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1. Introduction 

In this paper we shall study a class of stochastic control problems which admit very explicit 

solutions. The problems come from economy, and we shall first present them from an 

economic point of view. 

Consider a company which wants to adjust its production capacity to a fluctuating market. 

As the market improves and demand increases, the company naturally wants to expand 

its capacity, but the problem is that the investments needed for the expansion are irre­

versible in the sense that if the market later fails, the company can not get the invested 

capital back by reducing the capacity. There are many examples of investments which are 

irreversible or nearly irreversible in this sense; e.g., investments in highly specialized pro­

duction equipment or in an extended work force which can not easily be reduced for legal or 

humanitarian reasons (see Pindyck (1988, 1991a,b) for detailed discussions of irreversible 

investments from an economist's point of view). In its search for a strategy maximizing 

the long term profit, the company obviously has to balance its urge to expand in a good 

market with the fear of overinvesting and hence losing money if the market drops. 

We shall be studying a very simple mathematical model for this quite general and complex 

economic problem. At any time, our company's financial situation will be described by 

two nonnegative, real parameters(} and k, where k is just the current production capacity, 

and (} is an economic indicator for the state of the market - intuitively, a high value of (} 

corresponds to a booming economy with high demand, while a low value for(} indicates a 

market with little activity and low demand. To specify the actual income and expenditure 

of the company, we introduce two functions 

rr,r: [O,oo) X [O,oo)---+ [O,oo) 

with the following interpretation: II(B, k) is the net profit per unit time the company is 

making from its production in the economic situation described by (B, k), while r(B, k + 
D.k)- r(B, k) is the investment needed in order to increase the capacity from k to k + D.k. 

To model the statistical development of the market, we shall use a one-dimensional, geo­

metric Brownian motion 

(1.1) 
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where a and {3 are two (fixed) real parameters, and B is a Brownian motion. Thus if the 

market is in state (} at time 0, its state at time t is given by the random variable 

(1.2) 

Roughly speaking, an expansion strategy for the company will be an increasing process Kt 

which is measurable with respect to the a-algebra a{8s : s ~ t} generated by 8 up to time 

t (see Section 3 for the technical details), and the total, discounted profit the company 

makes from such a strategy is heuristically given by 

(1.3) 

00 

J(K) = E 0•1c[J e-rt(II(8t, Kt)dt- r~c(8t, Kt)dKt)], 

0 

where r E R+ is a constant discount factor, r1c is the partial derivative of r w.r.t. the 

variable k, and E 0•1c denotes expectation w.r.t. the processes (8t, Kt) started at ((}, k). (It 

turns out that when Kt is not absolutely continuous, we have to modify (1.3) somewhat 

(see Section 3), but this need not worry us for the time being). Our aim is to find the 

strategy K which maximizes the profit J(K). 

Let us try to approach the problem in an intuitive and, perhaps, slightly naive way. Assume 

first that we start in the situation indicated by ((}1, kl)~in Figure I.l; i.e. in a situation 

where our capacity is large, but demand very low. 

c 

Figure 1.1 

Under normal circumstances, we would clearly not want to expand in such a state. If, on 

the other hand, we are in the situation indicated by ((}2 , k2) where demand is high, but 

our capacity quite small, we would probably want to make a major investment as soon as 

possible. It's reasonable to assume that there will be a clear boundary between the points 

where we want to invest and those where we want to wait - perhaps something like the 

curve C in Figure I.l. With this picture in mind, it's easy to get an intuitive understanding 

of what the optimal policy must be: If we start at a point above C, we just wait till we 

hit C, and then invest just enough to always keep us on or above C. If, on the other hand, 
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we start below C, we immediately invest just enough to get up to C, and then follow the 

strategy above. 

As we shall see, this simple, intuitive picture is indeed correct, but the problem is to identify 

the "forbidden region" (under the curve C) which the process (8t, Kt) is not allowed to 

enter. It turns out that (under some assumptions) this region has a very simple description 

in terms of two functions 

'I/J1, 'I/J2 : [0, oo) --+ [0, oo] 

(note that we allow 'I/J1, 'I/J2 to take the value oo). Before we write down the definitions of . 

these functions, we need to introduce the following notation. The differential operator A 
defined by 

(1.4) Ah(B) = ~ 2 
B2h"(B) + aBh'(B)- rh(B) 

is basically the infinitesimal generator 

(1.5) Aoh( B) = ~ 2 
02 h" (B) + aBh' (B) 

of the geometric Brownian motion e with an extra term added to handle the discount 

factor e-rt. To see the relationship between A and our problem more clearly, just observe 

that by Ito's formula 

t 

E[h(8t)e-rt] = h(8o) + E(J Ah(88 )e-r8 ds) 

0 

for all sufficiently regular functions h. Note that A is an Euler-operator with characteristic 

equation 

(1.6) 

and let '/'1 be the positive and '/'2 the negative root of this equation. We now define 'I/J1 and 

'I/J2 by 

0 

(1. 7) 'I/J1(k) = inf{B: J (Tile+ ~~~)('T/, k) d'T/ > 0} 

0 

00 

(1.8) 'I/J2(k) =sup{(): j (Tile+ ~~~)('T/, k) d'T/ > 0}, 

0 
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(where fh and r1c denote the partial derivatives of IT and r w.r.t k) and note that for 

many choices of II and r, we can compute 'lj;1 and 'lj;2 explicitly as the smallest /largest zero 

of an elementary integral. If we assume that the function (II1c + Ar~c) (TJ, k) is decreasing 

in the k-variable - and, as we shall see in Sections 5 and 7, this is an assumption which 

has a clear economic interpretation and which is often, but not always, reasonable - then 

'if;1 is increasing and 'if;2 is decreasing, and we typically get the picture in Figure I.2. The 

"forbidden region" :F is just the area lying under both the curves 'if;1 and 'if;2; i.e., 

In many economical models, 7j;2 (k) = oo for all k, and we have the situation in Figure 

I.3.a). Mathematically possible, but less plausible from an economic point of view, is the 

reverse situation in Figure I.3.b) where 'if;1 = 0. 

a) 

k 
e = '1'1 (k) 
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A fourth possibility is the situation in Figure I.4 where 'lj;1 and 'I/J2 never meet; in this case 

there is no optimal strategy (unless we allow the capacity to become infinite in finite time), 

but we can still use our picture to produce almost optimal strategies. A situation which 

is ruled out by our technical conditions, but which can probably occur in a more general 

setting, is the one shown in Figure I.5.a) where the forbidden area has several camel-like 

bumps. 

Figure 1.4 

e 1 e 2 

On the other hand, if we remove the monotonicity condition on (ilk + Ark), we may get 

bumps of the kind shown in Figure I.5.b), but in this case the problem becomes much more 

complicated, and the forbidden region can no longer be described directly in terms of 'I/J1 
and 1/;2. We shall study this situation in Section 7. 

a) 

k 

b) 

e 

Figure 1.5 

The paper is organized as follows. In the next section, we present some preliminary results 

on the Green function of the operator A; this is quite standard material, but it will play such 

an important part throughout the paper that we find it practical to have it readily available 

on a form tailored to our needs. In Section 3, we briefly describe the controls we shall 
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be working with, and also rewrite the criterion (1.3) on a form suitable for discontinuous 

controls. The long Section 4 is devoted to a heuristic derivation of the main results; we 

shall never try to justify the different steps in these calculations, but instead verify directly 

that the results they lead us to are, indeed, correct. In Section 5, we discuss briefly some 

of the conditions we shall have to impose in order to carry out this verification, and the 

verification itself you will find in Section 6; we first show that it suffices to prove that 

our proposed solution satisfies a certain variational inequality, and then check that this 

is really the case. In Section 7, we take a brief and informal look at what happens if we 

remove the monotonicity assumption on Ilk+ Ark, and in the final section we discuss the 

possibility of extending our results in various directions. 

