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Abstract—In the context of acoustic echo cancellation (AEC),
it is shown that the level of sparseness in acoustic impulse
responses can vary greatly in a mobile environment. When
the response is strongly sparse, convergence of conventional
approaches is poor. Drawing on techniques originally developed
for network echo cancellation (NEC), we propose a class of
AEC algorithms that can not only work well in both sparse
and dispersive circumstances, but also adapt dynamically to the
level of sparseness using a new sparseness-controlled approach.
Simulation results, using white Gaussian noise (WGN) and speech
input signals, show improved performance over existing methods.
The proposed algorithms achieve these improvement with only a
modest increase in computational complexity.

Index Terms- Acoustic echo cancellation, Network echo
cancellation, Sparse impulse responses, Adaptive algorithms

I. INTRODUCTION

ECHO cancellation in telephone networks comprising
mixed packet-switched and circuit-switched components

requires the identification and compensation of echo systems
with various levels of sparseness. The network echo response
in such systems is typically of length 64-128 ms, characterized
by a bulk delay dependant on network loading, encoding
and jitter buffer delays [1]. This results in an ’active’ region
in the range of 8-12 ms duration and consequently, the
impulse response is dominated by ’inactive’ regions where
coefficient magnitudes are close to zero, making the impulse
response sparse. The echo canceller must be robust to this
sparseness [2]. This network echo cancellation (NEC) issue is
particularly important in legacy networks comprising packet-
switched and circuit switched components whereas in pure
packet-switched networks NEC is not normally required.

Traditionally, adaptive filters have been deployed to achieve
NEC by estimating the network echo response using algo-
rithms such as the normalized least-mean-square (NLMS)
algorithm.

Several approaches have been proposed over recent years
to improve the performance of the standard NLMS algorithm
in various ways for NEC. These include Fourier [3] and
wavelet [4] based adaptive algorithms, variable step-size (VSS)
algorithms [5], [6], [7], data reusing techniques [8], [9], partial
update adaptive filtering techniques [10], [11] and sub-band
adaptive filtering (SAF) schemes [12]. These approaches aim
to address issues in echo cancellation including the perfor-
mance with coloured input signals, time-varying echo paths
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Fig. 1. Adaptive system for acoustic echo cancellation in a Loudspeaker-
Room-Microphone system (LRMS).

and computational complexity, to name but a few. In contrast
to these approaches, sparse adaptive algorithms have been
developed specifically to address the performance of adaptive
filters in sparse system identification. For sparse echo systems,
the NLMS algorithm suffers from slow convergence [13].

One of the first sparse adaptive filtering algorithms for
NEC is proportionate NLMS (PNLMS) [2] in which each
filter coefficient is updated with an independent step-size that
is linearly proportional to the magnitude of that estimated
filter coefficient. It is well known that PNLMS has very fast
initial convergence for sparse impulse responses after which its
convergence rate reduces significantly, sometimes resulting in
a slower overall convergence than NLMS. In addition, PNLMS
suffers from slow convergence when estimating dispersive
impulse responses [13], [14]. To address the latter problem,
subsequent improved versions, such as PNLMS++ [14], were
proposed. The PNLMS++ algorithm achieves improved con-
vergence by alternating between NLMS and PNLMS for each
sample period. However, as shown in [15], the PNLMS++
algorithm only performs best in the cases when the impulse
response is sparse or highly dispersive.

An improved PNLMS (IPNLMS) [15] algorithm was pro-
posed to exploit the ‘proportionate’ idea by introducing
a controlled mixture of proportionate (PNLMS) and non-
proportionate (NLMS) adaptation. A sparseness-controlled
IPNLMS algorithm was proposed in [16] to improve the
robustness of IPNLMS to the sparseness variation in impulse
responses. Composite PNLMS and NLMS (CPNLMS) [17]
adaptation was proposed to control the switching of
PNLMS++ between the NLMS and PNLMS algorithms. For
sparse impulse responses, CPNLMS performs the PNLMS
adaptation to update the large coefficients and subsequently
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Fig. 2. Room impulse responses obtained, at 20 kHz sampling frequency,
when the distances between a loudspeaker and a microphone are a) 75 cm and
b) 185 cm, with room dimensions 3× 5× 3.5 m. ξ represents the sparseness
measure defined in Section III-A.

switches to NLMS, which has better performance for
the adaptation of the remaining small taps. The μ-law
PNLMS (MPNLMS) [18] algorithm was proposed to address
the uneven convergence rate of PNLMS during the estimation
process. As proposed in [18], MPNLMS uses optimal step-
size control factors to achieve faster overall convergence until
the adaptive filter reaches its steady state.

