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ABSTRACT

Recently, a class of non-truncated, radially anisotropic models (the so-called f (ν)-models), originally constructed in the context of
violent relaxation and modelling of elliptical galaxies, has been found to possess interesting qualities in relation to observed and
simulated globular clusters. In view of new applications to globular clusters, we improve this class of models along two directions. To
make them more suitable for the description of small stellar systems hosted by galaxies, we introduce a “tidal” truncation by means

of a procedure that guarantees full continuity of the distribution function. The new f
(ν)

T
-models are shown to provide a better fit to

the observed photometric and spectroscopic profiles for a sample of 13 globular clusters studied earlier by means of non-truncated
models; interestingly, the best-fit models also perform better with respect to the radial-orbit instability. Then, we design a flexible but
simple two-component family of truncated models to study the separate issues of mass segregation and multiple populations. We do
not aim at a fully realistic description of globular clusters to compete with the description currently obtained by means of dedicated
simulations. The goal here is to try to identify the simplest models, that is, those with the smallest number of free parameters, but still
have the capacity to provide a reasonable description for clusters that are evidently beyond the reach of one-component models. With
this tool, we aim at identifying the key factors that characterize mass segregation or the presence of multiple populations. To reduce
the relevant parameter space, we formulate a few physical arguments based on recent observations and simulations. A first application
to two well-studied globular clusters is briefly described and discussed.

Key words. globular clusters: general – stars: kinematics and dynamics – globular clusters: individual: NGC 104 (47 Tuc) –
globular clusters: individual: NGC 5139 (ω Cen)

1. Introduction

As a zeroth-order dynamical description, a class of models (King
1966) has long and successfully been applied to globular clus-
ters (McLaughlin & van der Marel 2005; Carballo-Bello et al.
2012; Miocchi et al. 2013). Standard spherical King models
are meant to describe round, non-rotating stellar systems made
of a single stellar population for which the role of internal
two-body relaxation has had time to act, bringing the sys-
tem close to a quasi-Maxwellian, isotropic distribution func-
tion; a truncation is considered, to mimic the presence of tidal
effects. The success of the King models is largely based on
their ability to fit the observed photometric profiles (but see
McLaughlin & van der Marel 2005, for a photometric test in
favour of models characterized by a milder truncation); the mod-
els are then used to infer the general internal kinematical struc-
ture of globular clusters, which is largely beyond the reach of
direct observational tests. In recent years, with the advent of
high-resolution space and ground-based observations, the great
progress made in the acquisition of detailed information on the
line of sight and proper motion kinematics of these stellar sys-
tems has prompted a demand for more complex dynamical mod-
els. In particular, many galactic globular clusters are known to
be characterized by significant rotation (Bellazzini et al. 2012;
Bianchini et al. 2013) and/or pressure anisotropy (Watkins et al.
2015). Often, clusters that are known to be characterized by
longer relaxation times turn out to be more anisotropic (see

for example Zocchi et al. 2012, hereafter ZBV12; Watkins et al.
2015).

Regardless of their success, King models exhibit several in-
ternal inconsistencies. The models are meant to describe tidally
truncated stellar systems, but in their original form they are
spherical in spite of the stretching that tides are expected to
impose. The models are chosen to reflect the conditions of a
collisionally relaxed state, but actually, outside their half-mass
radius, globular clusters and the models themselves are associ-
ated with very long relaxation times (Harris 2010). These mod-
els are generally applied as one-component models, that is, they
are suited to describe stellar systems made of a single homoge-
neous stellar population; yet, if collisional relaxation is at work,
it should generate significant mass segregation with heavier stars
characterized by a distribution more concentrated than that of
lighter stars (Spitzer 1969).

Physically motivated models that are able to resolve some of
the above-noted inconsistencies, in relation to the shape and rota-
tion of globular clusters, have been constructed (in particular, see
Heggie & Ramamani 1995; Bertin & Varri 2008; Varri & Bertin
2012). As to the possible presence of pressure anisotropy, for
the case of non-rotating clusters, so far most studies have re-
sorted to the so-called Michie-King models (Michie 1963),
which introduce significant radial pressure in the outer parts
by multiplication of the underlying distribution function by a
suitable angular-momentum-dependent factor (see also the mod-
els recently proposed by Gieles & Zocchi 2015). In this general
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picture, we might then consider models, such as those known
as the f (ν) models, developed to represent the final state of col-
lisionless collapse under incomplete violent relaxation and suc-
cessfully applied to the study of bright elliptical galaxies (e.g.
see Trenti & Bertin 2005). Even though it remains to be proved
that the formation of globular clusters, or at least of some glob-
ular clusters, follows this route, some recent investigations have
looked into this possibility.