This paper has friends and relatives in both the economics and the mathematics litera­

ture. On the economics side, there are papers on irreversible investments by Brennan and 

Schwartz (1985), McDonald and Siegel (1986), arid Pindyck (1988, 1991a,b) among others. 

There are other economic questions than the one we started with that are covered by the 

same mathematical formalism, and some of them are discussed in earlier papers by Kobila 

(1991, 1992 a, b); mathematically these papers deal with special cases of the general theory 

developed here. In the mathematics literature, there is by now a number of papers on 

singular controls, see, e.g., Benes, Shepp, and Witsenhausen (1980), Karatzas and Shreve 

(1984, 1985, 1986), Gaver, Lehoczky, and Shreve (1984), Lehoczky and Shreve (1986), 

Sun (1987); and also the introductory paper by Shreve (1988) and the books by Harrison 

(1985) and Karatzas and Shreve (1988). The close connection between the Skorohod prob­

lem and optimal stopping discovered by El-Karoui and Karatzas (1991) in a finite horizon 

setting, transfers easily to the setting of the present paper and may turn out to be helpful 

in extending our results to more complicated and realistic models. 

Before we begin, let us emphasize that our aim in this paper is to obtain as precise and 

explicit information as possible by quite elementary methods. Using more abstract ma­

chinery, it is undoubtedly possible to prove existence results in much more general settings, 

but this is not our purpose here. 

2. The Green function. 

Let 

(2.1) 

be our one-dimensional, geometric Brownian motion. As should be clear from the intro­

duction, we shall be interested in quantities of the form 

00 

(2.2) u(O) = E 0[j f(8t)e-rtdt], 

0 

where f is a given, continuous function. Standard arguments show that if the integrals in 

(2.2) converge, then u is a solution of the ordinary differential equation 

1 
(2.3) 2(3202u"(O) + aOu'(O)- ru(O) =- f(O), 
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but the questions we want to ask in this section are when can we be sure that the integrals 

really do converge, what are the right boundary conditions to impose in (2.3), and what 

is the value of the integral (2.2)? ~ 

Before we begin, let us agree to write A for the differential operator in (2.3), i.e. 

(2.4) 

We next observe that the homogeneous equation 

(2.5) Au=O 

is just an Euler equation with general solution 

(2.6) 

where 11 and 12 are the roots of the characteristic equation 

(2.7) 

These two roots obviously have opposite signs, and we shall always take 11 to be the 

positive one. 

We shall be interested in two function spaces associated with 11 and 12: 

2.1 Definition. 

a) L~ 1 ,-Y2 is the space of all Lebesgue measurable functions f : (0, oo) -+ R such that 

the integrals 

(2.8) 

a 

j f(TJ)TJ_'Y2_1&TJ and 

0 

converge for all a E (0, oo). 

b) c.;,"f2 is the set of all twice continuously differentiable functions u: (0, oo)-+ R such 

that 

(2.9) lim B-'Y2u( B) = lim B-"fl u( B) = 0. 
0-+0 0-+oo 

Using variation of parameters to find an expression for the solution of the inhomogeneous 

equation (2.3), we are led to the following result. 

2.2 Proposition. Let f be a continuous function in L~ 1 ,-Y2. Then the differential equation 

(2.10) Au=-! 
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has a unique solution in c.;,')'l, namely 

(2.11) 

Proo£ To check that the function in (2.11) really satisfies the differential equation is a 

trivial exercise which we leave to the reader. 

Turning to the boundary condition at 0, we first observe that since 

() () 

rr')'lo')'l J J(rJ)rJ-')'l-1drJ = J J(rJ)rJ-')'l-1drJ ~ o 
0 0 

by the integrability condition on f, we only have to check that 

00 

()'Yl-"fl j f(rJ)'fJ_'Y1_1d'fJ ~ 0 as () ~ 0. 

() 

But this is easy; given an € > 0, we first use the integrability condition to find a Oo such 

that 
8o 

j lf(rJ)IrJ-')'l-1drJ < ~, 
0 

and then observe that 

00 

JO'Yl-')'l j f(rJ)rJ_'Y1_1drJI 

(} 

9o oo 

~ j lf(rJ)IrJ-')'l- 1 (~)'Y1-"fldrJ + o-n-"fll j f(rJ)rJ_'Y1_1drJI 

(} ~ 

00 

~ ~ + o'Yl-')'ll j f(rJ)rJ_'Y1_1drJI, 

9o 

where we can get the last term less than ~ by choosing () small enough. The boundary 

condition at infinity is handled similarly. 

Finally, to prove uniqueness we just observe that any other solution of (2.10) is of the form 

8 

! 

! 

f-
1 

i 



and hence has to violate at least one of the boundary conditions in (2.9). 

0 

It is often helpful to think of the result above in terms of Green functions. If we introduce 

the function 

(2.12) 

we can write (2.11) as 

00 

(2.13) u(B) = J g(B, 'Tl)f('fl)d'fl, 

0 

and it's clear that g is the Green function of the operator A (or- more correctly- of -A). 

Writing G for the operator 

00 

Gf(B) = J g(B,'fl)f('fl)d'fl = 

(2.14) 
0 

we can sum up the relationship between A and G in a simple corollary. 

2.3 Corollary. 

a) Iff is a continuous function in L~·"l2' then 

(2.15) AGJ= -! 

b) If u E c;m and Au E L~."l2' then 

(2.16) GAu= -u. 

Proo£ 

(a) By the proposition, u = G f is a solution of the equation Au = -f. 

(b) Let h =Au and z = -Gh. According to the proposition, z E C~ 1 ,")2 is a solution 

of the equation Az = h. Clearly, u is another such solution, and by the uniqueness 

part of the proposition, we must have u = z. 0 

It is now easy to answer the questions we asked at the beginning of this section. 
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2.4 Proposition. If f E L~m, then 

(2.17) 

00 

E 8[! f(8t)e-rtdt] = 

0 

Proof: Assume first that f is bounded and continuous, and let 

00 

u(O) = E 8[j f(8t)e-rtdt]. 

0 

There's a number of standard ways to see that u is a solution of the equation 

Au=-!, 

and since f is bounded, so is u. This means that u E C~vr2, and hence 

(} 00 

u(O) = (1'1 -2"12)(32 [01'.! j f(TJ)TJ-1'.!-ld'f/ + 011 j !(TJ)TJ-11-ldTJ] 

0 (} 

by Proposition 2.2. 

The rest of the proof is just an easy exercise in measure theory. If f is a bounded, 

measurable function, let {In} be a bounded sequence of continuous function converging to 

f Lebesgue a.e. Observe that fn(8t) ~ f(8t) a.s. for all t > 0. Since (2.17) holds for 

each fn by what we have already shown, it also holds for f by the Dominated Convergence 

Theorem. 

Iff is a nonnegative, measurable and unbounded function in L~m' we approximate f by 

an increasing sequence {In} of bounded measurable function. Since (2.17) holds for each 

fn, the Monotone Convergence Theorem tells us that it also holds for f. 

Finally, we extend the result to general functions in £~.1'.! by treating the positive and 
negative parts separately. 0 

3. The controls and the criterion. 

Let us first of all agree on what kinds of strategies we shall allow when we start at the 

point (0, k) at time zero. 

3.1 Definition. By a (0, k)-strategy we shall mean a stochastic process 

K: [O,oo) X n ~ [O,oo) 
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with the following properties: 

(i) K is non-decreasing and right continuous. 