With the development of hands-free mobile telephony in
recent years, another type of echo, acoustic echo, seriously
degrades user experience due to the coupling between the loud-
speaker and microphone. For this reason, effective acoustic
echo cancellation (AEC) [19] is important to maintain usability
and to improve the perceived voice quality of a call. Although
sparse adaptive filtering algorithms, such as those described
above, have originally been developed for NEC, it has been
shown in [20] that such algorithms give good convergence
performance in the AEC system as illustrated in Fig. 1.

The time variation of the near-end acoustic impulse re-
sponse (AIR) may arise due to, for example, a change in
temperature [21], pressure and changes in the acoustic en-
vironment. It is also well known that the reverberation time
of an AIR is proportional to the volume of the enclosed space
and inversely proportional to the absorption area [22]. For
an outdoor environment, the reverberation time is reduced
significantly due to the lack of reflections from any enclosure.
The outdoor environment refers here to a typical urban area
or a rural area with sparsely placed acoustically reflecting
objects. The sparseness of the AIR of an outdoor environment
is significantly greater than typical indoor environments and
equally, if not more, variable.

Variation in the sparseness of AIRs can also occur in AEC
within an enclosed space. Consider an example case where
the distance, a, between a loudspeaker and the user using, for
example, a wireless microphone is varying. Figure 2 shows
two AIRs obtained in the same room, at 20 kHz sampling
frequency, when a) a = 75 cm and b) a = 185 cm, with room
dimensions 3 × 5 × 3.5 m. As can be seen, the sparseness of
these AIRs varies with the loudspeaker-microphone distance.
Hence, algorithms developed for mobile hands-free terminals
are required to be robust to the variations in the sparseness of
the acoustic path.

In this paper, we propose a class of algorithms that are
robust to the sparseness variation of AIRs. These algorithms

compute a sparseness measure of the estimated impulse re-
sponse at each iteration of the adaptive process and incorporate
it into their conventional methods. As will be shown, the
proposed sparseness-controlled algorithms achieve fast conver-
gence for both sparse and dispersive AIRs and are effective
for AEC.

II. REVIEW OF ALGORITHMS FOR ECHO CANCELLATION

Figure 1 shows a Loudspeaker-Room-Microphone
system (LRMS) and an adaptive filter ĥ(n) =
[ĥ0(n)ĥ1(n) . . . ĥL−1(n)]T deployed to cancel acoustic
echo, where L is the length of the adaptive filter assumed
to be equal to the unknown room impulse response
and [·]T is the transposition operator. Defining the input
signal x(n) = [x(n) x(n − 1) . . . x(n − L + 1)]T and
h(n) = [h0(n) h1(n) . . . hL−1(n)]T as the unknown
impulse response, the output of the LRMS is given by

y(n) = hT (n)x(n) + w(n), (1)

where w(n) is additive noise and the error signal is given by

e(n) = y(n) − ĥT (n − 1)x(n). (2)

Several adaptive algorithms such as those described below
have been developed for either AEC or NEC.

Many adaptive algorithms can be described by (2) and the
following set of equations:

ĥ(n) = ĥ(n − 1) +
μQ(n − 1)x(n)e(n)

xT (n)Q(n − 1)x(n) + δ
, (3)

Q(n − 1) = diag
{
q0(n − 1) . . . qL−1(n − 1)}, (4)

where μ is a step-size and δ is the regularization parameter.
The diagonal step-size control matrix Q(n) is introduced here
to determine the step-size of each filter coefficient and is
dependent on the specific algorithm.

A. The NLMS, PNLMS and MPNLMS algorithms

The NLMS algorithm is one of the most popular for AEC
due to its straightforward implementation and low complexity
compared to, for example, the recursive least squares algo-
rithm. For NLMS, since the step-size is the same for all filter
coefficients, Q(n) = IL×L with IL×L being an L×L identity
matrix.

One of the main drawbacks of the NLMS algorithm is that
its convergence rate reduces significantly when the impulse
response is sparse, such as often occurs in NEC. The poor
performance has been addressed by several sparse adaptive
algorithms such as those described below that have been
developed specifically to identify sparse impulse responses in
NEC applications.

The PNLMS and MPNLMS algorithms have been proposed
for sparse system identification. Diagonal elements ql of
the step-size control matrix Q(n) for the PNLMS [2] and
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MPNLMS [18] algorithms can be expressed as

ql(n)=
κl(n)

1
L

∑L−1
i=0 κi(n)

, 0 ≤ l ≤ L − 1, (5)

κl(n)=max
{

ρ × max{γ,

F (|ĥ0(n)|) . . . F (|ĥL−1(n)|)}, F (|ĥl(n)|)
}

, (6)

where F (|ĥl(n)|) is specific to the algorithm. The parameter
γ = 0.01 in (6) prevents the filter coefficients ĥl(n) from
stalling when ĥ(0) = 0L×1 at initialization and ρ, with a
typical value of 0.01, prevents the coefficients from stalling
when they are much smaller than the largest coefficient.