A general trend in the direction of radial pressure in the outer
regions has also been noted in recent simulations of the evolution
of globular clusters (Tiongco et al. 2016). Eventually, if external
tidal fields are present, theoutermost regions of the cluster may
be characterized by isotropy or mildtangential anisotropy, as also
suggested by Vesperini et al. (2014). In a recent paper (ZBV12),
the class of spherical f (ν) models was used to study a sample
of Galactic globular clusters under differentrelaxation conditions
and compared to the performance of the standard spherical King
models. This exploratory investigation indicates that for some
clusters the use of f (ν) models is encouraged, although because
these models are non-truncated, they are obviously at a disad-
vantage in describing the outer parts of the available photomet-
ric profiles. In addition, some of the best-fit radially anisotropic
models thus identified actually turn out to be too anisotropic, so
that they might be prone to the radial-orbit instability (and thus
not acceptable for interpreting the observations). The first goal
of the present paper is to introduce a truncation to the f (ν) mod-
els and to test whether this new class of models is capable of a
more satisfactory fit to the sample of globular clusters studied by
ZBV12.

The second objective of the paper is to extend the newly con-

structed f
(ν)

T
models to the case of two-component systems. For

globular clusters, there are at least two important reasons to ad-
dress more complex models of this kind.

One of the main effects related to collisionality is that
of mass segregation. Thus a more realistic dynamical frame-
work for the modelling of globular clusters has been sought in
terms of multi-component models (e.g. see Da Costa & Freeman
1976; Gunn & Griffin 1979; Merritt 1981; Miocchi 2006), which
basically represent an extension of the standard King (or
Michie-King) models. Naively (i.e. in the normal context of ki-
netic systems), we would expect collisions to enforce a sort of
equipartition, in which the velocity dispersion σ of stars of mass
m should scale as σ ∼ m−1/2. The process is complicated by the
global and inhomogeneous nature of self-gravitating systems. It
has also been argued that in the core of globular clusters com-
plete equipartition cannot be achieved as a result of the so-called
Spitzer instability. In particular, Spitzer (1969) suggested that,
in a two-component system in virial equilibrium, the condition
of equipartition in the core is precluded if the total mass of the
heavy stars exceeds a certain fraction of the total mass of the
cluster. Spitzer’s criterion was extended by Vishniac (1978) to
cover systems with a continuous distribution of masses. These
theoreticalarguments have been revisited by means of recent
simulations (see Trenti & van der Marel 2013) in which only
partial equipartition is “observed” to follow from the cumula-
tive action of star-star collisions. In any case, a certain degree
of mass segregation appears to emerge from the observations of
several globular clusters (see Anderson & van der Marel 2010;
Goldsbury et al. 2013; Di Cecco et al. 2013; Bellini et al. 2014).

A second, physically separate reason to address the issue of
two-component models is given by the relatively recent find-
ing that globular clusters host multiple stellar populations. In
many observed cases, the suggested interpretation is that clus-
ters have been the site of multiple generations of stars (see

Lardo et al. 2011; Gratton et al. 2012), so that the stars can be di-
vided into the groups of first and second generations, and these
groups may be associated with different dynamical properties,
such as concentration or degree of anisotropy (see Richer et al.
2013; Bellini et al. 2015).

For the second goal of the paper, that is, the construction

of two-component models of the f
(ν)

T
form, we formulate some

physical hypotheses (based on observations and/or simulations)
that correspond to the picture of mass segregation to keep the
number of free parameters low. A comparison with observed
cases should be able to support or disprove the physical assump-
tions made in the modelling procedure. Our approach is com-
plementary to that of constructing multi-parameter models as di-
agnostic tools (see Da Costa & Freeman 1976; Gunn & Griffin
1979; Gieles & Zocchi 2015).