(ii) K(O) 2:: k. 
(iii) Kt is measurable with respect to the a-algebra a{es : s ~ t} generated by the 

process 8 8 = 8e(a-fJ2/ 2)s+{JB. up to timet. 

Note that we only require that K(O) 2:: k and not that K(O) = k. If K(O) > k, we shall 

interpret this to mean that we are making an initial investment at time t = 0 in order to 

increase the capacity from k to K(O) (another solution to this problem would, of course, 

be to use left continuous processes instead of right continuous ones, but we don't want to 

pay the price of having to work with an unconventional version of stochastic calculus). 

When K has (absolutely) continuous paths and K(O) = k, it's clear from the economic 

formulation of our problem, that 
00 

(3.1) J(K) = E(O,k)[J e-rt[II(8t, Kt)dt- rk(8t, Kt)dKt]] 

0 

is the intuitively correct expression for the total, discounted profit of the strategy K. When 

K has jumps, however, formula (3.1) does not give us the economically correct expression 

for the profit. To see why, consider the simple case where K is constant k until time t, 
then makes a jump to k + tlk and remains constant ever after. According to the economic 

model, the total expansion costs of this strategy is 

[r(k + D..k)- r(k)]e-rt, 

but formula (3.1) yields 

rk(k + D..k)D..ke-rt 

To find a modification of (3.1) which works for all strategies, we proceed as follows. For a 

continuous strategy K with K(O) = k, we have by Ito's formula 

and hence 

r(8r, Kr)e-rT- r(O, k) = 

T T 

= j Ar(et, Kt)e-rtdt + j ,Betro(8t, Kt)e-rtdBt+ 

0 0 

T 

+ j rk(et, Kt)e-rtdKt, 

0 

T 

E 0•k[J rk(8t, Kt)e-rtdKt] = 

0 

T 

= -E0•k[J Ar(et, Kt)e-rt]dt- r(B, k) + E 0•k[r(8r, Kr )e-rT]. 

0 
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Under reasonable conditions, the last term will vanish as T goes to infinity, and we are left 
with 

00 00 

E 0•k[J rk(8t, Kt)e-rtdKt] = -E0•k[J Ar(8t, Kt)e-rtdt] - r(O, k). 

0 0 

Substituting this expression into (3.1), we get 

(3.2) 

00 

J(K) = E(o,k)[J e-rt(II + Ar)(8t, Kt)dt] + r(O, k) 

0 

Hence (3.1) and (3.2) are equivalent for continuous strategies K with K(O) = k, but 

the point is that (3.2) gives the economically correct value for the profit even when K 

has jumps. The easiest way to convince oneself that this is really the case, is probably 

by observing that if {Kn} is a sequence of continuous strategies converging to K in a 

reasonable sense, then J(Kn) --+ J(K) if J is defined by (3.2) (but not if it is defined by 

(3.1)). Note also that if r is independent of 0, we have 

00 00 

-E(o,k)[J Ar(Kt)e-rtdt]- r(k) = J r(r(Kt)- r(k))e-rtdt 

0 0 

which corresponds to the cost of renting the extra capacity Kt- k at a cost equal to the 

return of the investment cost. 

We can now formulate the goal of this paper precisely. 

3.2 Criterion. For each pair (0, k) we want to find the (0, k)-strategy which maximizes 

00 

(3.3) J(K) = E(o,k) [! e-rt(II + Ar) (8t, Kt)dt] + r(O, k) 

0 

(if it exists). We also want to compute the maximal profit 

(3.4) h(O, k) = sup{J(K): K is a (0, k)-strategy} 

0 

Let us end this section by giving a more precise and formal description of what is going 

to be our optimal strategy. In the introduction we just described it as a non-decreasing 

process K which increased just enough to keep the pair (8t, Kt) outside the forbidden 

region. But does such a process exist- and if so, what does it look like? 

Let us assume that our forbidden region is of the form 

F = {(0, k) : k ~ ¢(0)} 
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for some continuous function¢ : (0, oo) ---+ [0, oo). For each initial point (0, k), what we 

really want is a process K with the following properties: 

(i) Ko = k V ¢(0) 

(ii) Kt 2::: ¢(8t) for all t 

(iii) K is a continuous, non-decreasing process which only increases at times when Kt = 

¢(8t)i i.e., we want J(Kt- ¢(8t))dKt = 0. 

This is known as the Skorohod problem (see Skorohod (1961) and also the book by Karatzas 

and Shreve (1988)), and it has a very simple (and unique) solution; we just let 

(3.5) K(t) = k V sup{ ¢(88 ) : s ::; t}. 

This will be our candidate for the optimal strategy once the forbidden set :F has been 

determined. Note that K is singular in the sense that it only increases on a set oft's of 

Lebesgue measure zero. Note also that iff is a continuous function which is identically 

zero in the forbidden region :F, then 

(3.6) J f(8t, Kt)dKt = 0. 

This will be an important property in Section 6. 

4. Some heuristic calculations. 

In this section we present a heuristic derivation of the results we described in the intro­

duction. There are two reasons why we have to classify our arguments as heuristic; not 

only are we assuming that all the functions we meet are sufficiently smooth and regular 

for our calculations to be valid, but we are also assuming that the nature of the solution is 

really of the kind described in the introduction. It may be useful to know already at this 

stage that we shall never attempt to give a formal justification of our procedure; instead 

we shall verify by a direct argument that the results we arrive at are correct. 

We shall assume that the optimal strategies can be described in terms of a "forbidden 

region" :F as explained in the introduction. We also assume that :F is on the form 

:F = { ( 0' k) : '1/Jl ( k) ::; 0 ::; 'I/J2 ( k)}' 

where 'I/J1 is an increasing function and 'I/J2 a decreasing one. Our task is determine 'I/J1 and 

'I/J2· 

It's often useful to describe the boundary of :Fasone function of 0 instead of two functions 

of k, an hence we introduce 

(4.1) ¢(0) = sup{k: (0, k) E :F}, 

(see Figure IV .1) 

13 



Figure IV.1 

e 

Our arguments are based on a simple analysis of what Ah and hk are like inside and outside 

the forbidden region (recall that his the optimal profit defined by (3.4)). Let us begin by 
starting the optimal process at two points (8, k1) and (8, k2 ) inside the forbidden region 

with the same first coordinate. The two processes will both start by jumping immediately 

to (8, ¢(8)) and from then on behave in exactly the same way. Since the difference in the 

profit is entirely due to the difference in the initial investment, we have 

which means that 

(4.2) hk((), k) = rk((), k) when (8, k) E :F. 

On the other hand, if we start at a point outside :F, we must have hk :::; rk since we could 

otherwise improve the optimal profit by making an investment at time zero. Thus 

(4.3) hk((), k) :::; rk((), k) when (8, k) ¢:F. 

Also, if we start outside :F, we are not making any immediate investment, and hence 

(4.4) Ah(B, k) = -II(B, k) when (8, k) ¢:F. 

Finally, we want to find Ah(B, k) when (8, k) is in the forbidden region. Since the optimal 

process jumps immediately to (8, ¢(8)), we clearly have 

h(B, k) = h(B, ¢(8))- r(B, ¢(8)) + r(B, k) 

If we write v for the function h - r, we get 

{32 2 d2 d 
Ah(B, k) = 2 o d()2 v(B, ¢(8)) + aB d() v(B, ¢(8)) - rv(B, ¢(8)) + Ar(B, k). 
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Observe next that 

d 
d(} v(B, if>( B))= vo(B, if>( B))+ vk(B, ¢>(0))¢>'(0) 

= vo(B, if>( B)) 

since Vk((}, if>( B)) = 0 by (4.2). Similarly, 

a: d 
d(}2 v(B, if>( B)) = d(} vo(B, if>( B)) = voo(B, if>( B)), 

and hence 

Ah(B, k) = Av(B, ¢>(0)) + Ar(B, k) = Ah(B, ¢>(0)) - Ar(B, ¢>(0)) + Ar(e, k). 