The PNLMS algorithm achieves a high rate of convergence
by employing step-sizes that are proportional to the magnitude
of the estimated impulse response coefficients where elements
F (|ĥl(n)|) are given by

F (|ĥl(n)|) = |ĥl(n)|. (7)

Hence, PNLMS employs larger step-sizes for ‘active’ co-
efficients than for ‘inactive’ coefficients and consequently
achieves faster convergence than NLMS for sparse impulse
responses. However, it is found that PNLMS achieves fast
initial convergence followed by a slower second phase con-
vergence [18].

The MPNLMS algorithm was proposed to improve the
convergence of PNLMS. It achieves this by computing the
optimal proportionate step-size during the adaptation process.
The MPNLMS algorithm was derived such that all coefficients
attain a converged value to within a vicinity ε of their optimal
value in the same number of iterations [18]. As a consequence,
F (|ĥl(n)|) for MPNLMS is specified by

F (|ĥl(n)|) = ln(1 + β|ĥl(n)|), (8)

with β = 1/ε and ε is a very small positive number chosen
as a function of the noise level [18]. It has been shown that
ε = 0.001 is a good choice for typical echo cancellation.
The positive bias of 1 in (8) is introduced to avoid numerical
instability during the initialization stage when |ĥl(0)| = 0, ∀l.

It is important to note that both PNLMS and MPNLMS
suffer from slow convergence when the unknown system
h(n) is dispersive [14], [13]. This is because when h(n)
is dispersive, κl(n) in (6) becomes significantly large for
most 0 ≤ l ≤ L − 1. As a consequence, the denominator
of ql(n) in (5) is large, giving rise to a small step-size for
each large coefficient. This causes a significant degradation
in convergence performance for PNLMS and MPNLMS when
the impulse response is dispersive such as can occur in AIRs.

B. The IPNLMS algorithm

The IPNLMS [15] algorithm was originally developed for
NEC and was further developed for the identification of acous-
tic room impulse responses [20]. It employs a combination
of proportionate (PNLMS) and non-proportionate (NLMS)
adaptation, with the relative significance of each controlled

by a factor αIP such that the diagonal elements of Q(n) are
given as

ql(n) =
1 − αIP

2L
+

(1 + αIP)|ĥl(n)|
2‖ĥ(n)‖1 + δIP

, 0 ≤ l ≤ L−1. (9)

where ‖ · ‖1 is defined as the l1-norm and the first and second
terms are the NLMS and the proportionate terms respectively.
It can be seen that IPNLMS is the same as NLMS when
αIP = −1 and PNLMS when αIP = 1. Use of a higher
weighting for NLMS adaptation, such as αIP = 0, −0.5 or
−0.75, is a favorable choice for most AEC/NEC applica-
tions [15]. It has been shown that, although the IPNLMS
algorithm has faster convergence than NLMS and PNLMS
regardless of the impulse response nature [15], we note from
our simulations that it does not outperform MPNLMS for
highly sparse impulse responses with the above choices of
αIP.

III. CHARACTERIZATION OF FRAMEWORK FOR ROBUST
CONVERGENCE

In this Section, we quantify the degree of sparseness in
AIRs. We provide an illustrative example to show how the
sparseness of AIRs varies with the loudspeaker-microphone
distance in an enclosed space such as when the user is using a
wireless microphone for tele/video conferencing. This serves
as a motivation for us to develop new algorithms which are
robust to the sparseness variation of AIRs in the next Section.
In addition, we also demonstrate how the choice of ρ in (6)
affects the step-size of each filter coefficient for PNLMS.

A. Variation of sparseness in AIRs

The degree of sparseness for an impulse response can be
quantified by [16], [23]

ξ(n) =
L

L −√
L

{
1 − ‖h(n)‖1√

L ‖h(n)‖2

}
(10)

It can be shown [16], [23] that 0 ≤ ξ(n) ≤ 1. In the extreme
but unlikely case when

hl(n) =
{ ±k, l = l1,

0, 0 ≤ l ≤ L − 1, l �= l1,
(11)

where l1 ∈ {[0, L−1]} and k ∈ �, then ξ(n) = 1. On the other
hand, when hl(n) = ±k ∀l, then ξ(n) = 0. In reality h(n)
and hence ξ(n) is time-varying and depends on factors such
as temperature, pressure and reflectivity [21]. As explained in
Section I, the sparseness of AIRs ξ(n) varies with the location
of the receiving device in an open or enclosed environment.
We show below how ξ(n) can also vary with the loudspeaker-
microphone distance in an enclosed space.