The paper is organized as follows. In Sect. 2 we introduce

and construct the new class of truncated anisotropic f
(ν)

T
models.

In Sect. 3 we extend it to the two-component case. In Sect. 4 we
apply the one-component models to fit a sample of 13 galactic
globularclusters. For NGC 5139 (ω Cen) and NGC 104 (47 Tuc),
we also present the results of the fits performed by means of

two-component f
(ν)

T
models. Finally, in Sect. 5, we draw our

conclusions.

2. One-component models

Studies of the dynamics of elliptical galaxies have investigated
the picture of galaxy formation by incomplete violent relaxation
from collisionless collapse. There are ways to translate this pic-
ture into an appropriate choice of the relevant distribution func-
tion to represent the current state of ellipticals. The choice is not
unique and various options have been explored. One particular
choice reflects a conjecture on the statistical foundation of the
relevant distribution function (see Stiavelli & Bertin 1987). This
is a family of partially relaxed models. The models are called
f (ν) models and their properties have been studied extensively
in more recent papers (see Bertin & Trenti 2003; Trenti et al.
2005). They are based on the following distribution function:

f (ν) = A exp















−aE − d

(

J2

|E|3/2

)ν/2














, (1)

where A, a, and d are positive constants. For applications, a
given value of ν ≈ 1 is usually taken as a fixed parameter. Here
E = v2/2+Φ(r) < 0 and J = |r× u| represent the specific energy
and the magnitude of the specific angular momentum of a sin-
gle star subject to a spherically symmetric mean potential Φ(r).
The self-consistent models based on this distribution function
define a family of anisotropic, non-truncated models. The fol-
lowing subsections are devoted to the formulation of a truncated
distribution function as a generalization of Eq. (1) and to the
analysis of the main dynamical properties found for the result-
ing new classes of anisotropic truncated models.

2.1. Truncation

As also noted by Davoust (1977), the truncation prescription
is not unique; the structural properties associated with different
types of truncation are described by Hunter 1977). Indeed, the
distribution functions considered in that article differ from one
another for the smoothness of their energy gradients in corre-
spondence with the energy cut-off. In this respect, we decided to
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proceed to the truncation of the f (ν) models with ν = 1 in the
following way. The distribution function

f
(ν)

T
=



















A exp

[

−a(E − Ee) − dJ

|E−Ee |
3
4

]

if E < Ee

0 if E ≥ Ee

(2)

for J , 0, vanishes at the cut-off energy Ee together with all its
derivatives (the quantities A, Ee, a, and d are constants). The two-
parameter family of one-component models is then constructed
by solving the Poisson equation

∇2Φ(r) = 4πG

∫

f
(ν)

T
d3v (3)

for the gravitational potential Φ(r). In our case, the distribu-
tion function is anisotropic, so that the density on the right-hand
side of Eq. (3) can be reduced to a two-dimensional integral,
which depends on radius, explicitly and implicitly, through the
unknown Φ(r). Thus, if we define dimensionless quantities such
as the potential ψ = −a(Φ − Ee), radius ξ = a1/4dr, and velocity
ω2 = (a/2)v2, the integral is proportional to

ρ̂(ξ, ψ) =

∫ π

0

∫

√
ψ

0

f̂
(ν)

T
(ξ, ψ, ω, ζ)ω2 sin ζdζdω, (4)

where

f̂
(ν)

T
(ξ, ψ, ω, ζ) = 4

√
2π exp
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−ω2 + ψ −
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2ξω sin ζ

|ω2 − ψ|3/4
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





, (5)

and ζ is the angle between the position r and the velocity u
of a single star. The resulting dimensionless form of Eq. (3) is
given by

d2

dξ2
ψ +

2

ξ

d

dξ
ψ = −

1

γ
ρ̂(ξ, ψ), (6)

where we introduced the dimensionless parameter γ =

ad2/(4πGA). This differential equation is integrated under the
boundary conditions ψ(0) = Ψ and (dψ/dξ)(0) = 0 out to the
truncation radius ξtr, where the dimensionless potential vanishes.
Hence, the self-consistent problem for the dimensionless poten-
tial reduces to a family of second-order differential equations
defined by two structural parameters: the central dimensionless
potential Ψ and γ. We performed the integration of Eq. (6) with
an adaptive fourth-order Runge-Kutta method. At every integra-
tion step, the two-dimensional integral on the right-hand side
was computed by means of the Chure routine in the C-package
Cuba (see Hahn 2005).