(our notation is a little ambiguous at this point; note that by Av(B, if>( B)) we mean the 

function Av evaluated at a point (B, k) which happens to be of the form (B, if>( B)); we do 

not mean the operator A applied to the composite function v(B, if>( B)). Similarly, of course, 

for Ah(B, ¢>(0)) and Ar(B, ¢>(0)).) 

By (4.4), Ah(B, k) = -IT((}, k) outside :F, and since ((},if>( B)) is on the boundary of :F, a 

weak continuity assumption leads to 

Ah(B, ¢>(0)) = -IT(B, ¢>(0)), 

and hence we get 

(4.5) Ah(B, k) =-(IT+ Ar)(B, ¢>(0)) + Ar(B, k) for (B, k) E :F. 

To sum up, we have 

(4.6) 

(4.7) Ah(B, k) = 

{ 
:::; rk(B, k) if (B, k) fJ. :F 

hk((}, k) 
= rk(e, k) if (B, k) E :F 

{
-IT((}, k) 

-(IT+ Ar)(B, if>( B))+ Ar(B, k) if (0, k) E :F. 

if (0, k) fj. :F 

These equations become nicer and more symmetric if we express them in terms of the 

function 

(4.8) 

instead of h: 

(4.9) 

v(B, k) = h(B, k)- r(B, k) 

{
:::; 0 if (0, k) fj. :F 

Vk(B,k) 
= 0 if((}, k) E :F 
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(4.10) {
-(II+ Ar)(O, k) if (0, k) rl. :F 

Av(O,k) = 

-(II+ Ar)(O, ¢(0)) if (0, k) E :F. 

Remark: These formulas immediately bring the theory of variational inequalities to mind, 

and the problem may, in fact, be treated from that point of view. However, in this paper 

we prefer a more pedestrian and direct approach. 

0 

Combining (4.10) and (2.13), we can now express v in terms of 'I/J1, 'I/J2, and the Green 

function g in (2.12): 

tPl(k) 

v(O, k) = j g(O, 77)(II + Ar)(77, k)d77+ 

0 

~~ 00 

(4.11) 

+ j g(O, 77)(II + Ar)(77, ¢(77))d77 + j g(O, 77)(II + Ar)(17, k)d77 

~~ ~~ 

Differentiating with respect to k, we get 

(4.12) 

tPl(k) 

vk(o, k) = j g(O, 77)(IIk + Ark)(77, k)d77+ 

0 

+ g(O, 'I/J1 (k)) (II+ Ar)( 'I/J1 (k), k)'!j;~ (k) 

+ g(O, 'I/J2(k))(II + Ar)( 'I/J2(k), k)'!j;~(k) 

- g(O, 'I/J1 (k))(II + Ar)( 'I/J1 (k), k)'lj;~ (k) 
00 

+ J g(O, 77)(IIk + Ark)(77, k)d77 

~(k) 

- g ( 0, 'I/J2 ( k)) (II + Ar) ( 'I/J2 ( k), k) '1/J~ ( k) 

~(~ 00 

= j g(O, 77)(IIk + Ark)(77, k)d77 + J g(O, 77)(IIk + Ark)(77, k)d77 

0 ~~ 

If we now assume that ( 0, k) is in the forbidden region, then 'I/J1 ( k) < 0 < 'I/J2 ( k), and 
inserting the explicit expression (2.12) for g, we have 

tPl (k) 

vk(o, k) = 2 [fll2 j (IIk + Ark)(77, k) d77+ 
( {1 - {2){32 7]'Y2+1 

(4.13) 
0 
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According to (4.9), this expression must be equal to zero for all e between '1/Jl(k) and 'I/J2(k), 
and the only way to achieve this is to have 

(4.14) 

(4.15) 

..Pl(k) 

J (IIk + Ark)(77, k) d = 0 
7J'l"l+l 7] 

0 

00 

J (IIk + Ark)(7J, k) d = O 
7J"Yl+l 7] . 

..P2(k) 

If we also take into account that Vk :::; 0 outside the forbidden region, we are led to formulas 

(1. 7) and (1.8) in the introduction, i.e. 

(4.16) 

(4.16) 

(} 

'I/J1(k) = inf{B: J (Ilk+ ~~~)(7J, k) d7J > 0} 

0 

00 

'I/J2(k) = sup{B: j (Ilk+ ~~~)(7J, k) d77 > 0} 

(} 

Once we have identified 'I/J1 and 'I/J2, we can use (4.11) to compute the optimal profit: 

..Pl(k} 

h(B, k) = r(e, k) + J g(B, 7J)(II + Ar)(7J, k)d7J+ 

0 

~w oo 
(4.18) 

+ j g(B, 77)(II + Ar)(77, ¢(B))d7J + j g(B, 77)(II + Ar)(7J, k)d7J, 

~w •w 
or- changing variable in the second integral-

(4.19) 

..Pl(k) 

h(B, k) = r(e, k) + J g(B, 7J)(II + Ar)(7J, k)d7J+ 

0 

00 ' 

+ J g(B, 7J)(II + Ar)(7J, k)d7J+ 

.(k) 

kmax 

+ J g(B, 'I/J1(K))(II + Ar)('lj;1(K), K)'lj;~(K)dK-
k 

kmax 

-J g(B, 'I/J2(K))(II + Ar)('lj;2(K), K)'lj;~(K)dK, 
k 
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where kmax is the largest k-value in the forbidden region. 

It's quite informative at this stage to take a look at an example: 

4.1 Example. We choose the parameters of the geometric Brownian motion to be (3 = 

-/2, a = 1, and we set the discount parameter r equal to 4. (Economists who find an 

interest rate of 400% per year slightly eccentric, may want to measure time in other units.) 

Then the characteristic polynomial (1.6) is 

(32 (32 
2'2 + (a - 2 h - r = 12 - 4 = ( 1 - 2) ( 1 + 2), 

i.e. 11 = 2, 12 = -2. We also choose 

II(O, k) = 2k 

k2 0 1 
r(o, k) = 2 c 3 + 0); 

in economic terms this means that the profit from the production is proportional to the 

capacity, while the marginal investment costs 

are increasing as a function of k, but has a minimum at 0 = .J3 as a function of 0. Since 

( 4.14) becomes 

and (4.15) turns into 

00 

0= J 
1/J2(k) 

Solving these equations for 'I/J1(k) and ,P2(k), we get 

and 

{ 
0 for k:?: ~ 

'1/Jl(k) = 0, ik(1 ± J1- 4k2) fork<~ 

18 
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If we then take (4.16) and (4.17) into account, we see that the actual solutions are 

( 4.20) 

(4.21) 

'1/Jl(k) = { 002
3k(1- vfl- 4k2) fork~ t 

fork~ 2 

'I/J2(k) = { 
0
A(1 + vfl- 4k2) fork< t 

fork~ 2 

Figure IV.2 shows the regions 

whose intersection is F. 

0.5 
12 

_.!. 
'f 

/ 

I 

/ 

I 
I 

/I 
I' I 

1 

F1 = { ( B, k) : 'I/J1 ( k) ~ B} 

F2 = {(B, k): B ~ 'I/J2(k)}, 

a="' (k) 
1 /1 

........... _,,.,.,...- ," 
/I'-

/ r..... 
....... 