Consider an example case where the distance, a, between
a fixed position loudspeaker and the talker using a wireless
microphone is varying. Figure 3 shows two AIRs, generated
using the method of images [24], [25] with 1024 coefficients
using room dimensions of 8×10×3 m and 0.57 as the reflec-
tion coefficient. The loudspeaker is fixed at 4×9.1×1.6 m in
the LRMS while the microphone is positioned at 4×8.2×1.6 m
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Fig. 3. Acoustic impulse responses
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Fig. 4. Sparseness measure against the distance between loudspeaker and
microphone, a. The impulse responses are obtained from the image model
using a fixed room dimensions of 8 × 10 × 3 m.

and 4×1.4×1.6 m giving impulse responses as shown in Fig. 3
(a) and (b) for a = 0.9 m and a = 7.7 m respectively. Figure 4
illustrates how ξ(n) of such AIRs varies with a. For each
loudspeaker-microphone distance a, the microphone is directly
in front of the loudspeaker. As can be seen, ξ(n) reduces
with increasing a, since for increasing a, the sound field
becomes more diffuse. Since ξ(n) varies with a, we propose
to incorporate ξ(n) into PNLMS, MPNLMS and IPNLMS in
order to improve their robustness to the sparseness of AIRs in
AEC. Since h(n) is unknown during adaptation, we employ
ξ̂(n) to estimate the sparseness of an impulse response, where
at each sample iteration,

ξ̂(n) =
L

L −√
L

{
1 − ‖ĥ(n)‖1√

L ‖ĥ(n)‖2

}
. (12)

B. Effect of ρ on step-size control matrix Q(n) for PNLMS

As explained in Section II-A, the parameter ρ in (6) was
originally introduced to prevent freezing of the filter coeffi-
cients when they are much smaller than the largest coefficient.
Figure 5 shows the effect of ρ for both sparse and dispersive
AIRs on the convergence performance of PNLMS measured
using the normalized misalignment defined by

η(n) =
‖h(n) − ĥ(n)‖2

2

‖h(n)‖2
2

. (13)

A zero mean white Gaussian noise (WGN) sequence is used as
the input signal while another WGN sequence w(n) is added
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to give an SNR of 20 dB. Impulse responses as shown in
Fig. 3 (a) and (b) are used as sparse and dispersive AIRs,
and μPNLMS = 0.3. It can be seen from this illustration that,
for a sparse h(n), we desire a low value of ρ while, for a
dispersive unknown system h(n), we desire a high value of
ρ. This is due to the resulting effect of how different values
of ρ affect the step-size control element ql(n) as illustrated in
Fig. 6. It can be observed that a higher value of ρ will reduce
the influence of the proportional update term meaning that
all filter coefficients are updated at a more uniform rate. This
provides a good convergence performance for PNLMS for a
dispersive AIR. On the other hand, a lower ρ will increase
the degree of proportionality hence giving good convergence
performance when the AIR is sparse. As a consequence of
this important observation, we propose to incorporate ξ̂(n)
into ρ for both PNLMS and MPNLMS as described in the
next section.

IV. A CLASS OF SPARSENESS-CONTROLLED ALGORITHMS

We propose to improve the robustness of PNLMS,
MPNLMS and IPNLMS to varying levels of sparseness of
impulse response such as encountered in, for example, AEC.
As will be shown in the following, this is achieved by
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incorporating the sparseness measure of the estimated AIRs
into the adaptation process. We will discuss these approaches
conceptually and with simulation results on both WGN and
speech. For an analytical prospective, the reader is referred
to [26].

A. The proposed SC-PNLMS and SC-MPNLMS algorithms

In order to address the problem of slow convergence in
PNLMS and MPNLMS for dispersive AIR, we require the
step-size control elements ql(n) to be robust to the sparseness
of the impulse response. Several choices can be employed to
obtain the desired effect of achieving a high ρ when ξ̂(n)
is small when estimating dispersive AIRs. We consider an
example function

ρ(n)=e−λξ̂(n), λ ∈ R
+. (14)

The variation of ρ(n) in PNLMS for the exponential function
is plotted in Fig. 7 for the cases where λ = 4, 6 and 8. It can
be noted that a linear function ρ(n) = 1− ξ̂(n) also achieves
our desired condition. We have tested this case and found it
to perform worse than the more general form of (14), so we
will not consider it further.

It can be seen that low values of ρ(n) are allocated for
a large range of sparse impulse responses such as when
ξ̂(n) > 0.4. As a result of small values in ρ(n) using (14),
the proposed sparseness-controlled PNLMS algorithm (SC-
PNLMS) inherits the proportionality step-size control over a
large range of sparse impulse response. When the impulse
response is dispersive, such as when ξ̂(n) < 0.4, the proposed
SC-PNLMS algorithm inherits the NLMS adaptation control
with larger values of ρ(n). As explained in Section III-B and
Fig. 6, this gives a more uniform step-size across hl(n). Hence,
the exponential function described by (14) will achieve our
overall desired effect of the robustness to sparse and dispersive
AIRs.

The choice of λ is important. As can be seen from Fig. 7,
a larger choice of λ will cause the proposed SC-PNLMS
to inherit more of PNLMS properties compared to NLMS
giving good convergence performance when AIR is sparse.