2.2. The parameter space

The non-truncated models are characterized by a specific rela-
tion between the parameters Ψ and γ (see the plot of γ(Ψ) in
Fig. 1 of Trenti & Bertin 2005). In particular, for a given value
of Ψ the corresponding value of γ is fixed by the requirement of
a Keplerian decay of the gravitational potential (Φ ∼ −1/r) at
large radii. For the models with ν = 1, in the range 0 . Ψ . 15,
the function γ(Ψ) presents a pronounced peak at Ψ ≈ 5.5; for
higher values of Ψ, γ decreases, reaches about half of its peak
value at Ψ ≈ 10, and then stays approximately constant.

In our models, γ is left as a free parameter. However, since,
for a given Ψ, there is a maximum value γmax beyond which
the models do not present any truncation, the parameter space is
confined to the region that is under the curve γ(Ψ) found for the

Fig. 1. Quantity rtr/rM is plotted as a function of γ for selected values
of Ψ.

Fig. 2. Quantity ρ(0)/ρ(rM) is plotted as a function of Ψ for selected
values of γ.

non-truncated models. For a given Ψ, the non-truncated models
are recovered in the limit γ → γmax; indeed, as shown in Fig. 1,
the ratio of the truncation radius rtr to the half-mass radius rM is
an increasing function of γ.

The parameter Ψ is identified with the concentration of the
model. Another measure of the central concentration is the ra-
tio ρ(0)/ρ(rM) of the central density to the density calculated
at the half-mass radius rM. In Fig. 2 we plot this quantity as a
function of Ψ. We note that for high values of γ the relation is
non-monotonic. For 5.5 . Ψ . 8.5 the relation is monotonic and
characterized by a weak dependence on γ .

2.3. Intrinsic profiles

All the radial profiles of physical interest can be derived by tak-
ing moments of the distribution function f . If we consider the
natural velocity coordinate system (vr, vθ, vϕ), the velocity dis-

persion tensor is diagonal with σ2
θθ
= σ2

ϕϕ. Explicitly, by defin-
ing a tangential component of the velocity dispersion tensor as
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Fig. 3. Left panel: normalized density profile for selected values of γ at fixed Ψ; right panel: normalized density profile for selected values of Ψ at
fixed γ.

Fig. 4. Left panel: normalized total velocity dispersion profile for selected values of γ at fixed Ψ; right panel: normalized total velocity dispersion
profile for selected values of Ψ at fixed γ.

σ2
T
= σ2

θθ
+ σ2

ϕϕ, we obtain

σ2
rr =

2

a

1

ρ̂

∫ π

0

∫

√
ψ

0

f̂
(ν)

T
(ξ, ψ, ω, ζ)ω4 cos2 ζ sin ζdζdω, (7)

σ2
T =

2

a

1

ρ̂

∫ π

0

∫

√
ψ

0

f̂
(ν)

T
(ξ, ψ, ω, ζ)ω4 sin3 ζdζdω, (8)

where we have used the definitions given in Eqs. (4), (5) and the
relations: v2

r = v2 cos2 ζ and v2
T
= v2

θ
+ v2

ϕ = v2 sin2 ζ. For sim-

plicity, in the following we use the notation σ2
r = σ

2
rr. Once the

dimensionless potential profile is obtained by solving the Pois-
son equation, the velocity dispersion profiles can be calculated
as two-dimensional integrals with the same procedure described
in Sect. 2.1.

For the one-component f
(ν)

T
models, in Figs. 3 and 4 we plot

some intrinsic profiles of the density and total velocity dispersion
(defined by σ2 = σ2

r + σ
2
T
).

2.4. Anisotropy

A local measure of the pressure anisotropy is given by the func-
tion α(r) = 2 − σ2

T
/σ2

r .

In Fig. 5 we show some representative anisotropy profiles.
The models are characterized by an isotropic core and a radially
biased anisotropic envelope.