....... 
....... - -r-

'lb 

2 3 4 5 

Figure IV.2 

a= 'I' (k) 
2 

Among other things, this example tells us that even for very simple choices of II and r, 
we can not expect 'I/J1 and 'ljJ2 to be continuous. Observe also that 'ljJ1 and 'I/J2 intersect at 

B = .)3, and hence the most favorable climate for expansion is when 8t is at J3 - as we 

would expect from our discussion of r. 
0 

In the remaining sections of the paper, we shall show that under reasonable assumptions, 

the heuristic arguments above do, in fact, give the correct solution to our problem. 

5. The monotonicity condition. 

Most of the conditions we shall have to impose in order to verify our solution will be quite 

innocent growth and differentiability assumptions on II and r. But two of our conditions 

will be of a different nature, and in this section we shall discuss one of these - namely that 

(5.1) (Ilk+ Ark)(B, k) is strictly decreasing in k. 

This condition comes from a consistency problem in the calculations above; we started out 

by assuming that 'I/J1 was increasing and 'I/J2 decreasing, but the final answer (4.16), (4.17) 

19 



shows that this is only true when (5.1) is satisfied. It turns out that this problem is more 

serious than it may seem at first glance; in fact, the entire argument in Section 4 breaks 

down when (5.1) is not satisfied (to be precise, the calculations in (4.12) are no longer 

valid). In Section 7, we shall sketch how our solution can be modified to hold even when 

(5.1) is not satisfied, but in the main body of the paper, we shall solve the problem simply 

by assuming (5.1). 

But how reasonable is this assumption? Fortunately, it turns out that (5.1) has a quite 

intuitive economic interpretation. Assume that we have decided to expand our capacity 

by a small ("infinitesimal") amount L:l.k, and that we want to know whether it's better to 

make this investment immediately or to wait a short time L:l.t. If we invest immediately, 

the net profit from the period [0, L:l.t] will be 

At 

E9[! II(8t, k + L:l.k)e-rtdt- r(O, k + L:l.k) + r(O, k)] 

0 

and if we wait, the net profit will be 

At 

E 9[! II(8t, k)e-rtdt- e-rAt(r(eAt, k + L:l.k)- r(eAt, k))] 

0 

Subtracting the second quantity from the first, we see that the difference is of order of 

magnitude 

Hence we may call Ilk+ Ark the local investment incentive- it measures how profitable 

a small investment is on a short term basis. In most situations it is reasonable to assume 

that the local investment incentive is decreasing in k for two reasons; partly because as 

the market gets more and more saturated, it gets increasingly difficult to sell the extra 

products without lowering prices, and partly because as we go on expanding, we run out of 

cheap expansion alternatives, and have to turn to more expensive ones. On the other hand, 

it is not difficult to think of situations where the local investment incentive is not always 

decreasing in k; e.g., if a company is trying to break into a new market or to establish 

itself abroad, the first investment will usually be much more expensive than later ones. 

Let us also take a brief look at another problem. From the interpretation of (Ilk+ Ark) 

as the local investment incentive, it is easy to see that in many situations it will not be 

unnatural to assume that 

(5.2) (Ilk+ Ark)(O, k) · is non-decreasing in 0, 

but again we can think of exceptions - e.g., if the investment costs react more drastically 

to changes in 0 than does the price of our product. From the mathematical point of view, 

(5.2) has the unpleasant effect of eliminating the need for the function 'I/J2 (we would always 
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be in the situation shown in Figure I.3.a)), and for that reason also we shall not adopt it. 

But we shall have to introduce a weaker, but related condition which will be described in 

the next section. 

6. Verifying the results. 

We have now reached the stage where we can verify that under reasonable conditions, the 

heuristic arguments in Section 4 lead to correct conclusions. Let us first give an abstract 

description of what we are looking for- it may be helpful to compare (iii) and (iv) below 

to formulas ( 4.8)-( 4.10) in Section 4. 

6.1 Proposition. Assume that there exist a region F and a bounded, continuous function 

v satisfying the following conditions: 

(i) F = {(0, k) : k ::; ¢(0)} for some continuous function¢: (0, oo) ~ [0, oo). 

(ii) The partial derivatives vo, Vk and Av exist and are continuous. 

(iii) 

(iv) 

{
=-(II+ Ar)(O, k) when (0, k) ¢:. F 

Av(O, k) 
::; -(II+ Ar)(O, k) when (0, k) E F 

{ 
::; 0 when (0, k) ¢:. F 

Vk(O, k) = 

= 0 when (O,k) E F. 

Then for any initial point ( 0, k) and any ( 0, k )-strategy K 

(6.1) J(K) ::; v(O, k)- r(O, k). 

If Kt = k V sup{¢(88 ): s::; t}, then equality holds in (6.1). 

Proof: For any (0, k)-strategy K, we have by Ito's formula 

(6.2) 

T 

e-rT v(8r, Kr)- v(8o, Ko) . J Av(8t, Kt)e-rtdt+ 

0 

T 

+ J f38tvo(8t, Kt)e-rtdBt+ 

0 

T 

+ j vk(et,Kt)e-rtdK~+ L::e-rt~v(8t,Kt), 
0 
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where Kc is the continuous part of K, and the final sum is over all K' s jumps before time 

T. Note that by (iv), v(B, k) ~ v(8o, Ko) and the two last terms in (6.2) are negative. 

Hence we get 

(6.3) 

T 

v(B, k) ~ - j Av(8t, Kt)e-rtdt + e-rT v(8r, Kr)­

o 
T 

- J f38tvo(8t, Kt)e-rtdBt 

0 

By (iii), -Av(8t, Kt) ~ (II+ Ar)(8t, Kt), and since the martingale term disappears when 

we take expectations (using a localization argument if necessary), we see tlia.t 

(6.4) 

T 

v(B, k) ~ E(B,k)[j (II+ Ar)(8t, Kt)e-rtdt + e-rT v(8r, Kr)], 

0 

and letting T go to infinity, we get 

00 

v(8, k) ~ E(B,k)[J (II+ Ar)(8t, Kt)e-rtdt] 

0 

= J(K)- r(B, k), 

which proves the first part of the proposition. 

For the second part, we let 

Kt = k V sup{ </J(88 ) : s:::; t}, 

and check that in this case all the inequalities above are, in fact, equalities. Since (8t, Kt) 

now never enters the forbidden region, we always have -Av(8t, Kt) = (II+ Ar)(8t, Kt)· 

Moreover, since vk(et, Kt) = 0 whenever K increases, we always have 

and the sum in (6.2) is trivially zero since K does not have any jumps (recall that an 

investment at time 0 is not reflected inK). By the second half of (iv), v(8o, Ko) = v(B, k). 
Hence (6.4) holds with equality, and it follows that 

v(B, k) = J(K) - r(B, k). 

D 
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We now let :F and v be as in Section 4, i.e., 

(6.5) 

where 

(} 

(6.6) 'I/J1 ( k) = inf { 0 : J (Ilk + 77 ~~; ( 77' k) d77 > 0} 

0 

00 

(6.7) nl. (k) - {n . J (Ilk+ Ar) (77, k) d 0} op2 -sup u . 7711 +1 7] > , 

o· 

and - recall formula ( 4.11) -

(6.8) v(O, k) =I g(O, 77)(II + Af)(77, k)d77 +I g(O, 77)(II + Af)(77, ¢(77))d77 

:Fi :Fie 

where :Fk = {0: 'I/J1(k):::; 0:::; 'I/J2(k)} is the cross-section of :Fat k, and :Fk = R+ \:Fk is its 

complement. To show that :F and v satisfies the assumptions of Proposition 6.1, we need 

to impose the following conditions. 