On the other hand, when the AIR is dispersive, λ must be
small for good convergence performance. Hence, we show in
Section VI-A that a good compromise is given by λ = 6,
though the algorithm is not very sensitive to this choice in the
range of 4 ≤ λ ≤ 6.

Incorporating ρ(n) in a similar manner for the MPNLMS
algorithm, the resulting sparseness-controlled MPNLMS algo-
rithm (SC-MPNLMS) inherits more of the MPNLMS proper-
ties when the estimated AIR is sparse and distributes uniform
step-size across hl(n), as in NLMS, when the estimated AIR is
dispersive. In addition, we note that when n = 0, ‖ĥ(0)‖2 = 0
and hence, to prevent division by a small number or zero,
ξ̂(n) can be computed for n ≥ L in both SC-PNLMS and
SC-MPNLMS. When n < L, we set ρ(n) = 5/L as described
in [15]. The SC-PNLMS algorithm is thus described by (2)-(7),
(12) and (14), whereas SC-MPNLMS is described by (2)-(6),
(8), (12) and (14) with λ = 6, as summarized in Table I.

B. The SC-IPNLMS algorithm
We choose to incorporate sparseness-control into the

IPNLMS algorithm (SC-IPNLMS) [16] in a different manner
compared to SC-PNLMS and SC-MPNLMS because, as can
be seen from (9), two terms are employed in IPNLMS for
control of the mixture between proportionate and NLMS
updates. The proposed SC-IPNLMS improves the performance
of the IPNLMS by expressing ql(n) for n ≥ L as

ql(n)=

[
1 − 0.5ξ̂(n)

L

]
(1 − αSC−IP)

2L
+[

1 + 0.5ξ̂(n)
L

]
(1 + αSC−IP)|ĥl(n)|

2‖ĥ(n)‖1 + δIP

. (15)

As can be seen, for large ξ̂(n) when the impulse response
is sparse, the algorithm allocates more weight to the propor-
tionate term of (9). For comparatively less sparse impulse
responses, the algorithm aims to achieve the convergence of
NLMS by applying a higher weighting to the NLMS term.
An empirically chosen weighting of 0.5 in (15) is included
to balance the performance between sparse and dispersive
cases. In addition, normalization by L is introduced to reduce
significant coefficient noise when the effective step-size is
large for sparse AIRs with high ξ̂(n).

Figure 8 illustrates the step-size control elements ql(n)
for SC-IPNLMS in estimating different unknown AIRs. As
can be seen, for dispersive AIRs, SC-IPNLMS allocates a
uniform step-size across hl(n) while, for sparse AIRs, the
algorithm distributes ql(n) proportionally to the magnitude
of the coefficients. As a result of this distribution, the SC-
IPNLMS algorithm varies the degree of NLMS and propor-
tionate adaptations according to the nature of the AIRs. In
contrast, in standard IPNLMS the mixing coefficient αIP in (9)
is fixed a priori. The SC-IPNLMS algorithm is described
by (2)-(4), (12) and (15), as specified in Table I.

V. COMPUTATIONAL COMPLEXITY

The relative complexity of NLMS, PNLMS, SC-PNLMS,
IPNLMS, SC-IPNLMS, MPNLMS and SC-MPNLMS in
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TABLE I
THE SPARSENESS-CONTROLLED ALGORITHMS

Initialisations:
ĥ(0) = 0L×1

0 < μ ≤ 1
αSC−IP = −0.75 (SC-IPNLMS)
λ = 6 (SC-PNLMS, SC-MPNLMS)
ρ(n) = 5/L, n < L (SC-PNLMS, SC-MPNLMS)
β = 1000 (SC-MPNLMS)

General Computations:
e(n) = y(n)− ĥT (n− 1)x(n)

ĥ(n) = ĥ(n− 1) +
μQ(n− 1)x(n)e(n)

xT (n)Q(n− 1)x(n) + δ

Q(n− 1) = diag
{
q0(n− 1), . . . , qL−1(n− 1)}

ξ̂(n) =
L

L−√L

{
1− ‖ĥ(n)‖1√

L ‖ĥ(n)‖2

}
, n ≥ L

SC-PNLMS

ql(n) =
κl(n)

1
L

∑L−1
i=0 κi(n)

, 0 ≤ l ≤ L− 1

κl(n) = max
{

ρ(n)×max{γ,

|ĥ0(n)|, . . . , |ĥL−1(n)|}, |ĥl(n)|
}

ρ(n) = e−λξ̂(n), n ≥ L

SC-MPNLMS

ql(n) =
κl(n)

1
L

∑L−1
i=0 κi(n)