The radial extent of the isotropic core can be measured by
means of the anisotropy radius rα defined as the radius where
α = 1. The ratio rα/rM of the anisotropy radius to the half-
mass radius as a function of γ is shown in Fig. 6. At fixed
Ψ, models with higher γ are characterized by lower values
of rα/rM.

This trend is confirmed by the behaviour of the ratio
κ = 2Kr/KT of twice the total radial kinetic energy Kr to
the total tangential kinetic energy KT, which is often used
to measure the degree of global anisotropy of the system.
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Fig. 5. Left panel: anisotropy profile α(r) for selected values of γ at fixed Ψ; right panel: anisotropy profile for selected values of Ψ at fixed γ.
Where a curve terminates, the truncation radius is reached.

Fig. 6. Ratio of the anisotropy radius rα to the half-mass radius rM as a
function of γ for selected values of Ψ. At given Ψ, models with smaller
γ are characterized by a more extended isotropic core.

This parameter is related to a well-known criterion for the
onset of the radial-orbit instability (Polyachenko & Shukhman
1981): instability occurs if κ exceeds a model-dependent thresh-
old, κ & 1.7 ± 0.25. Figure 7 shows the monotonic increas-
ing dependence of κ on γ. Therefore, truncated models are
generally more isotropic than the corresponding non-truncated
models.

2.5. Virial coefficient

The virial coefficient (for more details see Bertin et al. 2002) can
be defined as

KV =
GΥ∗L

Reσ
2
0

, (9)

Fig. 7. Global anisotropy parameter κ = 2Kr/KT for selected values of
the parameter Ψ. The grey area indicates the region of the threshold for
the onset of the radial orbit instability.

where σ0 is the “central” velocity dispersion1, Υ∗ is the stellar
mass-to-light ratio in the band used for the determination of the
luminosity L, and the effective radius Re is the projected radius
of the disk containing half of the total luminosity of the cluster.

Once the best-fit model for a given cluster is found from the
photometric fit, the virial coefficient can be calculated, and thus
used to infer the total dynamical mass from a measurement of
σ0 under the hypothesis of a single stellar component. This pro-
cedure is very useful, particularly for those cases in which the
kinematic profiles are poor or affected by large uncertainties.

In Fig. 8 we show the value of KV as a function of the central
dimensionless potential Ψ for selected values of γ and for the
King models. The difference between the various curves can be
significant, particularly for low values of Ψ.

1 In the following we consider σ0 as the mean value of the line-of-sight
velocity dispersion on the cylindrical volume with projected radius Re/8
and length 2rtr.

A16, page 5 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628274&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628274&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628274&pdf_id=7


A&A 590, A16 (2016)

Fig. 8. Virial coefficient KV for selected values of γ and for the King
models.

3. Two-component models

Starting from the truncated models described in the previous
subsections, we introduce the two distribution functions

f
(ν)

T,i
(E, J) =



















Ai exp

[

−ai(E − Ei) − di
J

|E−Ei |3/4

]

if E < Ei

0 if E ≥ Ei.
(10)

Each distribution function depends on four constants Ai, ai, di, Ei

(with i = 1, 2), so that in total the solution for the self-consistent
potential Φ from the Poisson equation

∇2Φ(r) = 4πG

(∫

f
(ν)

T,1
d3v +

∫

f
(ν)

T,2
d3v

)

(11)

requires a study with eight arbitrary constants. In practice, from
the point of view of dimensionless parameters, we reduce our
investigation to a two-parameter space by means of physical ar-
guments; of course, if desired, we could loosen some of the phys-
ical constraints that we are going to impose and thus extend our
discussion.

As noted in the Introduction, different physical arguments
can motivate the study of two-component models. Here we fo-
cus on the case in which we distinguish one population of lighter
stars (let m1 be the representative mass of its individual stars and
M1 its associated total mass) from a second population of heavier
stars (with m2 > m1 and in general, M2 , M1), so that the total
mass of the cluster is M = M1 + M2. As for the one-component
case, we rescale the problem to a dimensionless form, by refer-
ring to a length scale and to an energy scale based on the con-
stants associated with the lighter component. In particular, we

define the dimensionless radius ξ = ra
1/4

1
d1 and the dimension-

less potential ψ = −a1(Φ − E1). After such rescaling, we are left
with six independent constants. To reduce the number of param-
eters and thus to work in the simplest mathematical context, we
make the following assumptions:

1. We consider a common truncation radius, that is, we take

E1 = E2 = Ee. (12)

Such assumption is frequently made as a starting point
for the construction of multi-mass models (e.g. see
Da Costa & Freeman 1976).