6.2 Conditions. 

(i) II is nonnegative, r is non-decreasing in the k variable, and the partial derivatives 
8IT d ff'+mr 0 1 2 0 1 · d · Bk an aonakm , n = , , , m = , , ex1st an are continuous. 

(ii) The function M(O) = sup{I(II + Af)(O, k)l : k > 0} belongs to L~ 1 ,-l2, and so does 

the function N(k) ( 0) = sup{ I (Ilk + Ark) ( 0, y) I : 0 < y :::; k} for each k. 

(iii) For each 0 

¢(0) = sup{k: (0, k) E :F} 

is finite. 

(iv) The function (Ilk+ Afk)(O, k) is strictly decreasing in the second variable. 

(v) For all (0, k) E :F 

(II+ Af)(O, k) :::; (II+ Af)(O, ¢(0)) 

0 

The first two conditions above just guarantee that II and rare sufficiently regular for our 

derivatives to exist and our integrals to converge, and the third condition rules out the 

situation in Figure 1.4 where no optimal strategy exists. Condition (iv) is the monotonicity 

condition we discussed in great detail in Section 5, and which we shall return to in Section 
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7. The fifth condition is needed to pass from formula (4.10) to condition (iv) in Proposition 

6.1. As condition ( v) can be difficult to check directly, we prove the following simple, but 

quite useful criteria (note that the first of these follows from condition (5.2) discussed at 

the end of the preceding section, but in many situations it is more natural to think of it 

as a concavity assumption). 

6.3 Lemma. Assume that conditions (i)-(iv) above are satisfied. If one of the following 

two assumptions hold, then (v) is also satisfied: 

a) For each k, the set h = {0: (II1c + Af~c)(O, k) ~ 0} is connected. 

b) Each point on the boundary of :F is of the form ( 'I/J1 ( k), k), ( 'I/J2 ( k), k), ( 0, k) or ( 0, 0) 

(this means that ,P1 and 'I/J2 can not have jumps in the region where they make up 

the boundary of :F). 

Proof: a) We first observe that by definition of ,P1 and ,P2 , 

(6.9) (II1c + Af~c)('I/Ji(k), k) ~ 0 i = 1, 2, 

and hence 'I/J1 ( k), 'I/J2 ( k) E I 1c (note that this is even the case when 'I/J2 ( k) = oo in the sense 

that then suph = oo). If (0, k) E :F, then '1/Jt(k) ::; 0::; 'I/J2(k), and since I1c is connected, 

this means that 0 E J1c. But this implies that (II1c + Af~c)(O, k) ~ 0 for all (0, k) E :F, and 

condition ( v) follows. 

b) For each (0, k) E :F, it follows from (6.9) and the assumption that (II1c + Af~c) 
(0, ¢(0)) ~ 0. Since (II1c + Af~c) is decreasing in k, this means that (II1c + Af~c) (0, k) ~ 0, 

and condition ( v) follows as above. 

0 

We can now begin to check that under the conditions in 6.2, the assumptions in Proposition 

6.1 are satisfied for the function v in (6.8). 

6.4 Lemma. vis bounded and has partial derivatives vo, voo- Moreover, 

(6.10) { 
-(II+ Af)(O, k) 

Av(O, k) = 

-(II+ Af)(O, ¢(0)) ::; -(II+ Af)(O, k) 

when (0, k) ¢ :F 

when (0, k) E :F. 

Proof: By Condition 6.2(i), the function 

{ 
(II+ Af)(O, k) 

H(O, k) = 

(II+ Af)(O, ¢(0)) 

if (0, k) ¢ :F 

if (0, k) E :F 

is bounded by a function M(O) which belongs to L~."t2' and hence 0 1----4 H(O, k) belongs 

to L~."t2 for each k. Since 
00 

v(O, k) = J g(O, 7J)H(7J, k)d7J, 

0 
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v is bounded by 
00 

j g(O, 7J)IM('7)id7J < oo, 

0 

and by Proposition 2.2, v is twice continuously differentiable with respect to (}, and satisfies 

Av(O, k) = -H(O, k). 

An appeal to Condition 6.2(v) completes the proof. 

D 

Before we turn to differentiability in the k variable, it is convenient to prove a simple 

lemma about '1/Jt and '1/12-

6.5 Lemma. '1/11 is an increasing function which is continuous from above, while '1/12 is a 

decreasing function which is continuous from below. 

Proof: The monotonicity follows immediately from Condition 6.2(iv) and the definitions 

of '1/Jt and '1/12- To prove that '1/Jt is continuous from above, fix a k and ant> 0. Pick(} such 

that '1/Jt (k) < (} < '1/Jt (k) + t and 

(6.11) 

It clearly suffices to show that if we choosey> k sufficiently close to k, then 

8 

(6.12) J (Ilk+ ~~~)(7J, y) d1] > 0. 

0 

By the assumptions on II and r, the integrand in (6.12) converges pointwise to the inte­

grand in (6.11) as y l k, and by the second part of Condition 6.2(ii) all the integrands 

are dominated by an integrable function. By Dominated Convergence Theorem, the inte­

grals in (6.12) converge to the integral in (6.11) and thus they eventually have to become 

positive. 

That '1/12 is continuous from below is proved analogously. 

6.6 Lemma. vis differentiable with respect to k, and 

(6.13) vk(o, k) = j g(O, 17)(IIk + Ark)(17 , k)d17 

Fk 
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Proof: If k2 > k1 and fl.k = k2- k1, then by the Mean Value Theorem there is a function 

c(TJ) taking values between k1 and k2 such that 

tPl(ki) 

v(B, k2) -;kv(B, k1) = fl..k-1{ J g(B, TJ)[(II + Ar)(TJ, k2)- (II+ Ar)(TJ, k1)]dTJ+ 

0 

tPl(k:l) 

+ J g(B, TJ) [(II+ Af)(TJ, k2)- (II+ Af)(TJ, ¢(TJ))]dTJ+ 

tPl(kl) 

'1/12(kl) 

+ J g(B, TJ)[(II + Af)(TJ, k2)- (II+ Af)(TJ, ¢(TJ))]dTJ+ 

'1/12(k:l) 
00. 

+ J g( B, TJ) [(II+ Af)(TJ, k2) - (II+ Ar) (TJ, k1) ]dTJ} = 

'l/!2(k!) 

tPl (k:l) 00 

= J g(B, TJ)(IIk + Ark)(TJ, c(TJ))dTJ + J g(B, TJ)(IIk + Ark)(TJ, c(TJ))dTJ 

0 '1/12(k:l) 

If we first fix k2 and let k1 j k2, then the Dominated Convergence Theorem combined with 

the second half of Condition 6.2(ii), assures us that the left derivative v;; exists and equals 

the expression in (6.13). If we then fix k1 and let k2 l kt, we can combine the argument 

we just gave with an appeal to Lemma 6.5 to see that the right derivative vt also exists 

and equals the right hand side of (6.13). 

0 

Before we show that assumption (iv) in Proposition 6.1 is satisfied, we make a simple 

observation. 

6. 7 Lemma. Let f be a continuous function such that 

Then 

Proof: Define 

a 

a 

J f(TJ)dTJ ~ 0 for all () E (0, a). 

() 

J f(TJ)(1- (~yn- 12 )dTJ ~ 0 for all () E (0, a). 

() 

a a 

g(B) = (}12-11 J !(TJ)dTJ- J f(TJ)'T/12-IldTJ 

() () 
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and observe that g(a) = 0 and 

a 

g'(B) = ('1'2- 1'1)()12-')'J.-1 J f(1J)d1J- ()12-')'J. j(B) + !(8)()12-')'J. 