, 0 ≤ l ≤ L− 1

κl(n) = max
{

ρ(n)×max{γ,

F(|ĥ0(n)|), . . . , F(|ĥL−1(n)|)}, F(|ĥl(n)|)
}

F(|ĥl(n)|) = ln(1 + β|ĥl(n)|)
ρ(n) = e−λξ̂(n), n ≥ L

SC-IPNLMS

ql(n) =
[1− 0.5ξ̂(n)

L

] (1− αSC−IP)

2L
+[1 + 0.5ξ̂(n)

L

] (1 + αSC−IP)|ĥl(n)|
2‖ĥ(n)‖1 + δIP

terms of the total number of additions (A), multiplications (M),
division (D), logarithm (Log) and comparisons (C) per iter-
ation for adaptation of filter coefficients is assessed in Ta-
ble II. The additional complexity of the proposed sparseness-
controlled algorithms, on top of their conventional method,
arises from the computation of the sparseness measure ξ̂(n).
Given that L/(L − √

L) in (10) can be computed off-line,
the remaining l-norms require an additional 2L additions
and L multiplications. The SC-PNLMS and SC-MPNLMS
algorithms additionally require computations for (14). Alterna-
tively, a look-up table with values of ρ(n) defined in (14) can
be computed for 0 ≤ ξ̂(n) ≤ 1. Segment PNLMS (SPNLMS)
is proposed in [27], to approximate the μ-law function in
MPNLMS using line segments. Since ‖ĥ(n)‖1 computation
is already available from IPNLMS in (9), SC-IPNLMS only

Fig. 8. Magnitude of ql(n) for 0 ≤ l ≤ L − 1 against the magnitude
of coefficients ĥl(n) in SC-IPNLMS and different sparseness measures of 8
systems.

TABLE II
COMPLEXITY OF ALGORITHMS’ COEFFICIENTS UPDATE - ADDITION (A),

MULTIPLICATION (M), DIVISION (D), LOGARITHM (LOG) AND
COMPARISON (C).

Algorithm A M D Log C
NLMS L + 3 L + 3 1 0 0

PNLMS 2L + 1 5L + 2 2 0 2L
SC-PNLMS 4L + 2 6L + 4 3 0 2L

IPNLMS 3L + 2 5L + 2 2 0 0
SC-IPNLMS 4L + 5 6L + 8 3 0 0
MPNLMS 3L + 1 6L + 2 2 L 2L

SC-MPNLMS 5L + 2 7L + 4 3 L 2L

requires an additional L+3 additions, L+6 multiplications and
1 division. As we shall see, the increase in the complexity is
compromised by the algorithm’s performance. Consequently,
the trade-off between complexity and performance depend on
the design choice for a particular application.

VI. SIMULATION RESULTS

We present simulation results to evaluate the performance
of the proposed SC-PNLMS, SC-MPNLMS and SC-IPNLMS
algorithms in the context of AEC. In addition, we show an
example case of how SC-IPNLMS can be employed in NEC.
Throughout our simulations, algorithms were tested using a
zero mean WGN and a male speech signal as inputs while
another WGN sequence w(n) was added to give an SNR
of 20 dB. We assumed that the length of the adaptive filter
L = 1024 is equivalent to that of the unknown system. Two
receiving room impulse responses h(n) for AEC simulations
have been used as described in Fig. 3. The sparseness measure
of these AIRs are computed using (10) giving (a) ξ(n) = 0.83
and (b) ξ(n) = 0.59 respectively.

A. Effect of λ on the performance of SC-PNLMS for AEC

SC-PNLMS was tested as shown in Fig. 9 for different λ
values in (14) to illustrate the time taken to reach -20 dB
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values of λ in SC-PNLMS using WGN input signal. Impulse response in
Fig. 3 (a) and (b) used as sparse AIR and dispersive AIR respectively.
[μSC−PNLMS = 0.3, SNR = 20 dB]

normalized misalignment using a WGN sequence as the input
signal. A step-size of μ = 0.3 was used in this experiment. We
see from the result that, for each case of λ, the SC-PNLMS
has a higher rate of convergence for a sparse system compared
to a dispersive system. This is due to the initialization choice
of ĥ(0) = 0L×1, where most filter coefficients are initialized
close to their optimal values. In addition, a smaller value of λ
is favorable for the dispersive AIR, since SC-PNLMS performs
similarly to NLMS for small λ values. On the contrary, a
higher value for λ is desirable for the sparse case. It can
be noted that SC-PNLMS is exactly NLMS for λ = 0.
It can also be seen that a range of good value for λ is
4 ≤ λ ≤ 6. Figure 10 shows the performance of SC-PNLMS
with an echo path change introduced from Fig. 3 (a) to (b)
at 4.5 s, for λ = 0, 4, 6 and 8. We observe from this result
that the convergence rate of SC-PNLMS is high when λ is
small for a dispersive channel. This is because, as explained
in Section IV-A, the proposed algorithm inherits properties
of the NLMS for a small λ value. For a high λ, the SC-
PNLMS algorithm inherits properties of PNLMS giving good
performance for sparse AIR before the echo path change. As
can be seen, a good compromise of λ is given by λ = 6.

