performed if jriFi(x0)j � 100.The details of implementing the smooth algorithm are given in Appendix 2. For comparison, wealso give the results for the PATH solver [8]. Both algorithms were run on a DECstation 5000/125.Among the 52 test problems, which includes all the problems attempted in [13], [30] and [8], 51problems are from the MCPLIB [9], and one is the generalized von Th�unen model from [30] and [39].Our smooth algorithm was run using one set of default parameters and so was the PATH solver.The smooth algorithm is written in the C language and implemented by using the GAMS/CPLIB[10]. A MINOS routine [25] was used to perform a sparse LU decomposition for solving sparselinear equations. Both algorithms use the same convergence tolerance of � = 1:0e� 6.Table 1 gives a simple description of the test problems [9].
25



0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

*

Solution

Central Path

Smooth PathFigure 7: Comparison of the interior smooth path generated by an exact solution ofthe smooth nonlinear equation (10) versus the central path for Example 5.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Smoothing Parameter Beta

Er
ro

r

Central Path Error

Smooth Path ErrorFigure 8: Error comparison for the central path versus the smooth path for Example5.1 26



Table 1: MCPLIB ProblemsModel origin GAMS �le SizeDistillation column modeling (NLE) hydroc20.gms 99Distillation column modeling (NLE) hydroc06.gms 29Distillation column modeling (NLE) methan08.gms 31NLP problem form Powell (NLP) powell mcp.gms 8NLP problem form Powell (NLP) powell.gms 16NLP test problem form Colville (NLP) colvncp.gms 15Dual of Colville problem (NLP) colvdual.gms 20Obstacle problem (NLP)(6 cases) obstacle.gms � 5625Obstacle Bratu problem (NLP)(6 cases) bratu.gms � 5625(NCP) cycle.gms 1(NCP) josephy.gms 4(NCP) kojshin.gms 4(LCP) explcp.gms 16Elastohydrodynamic lubrication (NCP) ehl kost.gms 101Nash equilibrium (VI) nash.gms 10Nash equilibrium (VI) choi.gms 13Spatial price equilibrium (VI) sppe.gms 27Spatial price equilibrium (VI) tobin.gms 42Walrasian equilibrium (VI)(2 cases) mathi*.gms 4Walrasian equilibrium (VI)(2 cases) scarfa*.gms 14Walrasian equilibrium (VI)(2 cases) scarfb*.gms 40Tra�c assignment (VI) gafni.gms 5Tra�c assignment (VI) bertsekas.gms 15Tra�c assignment (VI) freebert.gms 15Invariant capital stock (VI) hanskoop.gms 14Project Independence energy system (VI) pies.gms 42Optimal control (Extended LQP)(6 cases) opt cont.gms � 8192Optimal control from Bertsekas (MCP)(6 cases) bert oc.gms � 5000The average CPU times taken by PATH solver and smooth algorithm for all small problemsare depicted in Figure 9. Figures 10, 11 and 12 depict the CPU times for all remaining problemsexcept the von Th�unen model. We note that the PATH solver [8] is faster than Josephy's Newtonmethod [16] and Rutherford's GAMS [10] mixed inequality and linear equation solver (MILES)[37] which is also Newton-based. Figures 9 to 12 indicate that our smooth algorithm is faster thanPATH solver for the larger problems, whereas PATH solver is faster on smaller problems.The newest version of PATH (PATH 2.7) that uses a Newton method on the active set [2] as apreprocessor, improves solution times on the larger problems. Our smooth method can be similarlyimproved by adding the projected Newton preprocessor. We have compared PATH and SMOOTHwith a Newton preprocessor on a Sun SPARCstation 20. The results are given in Figures 13 to 16.It can be seen that with a Newton preprocessor, the solution times are very similar for PATH andSMOOTH for larger problems, whereas PATH is still better for the smaller problems.As mentioned in [30], the generalized von Th�unen model is an NCP with 106 variables. Thisis a very di�cult problem that has challenged many of the recently proposed algorithms [30, 39].In order to guarantee that the function F (x) is well de�ned, we added a lower bound of 1.0e-7 tovariables x1 to x26 as suggested by Jong-Shi Pang. We used three starting points. In the �rst, we27
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set all variables to 1, as suggested by Michael C. Ferris; the second one is a starting point suggestedin [39], while the third is the point suggested in [39] and modi�ed by Jong-Shi Pang. SMOOTH,with or without the Newton preprocessor, solved the problem from all the three starting points.Solution times did not change by adding the Newton preprocessor. We report times for SMOOTHwith the preprocessor. Starting with the �rst point, SMOOTH took a long time, 95.44 secondsto solve the problem. From the second point, we obtained a solution in 36 iterations and 3.70seconds and from the third point, we obtained a solution in 49 iterations and 7.01 seconds. PATH2.7 solved the problem 7 times out of 10 from the �rst starting point, 6 times out of 10 from thesecond starting point, and 5 times out of 10 from the third starting point. The average times of thesuccessful PATH runs were 2.59, 3.94 and 3.21 seconds for the �rst, second and third starting pointsrespectively. We note that when the arti�cially imposed lower bounds on x1 to x26 were removed,PATH failed from all starting points and SMOOTH failed from the �rst and second starting points.However from the third starting point, SMOOTH generated a solution with some small negativecomponents which, when set to 1.0e-9, gave a solution accurate to 1.79539e-7.Summing up the numerical experiments with PATH and SMOOTH, we believe that compar-isons between the two methods without a Newton preprocessor is more indicative of their relativee�ectiveness. With the Newton preprocessor, a lot of the work for the larger problems is performedby the Newton preprocessor and hence the nearly equal performance of the two methods on theseproblems.7 ConclusionSmoothing is an e�ective approximate reformulation for a wide range of complementarity problemsto any desired degree of accuracy. Newton-type methods for solving smooth problems constitutea powerful computational approach for solving these problems. Parallelization of smooth methodsfor large-scale problems and their extension to other nonconvex and nonsmooth problems, are twopromising research areas worth investigating.Appendix 1In order to prove Lemma 3.4, we need the following lemma.Lemma 7.1 (i) Let t(x) = xe�x, thenmaxx2[a;b] t(x) � maxft(a); t(b); 1eg:(ii) Let g(x) = x2(1 + �)ex � 1 ; � � 0; � log(1 + �) 62 [a; b]then maxx2[a;b]g(x) � maxfg(a); g(b); 21 + � t(a); 21 + � t(b); 2(1 + �)eg:(iii) Let h(x) be de�ned in Lemma 3.4, � log(1 + �) 62 [a; b], thenmaxx2[a;b]h(x) � maxfh(a); h(b); g(a); g(b); 21 + � t(a); 21 + � t(b); 2(1 + �)eg:32