2. We consider two-component models in which the total
masses associated with the two components are in a given
ratio M1/M2. Reasonable values for this ratio are suggested
by models of the evolution of stellar populations, as briefly
described in Appendix A. Obviously, this can be seen as a re-
quirement on the ratio of the normalization factors A1/A2. In
practice, for a globally self-consistent model this constraint
can be written as

A1a
−3/2

1

A2a
−3/2

2

∫ ξtr

0
ρ̂1ξ

2dξ
∫ ξtr

0
ρ̂2ξ2dξ

=
M1

M2

; (13)

(for the notation ρ̂i, see Eq. (4)). For a desired mass ratio,

the equation is basically a relation for the constant A2a
−3/2

2

in terms of A1a
−3/2

1
, but the precise relation has to be worked

out iteratively from the global solution.
3. We choose a given value for the single-mass ratio m1/m2;

reasonable values for this ratio are suggested by stellar-
population models, as described in Appendix A. We im-
pose partial energy equipartition in the central regions of the
system by means of the dimensionless parameter η = 0.2.
The definition of η is given a few lines below. The way in
which equipartition is incorporated is not unique (e.g. see
Kondratev & Ozernoi 1982). In its simplest form, as pro-
posed by Da Costa & Freeman (1976), energy equipartition
is sometimes imposed by means of a relation between the
energy scales of the form a2/a1 = m2/m1. We prefer to
follow the argument of Miocchi (2006), which recognizes
that equipartition is best ensured in the central, more re-
laxed regions. On the other hand, given the support of re-
cent observations (see Bellini et al. 2014) and simulations
(see Trenti & van der Marel 2013), it may be wiser to refer
to only partial equipartition, by imposing

[

a2

a1

γ (5/2,Ψ) γ (3/2, a2Ψ/a1)

γ (3/2,Ψ) γ (5/2, a2Ψ/a1)

]1/2

=

(

m1

m2

)−η

· (14)

The left-hand side of the above equation represents the ra-
tio σ1(0)/σ2(0) of the central velocity dispersions for the
two-component model2. At r = 0, the one-component distri-
bution function is trivial because the dependence on J drops
out and Φ = Φ(0), so that Eq. (14) is expressed in closed
form in terms of the relevant constants and concentration pa-
rameter Ψ = −a1[Φ(0) − Ee]. Full equipartition is denoted
by η = 1/2; from their simulations, also in view of an argu-
ment by Spitzer (1969) and Trenti & van der Marel (2013)
suggest η = 0.2 for specific cases. In the following we re-
fer to this case of partial equipartition (for a recent investi-
gation on energy equipartition in globular clusters, see also
Bianchini et al. 2016).

4. We assume that the radial scales that define the size of the
radially biased anisotropic outer envelope are the same for
the two components, that is

d2a
1/4

2
= d1a

1/4

1
. (15)

This is only a qualitative argument, meant to recognize
that one of the possible causes of radially biased pressure
anisotropy is incomplete violent relaxation, which is a colli-
sionless relaxation process that acts in the same way on stars
of different masses (see also Gunn & Griffin 1979). For con-
venience in the numerical calculation of the models, we de-
cided to adopt the radial scale da1/4 as a proxy for the radius

2 γ is the incomplete gamma function defined by γ(s, x) =
∫ x

0
ts−1e−t dt.
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of transition from isotropic core to anisotropic envelope; by
inspecting one-component and two-component models, we
confirm that indeed this scale identifies approximately the
anisotropy radius rα.

To summarize, our two-component models depend on eight con-
stants. In practice, by taking a common truncation radius and a
common pressure anisotropy scale for the two components and
by fixing the values of the ratios M1/M2, m1/m2 (and of η),
the relations introduced above reduce the number of free con-
stants to four. Two of these are used to rescale the Poisson
equation to a dimensionless form, the remaining two define two
independent dimensionless parameters, so that the parameter
space explored by the family of two-component models con-
sidered in the present study is two dimensional. As in the one-
component models, we use the central dimensionless potential
Ψ = −a1[Φ(0) − Ee] and the parameter γ = a1d2

1
/(4πGA1) as

independent structural parameters.