B. Convergence performance of SC-PNLMS for AEC

Figure 11 compares the performance of NLMS, PNLMS
and SC-PNLMS using WGN as the input signal. The step-
size parameter for each algorithm is chosen such that all
algorithms achieve the same steady-state. This is achieved
by setting μNLMS = μPNLMS = μSC−PNLMS = 0.3. An
echo path change was introduced from Fig. 3(a) to 3(b) while
λ for the SC-PNLMS algorithm is set to 6. It can be seen
from Fig. 11 that the convergence rate of SC-PNLMS is as
fast as PNLMS for sparse and much better than PNLMS
for dispersive, therefore achieving our objective of improving
robustness to varying sparseness. This is because SC-PNLMS
inherits the beneficial properties of both PNLMS and NLMS.
It can be seen from the result that SC-PNLMS achieves high
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Fig. 10. Convergence of the SC-PNLMS for different values of λ using
WGN input signal with an echo path change at 3.5 s. Impulse response is
changed from Fig. 3 (a) to (b) and μSC−PNLMS = 0.3, SNR = 20 dB.
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Fig. 11. Relative convergence of NLMS, PNLMS and SC-PNLMS using
WGN input signal with an echo path change at 3.5 s. Impulse response is
changed from that shown from Fig. 3 (a) to (b) and μNLMS = μPNLMS =
μSC−PNLMS = 0.3, SNR = 20 dB.

rate of convergence similar to PNLMS giving approximately
5 dB improvement in normalized misalignment during initial
convergence compared to NLMS for a sparse AIR. After the
echo path change, for a dispersive AIR, the SC-PNLMS main-
tains its high convergence rate over NLMS and PNLMS giving
approximately 4 dB improvement in normalized misalignment
compared to PNLMS.

Figure 12 shows simulation results for a male speech input
signal where we used the same parameters as in the case
of WGN input signal. As can be seen, the proposed SC-
PNLMS algorithm achieves the highest rate of convergence,
giving convergence as fast as PNLMS and approximately
7 dB improvement during initial convergence compared to
NLMS for the sparse AIR. For dispersive AIR, SC-PNLMS
performs almost the same as NLMS with approximately 4 dB
improvement compared to PNLMS.
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μSC−PNLMS = 0.1, SNR = 20 dB.

C. Convergence performance of SC-MPNLMS for AEC

Figure 13 illustrates the performance of NLMS, MPNLMS
and SC-MPNLMS using WGN as the input signal. As before,
the step-sizes were adjusted to achieve the same steady-
state misalignment for all algorithms. This corresponds to
μNLMS = 0.3, μMPNLMS = μSC−MPNLMS = 0.25. We have
also used λ = 6 for SC-MPNLMS. As can be seen from
this result, the SC-MPNLMS algorithm attains approximately
8 dB improvement in normalized misalignment during initial
convergence compared to NLMS and same initial perfor-
mance followed by approximately 2 dB improvement over
MPNLMS for the sparse AIR. After the echo path change, SC-
MPNLMS achieves approximately 3 dB improvement com-
pared to MPNLMS and about 8 dB better performance than
NLMS for dispersive AIR. As shown in Fig. 14, with speech
signal as the input, the proposed SC-MPNLMS algorithm
achieves approximately 10 dB improvement during initial con-
vergence compared to NLMS and 2 dB compared to MPNLMS
for the sparse AIR. For dispersive AIR, the SC-MPNLMS
algorithm achieves an improvement of approximately 4 dB
compared to both NLMS and MPNLMS. It is also noted
that NLMS achieves approximately 7 dB better steady-state
performance than the MPNLMS-based approaches for this ex-
ample with speech input. This is attributed in [4] to sensitivity
to eigenvalue spread of the speech signal’s autocorrelation
matrix.

D. Convergence performance of SC-IPNLMS for AEC

For SC-IPNLMS performance comparison, we used
μNLMS = μIPNLMS = 0.3, μSC−IPNLMS = 0.7 in order to
attain same steady state performance. Proportionality control
factors αIP = αSC−IP = −0.75 have been used for both
IPNLMS and SC-IPNLMS. It can be seen from Fig. 15
and 16 that by using both WGN and speech input signals,
SC-IPNLMS achieves approximately 10 dB improvement in
normalized misalignment during initial convergence compared
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Fig. 13. Relative convergence of NLMS, MPNLMS and SC-MPNLMS using
WGN input signal with an echo path change at 3.5 s. Impulse response is
changed from that shown from Fig. 3 (a) to (b) and μNLMS = 0.3, μMPNLMS

= μSC−MPNLMS = 0.25, SNR = 20 dB.
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Fig. 14. Relative convergence of NLMS, MPNLMS and SC-MPNLMS using
speech input signal with echo path changes at 58 s. Impulse response is
changed from that shown in Fig. 3 (a) to (b) and μNLMS = 0.3, μMPNLMS

= μSC−MPNLMS = 0.25, SNR = 20 dB.

to NLMS for the sparse AIR. For a dispersive AIR, the SC-
IPNLMS achieves a 5 dB improvement compared to NLMS.
For a speech input, the improvement of SC-IPNLMS over
IPNLMS is 3 dB for both sparse and dispersive AIRs. On
the other hand, the improvement of SC-IPNLMS compared to
NLMS are 10 dB and 6 dB for sparse and dispersive AIRs,
respectively.