Proof (i) By de�nition, t0(x) = e�x � xe�x = (1� x)e�x, hence t0(x) = 0 implies x = 1. Thereforemaxx2[a;b] t(x) � maxft(a); t(b); t(1)g= maxft(a); t(b); 1eg:(ii) Notice � log(1 + �) 62 [a; b] and � � 0, we knowg0(x) = 2x((1 + �)ex � 1)� x2(1 + �)ex((1 + �)ex � 1)2 :Hence g0(x) = 0 implies x = 0 or (1 + �)ex � 1 = 1 + �2 xex:By (i) and g(0) = 0 maxx2[a;b]g(x) � maxfg(a); g(b); g(0); 21 + � maxx2[a;b] t(x)g� maxfg(a); g(b); 21 + � t(a); 21 + � t(b); 2(1 + �)eg:(iii) Since h0(x) = � log(1 + � � e�x)� xe�x1 + � � e�x ;the point x is a stationary point of h(x) if and only iflog(1 + � � e�x) = � xe�x1 + � � e�x = � x(1 + �)ex � 1 :Therefore, by (ii), maxx2[a;b]h(x) � maxfh(a); h(b); maxx2[a;b]g(x)g� maxfh(a); h(b); g(a); g(b); 21 + � t(a); 21 + � t(b); 2(1 + �)eg:Proof of Lemma 3.4(i) If 0 < � < 1, � log(1 + �) 62 [0;� log �]. By (iii) of Lemma 7.1 and noticeh(0) = 0; h(� log �) = 0; g(0) = 0; g(� log �) = � log2 �; t(0) = 0; t(� log �) = �� log �;we have maxx2[0;� log �]h(x) � maxf� log2 �;� 2�1 + � log �; 2(1 + �)eg:It is easy to get max�2[0;1]� log2 � � 4e2 ; max�2[0;1]� 2�1 + � log � � 2:Combining the above inequalities, we get the conclusion.33



(ii) If � � 1, � log(1 + �) 62 [� log �; 0]. Similarly with (i), we knowh(0) = 0; h(� log �) = 0; g(0) = 0; g(� log �) = � log2 �; t(0) = 0; t(� log �) = �� log �:By (iii) of Lemma 7.1,maxx2[� log �;0]h(x) � maxf� log2 �;� 2�1 + � log �; 2(1 + �)eg � maxf� log2 �; 1eg:(iv) If � = 0,limx�!0 h(x) = 0; limx�!1 h(x) = 0; limx�!0 g(x) = 0; limx�!1 g(x) = 0; limx�!0 t(x) = 0; limx�!1 t(x) = 0;For any � > 0, we have 0 = � log(1 + �) 62 [�;+1). And there exists �0 > 0 such thath(�) < 2e ; g(�) < 2e ; t(�) < 1e; for 0 < � < �0Therefore, for 0 < � < �0 maxx2[�;1)h(x) � 2eLet � approaches 0, we have maxx2[0;1)h(x) � 2eAppendix 2Here is the actual implementation of the smooth algorithm 4.1. In the following algorithm (xk; wk; vk)is simply denoted by yk .Algorithm 7.1 Smooth Algorithm for MCP Input tolerance � = 1:0e � 6, and initial guessx0 2 Rn(1) Initialization For 1 � i � n of Case 4 of (22), let wi0 = (Fi(x0))+, vi0 = (�Fi(x0))+, k = 0and �0 = �(y0).(2) If kr(y0)k1 � �, stop.(3) Newton Direction dk dk = �rR(yk)�1R(yk)In order to avoid nonsingularity, for the Case 2-4 of (22), if riRi(yk) < 1:0e � 9, letriRi(yk) = 1:0e� 9.(4) Stepsize �k ( Armijo )yk+1 = yk + �kdk; �k = maxf1; �; �2; � � �g; s.t.f(yk+1) � f(yk)where � = 0:75. 34
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