3.1. Mass segregation

The third condition imposed in the construction of two-
component models is meant to incorporate the role of collisions
in establishing some sort of equipartition. It is well known that
this effect should be accompanied by mass segregation, that is,
by a general trend of the lighter component to exhibit a more dif-
fuse distribution with respect to the heavier component. In par-
ticular, we note that for our models the central density ratio is
given by

ρ1(0)

ρ2(0)
=

A1

A2

(

a2

a1

)3/2
eΨγ (3/2,Ψ)

ea2Ψ/a1γ (3/2, a2Ψ/a1)
, (16)

which, under the conditions listed in the previous subsection,
would be expected to fall below unity from a simple picture of
mass segregation in which the central parts should be dominated
by the heavier component.

As we noted in Sect. 2.2, when we introduced the concen-
tration parameter Ψ for the one-component models, there are
several ways of describing the concentration of a given density
profile. Here, we illustrate the result of different definitions that
may be adopted. In Fig. 9 we plot the ratio rM1/rM2 of the half-
mass radii of the two components and the ratio of the quanti-
ties associated with the parameter illustrated in Fig. 2, that is,
of the density contrast of the lighter component ρ1(0)/ρ1(rM1) to
that of the heavier component ρ2(0)/ρ2(rM2), as a function of Ψ,
for selected values of γ. The ratio rM1/rM2 exceeds unity for all
the models considered and thus it is the more natural parame-
ter to be used to describe the relative concentration of the two
components.

In order to highlight how different types of mass segrega-
tion can result from the condition of partial energy equipartition
imposed on our models, we report the cases of two selected glob-
ular clusters: 47 Tuc and ω Cen. We found the two-component
dynamical models that best reproduce the observed photometric
and kinematic profiles of the two clusters. In Fig. 10 we plot the
density profiles of the two best-fit models found by the procedure
in which red giant stars are not included among the heavy stars
(for a discussion of this fitting procedure, see the next section).
The best-fit model of 47 Tuc is characterized by a density profile
with a larger density of heavy stars in the central regions. In-
deed, this is the type of mass segregation traditionally associated
with the tendency of the system to establish energy equiparti-
tion. The model of ω Cen exhibits a qualitatively different mass
distribution.

Fig. 9. Relative concentration of the two components as a function of
Ψ, for selected values of γ. The upper set of curves represents the ra-
tio rM1/rM2 of the half-mass radius of the lighter component to the half-
mass radius of the heavier component. The lower set represents the ratio
of the density-contrast parameters.

In the next section, devoted to setting the correspondence
between dynamical models and observations, we briefly describe
how mass segregation has a counterpart in the gradient of the
profile of the cumulative mass-to-light ratio, which is defined as
the total mass-to-light ratio for a sphere of given radius r.

4. Fitting the data with dynamical models

We performed a combined photometric and kinematic fit to the
data available for a set of globular clusters, following a proce-
dure very similar to that used in ZBV12. In the present analysis
we decided to minimize a combined chi-square function, which
is defined as the sum of the photometric and kinematic contri-
butions. In constrast to the fits reported in ZBV12 by means
of one-component non-truncated f (ν) models, the fits presented

here, based on the f
(ν)

T
models, are characterized by one addi-

tional parameter (γ) strictly connected with the truncation.

4.1. The issue of the mass-to-light ratios

4.1.1. Mass-to-light ratios for one-component models

In the application of one-component models, we follow the gen-
eral assumption that a constant mass-to-light ratio adequately de-
scribes the stellar population that we imagine is homogeneous.
This assumption allows us to convert projected mass densities
Σ(R) into surface luminosity densities l(R) by means of a simple
relation of proportionality. Then, the mass-to-light ratio is found
as one of the parameters determined by the fit (see Appendix B
of ZBV12).