(} 

a 

= ('1'2- 1'1)()12-'Yl-1 J !(1J)d1] ~ 0,, 

(} 

and hence that g(B) 2:: 0 for () E (0, a). Consequently, 

6.8 Lemma. 

(6.14) 

a 

0 ~ ()'YI - 12 g ( ()) = J f ( 1}) ( 1 - ( ~) 'Y1 - 12 ) d1] 

(} 

{ 
~ 0 when ((), k) rf. :F 

Vk((), k) 
= 0 when ((), k) E :F 

0 

Proof: Assume first that((), k) E :F. Then 1/J1(k) ~ () ~ 1/J2(k), and formula (6.13) becomes 

00 

+ {)'Yl j (rrk + Ark)( 1J, k) d 1 
7J'Yl +1 1} 

'¢J2(k) 

which is zero by definition of 1/J1 and 1/;2. 

We turn to the case where (8, k) rf. :F; say, () ~ 1/J1 (k) (the case () 2:: 1/J2(k) can be treated 

similarly). Formula (6.13) now becomes 

+ ()'Yl 

(} (} 
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where the last step uses the definition of both 'I/J1 and 'I/J2· If we rewrite this expression as 

and observe that by definition of 'I/J1, 

1/Jl (k) 

J (rrk + Ark)(71, k) d > 0 
7]')2+1 7] - ' 

() 

we can use Lemma 6.7 to conclude that vk(B, k) ~ 0. 

We can now put all the pieces together and prove our main theorem. 

6.9 Theorem. Given a geometric Brownian motion 

' eo=(), 

and a discount factor r > 0, let A be the operator 

0 

For each initial point (8, k) E R!, we seek the non-decreasing process Kt which is a{8s : 
s ~ t}-measurable, satisfies Ko 2:: k, and maximizes the total discounted profit 

00 

J(KJ = E(O,k)[J e-rt(II + Ar)(8t, Kt)dt] + r(B, k). 

0 

If Conditions 6.2 are satisfied, such an optimal process K exists and can be described as 

a vertical deflection off a forbidden region :F. More precisely, if 11 > 0 > 12 are the two 

roots of the characteristic equation ~,8 2 1 2 +(a- ~ )T- r = 0, and 

() 

'I/J1(k) =in£{(): j (Ilk+ ~~~)(7J, k) d77 > 0} 

0 

00 

'I/J2(k) =sup{(): j (Ilk+ ~~~)(7J, k) d77 > 0} 

() 

:F = {(8, k): 'I/J1(k) ~ () ~ 'I/J2(k)} 

¢(8) = sup{k : (8, k) E :F}, 
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then 

Kt = k V sup{ ¢(88 ) : s ~ t}, 

and the optimal profit starting from (0, k) is 

h(O, k) = r(O, k) + j g(O, 17)(II + Ar)(17, k)d17 

:P 
lr: 

+ J g(O, 17)(II + Ar)(17, ¢(17))d17 

F~r: 

where :Fk = {(): (0, k) E :F}, and g is the Green function 

Proof: We only have to check that :F and v satisfies the assumptions of Proposition 

6.1. That v is bounded and continuous with continuous partial derivatives vo, Vk and Av, 

follows from lemmas 6.4 and 6.5 and the explicit formulas (6.8), (6.10), and (6.13). That 4> 

is continuous is an immediate consequence of the strict monotonicity of '1/;1 and '1/;2 proved 

in Lemma 6.5, and the main assumptions (iii) and (iv) of Proposition 6.1 were proved in 

lemmas 6.4 and 6.8. 

D 

In many applications to economics it is more convenient to use the following corollary 

where we are assuming that Condition 5.2 is satisfied. 

6.10 Corollary. Assume that the following conditions are satisfied. 

a) II is nonnegative, r is non-decreasing in the k variable, and the partial derivatives 
an d an+mr 0 1 2 0 . d . ak an aondJcm , n = , , , m = , 1, exist an are continuous. 

b) The function M(O) = sup{I(II + Ar)(O, k)l : k > 0} belongs to £~ 11 1'2, and so does 

the function N(k) ( 0) = sup{ I (Ilk + Ark) ( (), y) I : 0 < y ~ k} for each k. 

c) lim '1/;1 ( k) = oo (we allow 'I/J1 to become infinite for finite values of k). 
k-+oo 

d) (Ilk+ Ark)((), k) is nondecreasing in() and strictly decreasing ink. 

For each initial value (0, k), the optimal (0, k)-strategy is 

Kt = k V sup{¢(88 ): s ~ t}, 
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where ¢ = '1/Ji\ and the maximum profit is 

'(6.15) 

1/JJ (le) 

h(O, k) = f(O, k) + J g(O, 77)(II + Ar)(77, k)d17+ 
0 

00 

+ J g(O, 77)(II + Af)(77, ¢(77))d77 

1/JJ (le) 

Proof: It is easy to see that conditions a)-d) above imply Conditions 6.2(i)-(v): the first 

two conditions are identical; c) obviously implies (iii); (iv) is part of d); and (v) follows 

from d) and Lem!lla 6.3a). We also observe that since (Tile+ Arle)(O, k) is nondecreasing 

in ()' 1/;2 ( k) must be infinite whenever '1/Jl ( k) is finite, and hence '1/;2 plays no role in the 

description of the forbidden region F. The corollary now follows from the theorem. 

0 

7. Relaxing the monotonicity assumption. 

From a practical point of view, there is something quite puzzling about the results above. 

Since 'I/J1 (k) and 'I/J2(k) are given in terms of the functions Tile(·, k) and rle(·, k), the decision 

of whether to expand or not is determined solely by the marginal profit Tile and the marginal 

expansion costs rle at the current production capacity k. We all know that real life is not 

always that simple - usually, a sound expansion policy should not only depend on the effect 

of a small first investment, but also take the prospects of later expansions into account. 

In this section, we shall show that the phenomenon we just described is initimately con­

nected to our basic monotonicity assumption 

(7.1) (Tile+ Afle)(O, k) is strictly decreasing in k. 

Intuitively, this is not too surprising since what (7.1) basically says is that we make the 

most profitable expansions first and then turn to less profitable ones. Hence if the first 

investments are not attractive, later ones will certainly not tempt us. 

The situation we shall be working with is the following. Although we shall not assume 

(7.1), we shall for simplicity adopt the other natural monotonicity assumption 

(7.2) (Tile+ Afle)(O, k) is nondecreasing in (). 

As we have seen, this means that we can forget about '1/;2 and concentrate on '1/;1. Assume 

now that if we compute 'I/J1 by our usual formula 

(} 

(7.3) 'I/J1(k) = inf{(): j (ITle + ~:~)(7J, k) d77 > 0}, 

0 

30 



we get the solid curve in Figure VII.1. 

k 

k2 - - - - - -

Figure Vll.1 

e 

It turns out that this curve no longer gives the correct solution to our problem; we shall 

have to replace part of 1j;1 by the dotted curve connecting the points (lh, k1) and (fh, k2). 

Let us write k = ¢(8) for the inverse function of() = 1j;1 (k) in the region [k2 , oo ), and let 

us denote the (still unknown) dotted curve by () = ((k). 

Sirice the dotted curve is the boundary of the forbidden region in the interval [k1, k2], the 

function v = h- r (where h still denotes the optimal profit) is given by 

((k) 

v(B, k) = J g(B, 77)(II + Af)(77, k)d71+ 

0 

00 

+ J g(B, 77)(II + Af)(7J, ¢(77))d77 

((k) 

when k1 :S k :S k2 (compare formulas (4.11) and (6.15)). Differentiating with respect to k, 

we get 
((k) 

vk(B, k) = J g(B, 7J)(rrk + Ark)(7J, k)d7J-

o 

- g(B, ((k))('(k)[(II + Af)(((k), y)]~:t<o) 

and since Vk = 0 along the boundary of the forbidden region, we must have 

((k) 

(7.4) 
o = vk(((k), k) = j g(((k), 71)(rrk + Ark)(71 , k)d71-

o 

- g(((k), ((k))(' (k) [(II+ Af)(((k), y)g:t(((k)) 
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Now we see what is new in the present situation; since c/J(((k)) =f k, the last term in (7.4) 
doesnt't vanish as before. 