E. Convergence performance of the algorithms for various
AIRs with different sparseness in AEC

We extracted eight different impulse responses from the
set of AIRs with sparseness measure 0.58 ≤ ξ ≤ 0.93 as
shown in Fig. 4. The time taken to reach -20 dB normalized
misalignment is plotted against ξ(n) for NLMS, PNLMS,
SC-PNLMS, IPNLMS and SC-IPNLMS in Fig. 17, and for
NLMS, MPNLMS and SC-MPNLMS in Fig. 18. As before, all
step-sizes have been adjusted so that the algorithms achieve the
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same steady-state normalized misalignment. These correspond
to μNLMS = μPNLMS = μSC−PNLMS = μIPNLMS = 0.3,
μMPNLMS = μSC−MPNLMS = 0.25 and μSC−IPNLMS = 0.7.
A zero mean WGN was used as an input signal while another
WGN sequence w(n) was added to achieve an SNR of 20 dB. It
can be seen that when the AIRs are sparse, the speed of initial
convergence increases significantly for each algorithm. This is
because many of the filter coefficients are initialized close to
their optimum values since during initialization, ĥ(0) = 0L×1.
In addition, the sparseness-controlled algorithms (SC-PNLMS,
SC-MPNLMS and SC-IPNLMS) give the overall best per-
formance compare to their conventional methods across the
range of sparseness measure. This is because the proposed
algorithms take into account the sparseness measure of the
estimated impulse response at each iteration.
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F. Convergence performance of SC-IPNLMS for NEC

We provide additional simulations to illustrate the perfor-
mance of SC-IPNLMS in the context of sparse adaptive NEC,
such as may occur in network gateways for mixed packet-
switched and circuit-switched networks. Figure 19 shows two
impulse responses, sampled at 8 kHz comprising a 12 ms
active region located within a total duration of 128 ms. The
sparseness of these impulse responses computed using (12)
are (a) ξ(n) = 0.88 and (b) ξ(n) = 0.85 respectively. As
before, we used a WGN input signal while another WGN
sequence is added to give an SNR of 20 dB. Figure 20
shows the performances of NLMS, IPNLMS, for αIP = −0.5
and −0.75, and the proposed SC-IPNLMS algorithm with
αSC−IP = −0.75. An echo path change was introduced
using impulse responses as shown from Fig. 19 (a) to (b)
at 3.5 s. We can see from the result that the performance
of IPNLMS is dependent on αIP. More importantly, a faster
rate of convergence can be seen for SC-IPNLMS compared to
NLMS and IPNLMS both at initial convergence and also after
the echo path change.
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Fig. 19. Sparse impulse responses, sampled at 8 kHz, giving (a) ξ(n) = 0.88
and (b) ξ(n) = 0.85 respectively.
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VII. CONCLUSION

We have presented a class of sparseness-controlled algo-
rithms which achieves improved convergence compared to
classical NLMS and typical sparse adaptive filtering algo-
rithms. We have incorporated the sparseness measure into
PNLMS, MPNLMS and IPNLMS for AEC to achieve fast
convergence that is robust to the level of sparseness encoun-
tered in the impulse response of the echo path. The resulting
SC-PNLMS, SC-MPNLMS and SC-IPNLMS algorithms take
into account the sparseness measure via a modified coefficient
update function.

It has been shown that the proposed sparseness-controlled
algorithms are robust to variations in the level of sparseness in
AIR with only a modest increase in computational complexity.
Moreover, we have shown that these proposed algorithms have
same or faster convergence in NEC.
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variation due to thermal fluctuation and its impact on acoustic echo
cancellation,” in Proc. Int. Workshop on Acoustic Echo and Noise
Control, 2003, pp. 67–70.

[22] H. Sabine, “Room acoustics,” Transactions of the IRE Professional
Group on Room Acoustics, vol. 1, no. 4, pp. 4–12, Jul. 1953.

[23] J. Benesty, Y. A. Huang, J. Chen, and P. A. Naylor, “Adaptive algorithms
for the identification of sparse impulse responses,” in Selected methods
for acoustic echo and noise control, E. Hänsler and G. Schmidt, Eds.
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