It turns out that we can still find a quite explicit expression for (. We begin by inserting 

the expression for the Green function gin (7.4): 

((k) 

0 = 2 {((k)12 j (Ilk+ Ark)(71, k) dry-
(/1 - '"Y2)f32 7]1'2+1 

0 

_ [((k)1'l (II+ Ar) (((k), y) ('(k)]y=cf>(C(k))} 
((k)1'l+1 y=k ' 

which leads to 

((k) 

(7.5) 0 = J (Ilk+ Afk)(TJ, k) d _ ('(k)[(II + Af)(((k), y) ]y=cf>(C(k)). 
7]12+1 71 ((k)12+1 y=k 

0 

If we introduce the function 

(} 

(7.6) V((} k) = J (IT+ Af)(TJ, k) d 
' ry12+1 7], 

0 

we can write (7.5) as 

(7.7) 0 = Vk(((k), k)- (' (k)[Ve(((k), y)]~=t(C(k)). 

On the other hand, a simple chain rule calculation gives 

d~ {V(((k), c/J(((k))- V(((k), k)} = 

= Vo( ((k ), c/J( ((k) ))(' (k) + Vk(((k ), cjJ(((k)) )c/J' (((k) )(' (k)­

- V9(((k), k)('(k)- Vk(((k), k) = 

= Vk(((k), ¢J(k)))¢'(((k))('(k), 

where the last step makes use of (7. 7). Integrating both sides of this expression from k to 

k2, and observing that V(((k2), ¢J(((k2)))- V(((k2), k2) = 0, we get 

- V(((k), cjJ(((k))) + V(((k), k) = 

~ 

= J Vk(((y), cjJ(((y)))cjJ'(((y))('(y)dy, 

k 
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and substituting z = ¢(((y)), we see that 

(7.8) 

- V(((k), ¢(((k))) + V(((k), k) = 

'-2 

= j V~c(1/Jt(z),z)dz 
4>( ((lc)) 

At this stage, it might be useful to throw a glance at Figure VII.2 to see the relationship 

between the various variables. We now just observe that 

,p, (z) 

V~c(1/Jt (z), z) = J (II1c + ;!:-~)(7], z) dz = 0 

0 

by definition of 1/11, and hence (7.8) simply becomes 

(7.9) V(((k), k) = V(((k), ¢(((k))) 

k 

z = 4> (~~)) 

e = 'P1(k) 

---------~ 

Figure Vll.2 

y 

e 

If we not only check where VIc is zero, but also take into account that VIc ::;; 0 outside the 

forbidden region, we get the following description of(: 

((k) = inf{8: V(8, k) < V(8, ¢(8))} = 

(7.10) 
0 0 

= inf{8 : J (IT+ Af)(77, k) d < J (IT+ Af)(77, ¢(8))) d } 
77')2+1 "' ry'"Y'l+l "' 

0 0 

There are two natural comments to make at this point; the first is that the definition of 

(,(k) is "non-local" in the sense that it depends on how II and r behaves for capacities 
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larger thank, and the second is that (7.10) is a natural generalization of (7.3) if we replace 

differentials by finite differences. 

To sum up, we can now say that the forbidden region :F is given by 

(7.11) 
:F = {(8, k): (} ~ '1/Jt(k) and k::; kt, or k ~ k2}U 

U { ( 8, k) : 8 ~ ( ( k), and kt ::; k ::; k2}, 

where k2 is the "tip of the nose" of the curve 8 = '1/Jt (k), and kt is given by 'I/J1 (kt) = ((kt). 

The optimal strategy Kt is constant outside :F, is deflected upwards as before whenever 

(8t, Kt) hits the part of :F' s boundary given by 'I/J1, and jumps immediately through :F 

when it hits :F' s boundary between k1_and k2. 

The arguments we have given for these results are, of course, just as formal and heuristic 

as those we presented in Section 4. Under reasonable assumptions, it is possible to verify 

directly that the conclusions are correct, but as these arguments are quite similar to those 

in Section 6, we shall not carry them through here. Instead, we shall take a brief look at 

an example which illustrates the "non-locality" of(. 

7.1 Example: Let 

II(8, k) = k8 

r(8, k) = { 
2k- ~ 
Di + (1 - D)k + Dtl 

for k ::; 1 

fork~ 1, 

where Dis a positive constant. Note that rand rk are continuous at k = 1. Computing 

'I/J1 (k), we get 

{ 

- r(l-1'l) (2- k) 
1'l 

'1/Jl (k) = 

_r(l~"fl) [Dk + (1- D)] 

for k ::; 1 

fork~ 1, 

which shows that 'I/J1 makes up the boundary of the forbidden region :F for k ~ 1. For 

k ::; 1, we can compute ((k) explicitly from (7.9); long, tedious, but totally elementary 

calculations yield 

((k) = r(1 -1'2) (k- 2- v'1 + 1/D). 
1'2(1 + J1 + 1/D) 

The situation is shown graphically in Figure VII.3. Our point is that the shape of the 

forbidden region depends on D even in the interval [0, 1] where II and r are independent 

of D. Hence local considerations can not determine the optimal strategy; we also need to 

know what happens above k = 1. 
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k 

~ (k) . 

8. Discussion. 

• • 

[ ~ 0(0+1)+1-0] 

Figure Vll.3 

We have shown that the mathematical problem we set out to study can be solved very 

completely by quite elementary methods -the optimal strategy is described implicitly by an 

extremely simple relation which is trivial to solve numerically and which in some cases can 

even be solved analytically. In order to achieve such completeness and simplicity, we have 

had to work with a rather naive mathematical model of a complex economic phenomenon, 

and in this section we shall briefly indicate ways in which the model can be made more 

. realistic. The most obvious modification is to allow more general diffusions than geometric 

Brownian motion, and as long as the Green function is relatively well behaved, this should 

not cause serious mathematical problems. A more interesting change is to allow 8 to be 

multidimensional; this would allow us to study randomly varying discount factors as well 

as the interplay between independent or nearly independent economic factors. From a 

mathematical point of view, the multidimensional problem is much harder than the one­

dimensional one, and we must probably abandon the idea of finding very explicit solutions. 

On the other hand, using more abstract machinery it should be possible to obtain good 

results about the structure of the solution; e.g., that it can be described as a vertical 

deflection off a forbidden region given by, say, the solution of a variational inequality. 

Results of this kind would be very attractive from a numerical point of view,· and they 

seem quite plausible at least as long as our basic monotonicity condition (5.1) is in force. 

If this condition fails, however, the associated variational inequality seems uncomfortably 

close to some very difficult problems in the theory of Hele Shaw flows (see, e.g., Gustafsson 

(1985a,b)). 

A quite natural objection to the model we have been working with is that the Markovian 

nature of 8 makes it impossible to take trends into account. To some extent this problem is 

solved by allowing multidimensional processes as we can then incorporate derivatives into 

the state (at least as long as we can solve parabolic problems as well as elliptic ones), but a 
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more drastic solution would be to work with general semimartingales instead of diffusions. 

We have not studied this problem at all, but it would be quite interesting to see what can 

be said in such a general and abstract setting. 
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