4.1.2. Mass-to-light ratios for two-component models

In general, for the two-component models we consider the
surface luminosity profile as the sum of the following two
contributions:

l(R) = Σ1(R)

(

M

L

)−1

1
+ Σ2(R)

(

M

L

)−1

2
· (17)
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Fig. 10. Left panel: density profiles of each component and the total density profile for the best-fit model of 47 Tuc (NGC 104), obtained by the
procedure in which RG stars are not included in the heavy component (see text); right panel: corresponding density profiles for the best-fit model
of ω Cen (NGC 5139).

Then, we performed two different types of fit:

(i) In the first procedure, we consider the heavier component
made of only dark remnants. Therefore, the fit is similar to
that for elliptical galaxies in the presence of a dark matter
component. In other words, the photometric fit is carried out
by omitting the Σ2-term in Eq. (17). Then the kinematic fit is
performed by considering only the velocity dispersion profile
relative to the lighter component, which is the only compo-
nent assumed to be visible.

(ii) In the second type of fit, we include red giant stars (RGs)
in the group of heavier stars (see Appendix A). In this
case, both components contribute to the surface brightness
in the photometric fit . Thus, we explored two possible op-
tions: either (a) to assign a reasonable value for the ra-
tio (M/L)1/(M/L)2, based on the fraction of luminosity
expected to come from the RGs and main-sequence stars
present in the system; or (b) to leave the mass-to-light ratio
of the heavier component to be determined as a parameter
of the best-fit model, and thus to make a prediction on the
number of RGs contained in the system. We report only the
results given by option (a), as the best-fit models found with
the other option tend to underestimate the contribution of
RGs present in globular clusters3. In this procedure the kine-
matic fit considers the heavier component as the kinematic
tracer because most kinematic data come from spectroscopic
observations of RGs (i.e. the line-of-sight velocities of RG
stars are usually those that are detected for the construction
of the observed velocity dispersion profiles).

For the two-component models, the conversion from density pro-
files to luminosity profiles is not as straightforward as in the one-
component case because it depends on the structural character-
istics of the system. In particular, it reflects the interconnection
between mass segregation and the gradients of mass-to-light ra-
tios. In Fig. 11, we plot the cumulative mass-to-light ratio for

3 Typically, RGs are estimated to provide ≈60% of the total V-band lu-
minosity and ≈0.5% of the total mass of a globular cluster; these values
were computed by evolving a set of stars with masses distributed ac-
cording to the Kroupa IMF by means of the SSE package (Hurley et al.
2000).

two selected globular clusters in their central regions; the be-
haviour of this quantity as a function of the intrinsic radius r
changes according to the type of fit considered. On the one hand,
in the case in which RGs are not included in the heavier compo-
nent, the ratio M/L decreases with r (for the more relaxed cluster
47 Tuc, this trend is more evident). On the other hand, the case
in which RGs are included in the heavier component (and in the
fitting procedure) is characterized by a mild increase of the cu-
mulative mass-to-light ratio. For the former case, we recover a
behaviour of the cumulative mass-to-light ratio profile similar to
that found by van den Bosch et al. (2006) for the globular cluster
M15 (NGC 7078); they suggest that the gradient of the ratio M/L
at small radii is likely to be due to the presence of a centrally
concentrated population of dark remnants, an interpretation that
is also suited to describe the result of our fit.

We wish to emphasize that in this paper we are not aiming
at providing improved dynamical models for selected clusters.
Rather, we wish to demonstrate, by means of the mathemati-
cally simplest framework, how different ways of using a multi-
component dynamical model actually lead to different pictures
of the internal structure of globular clusters, especially in rela-
tion to mass segregation and gradients of mass-to-light ratios.

4.2. Fits with one-component models

The data sets that we consider are the same as used by ZBV12.
For convenience, in Table 1 we report some distinctive quantities
for the sample of 13 Galactic GCs selected for this paper.

In Fig. 12 we show the best-fit surface brightness and veloc-
itydispersion profiles for three of the selected GCs, which are
shown in order of increasing core relaxation time. The dimen-
sionless parameters of the fits and the values of the reduced chi-
squared are listed in Table 2. For the statistical analysis we fol-
lowed the procedure used by ZBV12. From an inspection of the
way the best-fit models are identified, we note that the present
models are characterized by significant degeneracy in parameter
space; this is a natural consequence of the introduction of the
additional parameter related to the truncation.

In general, the photometric fits by the f
(ν)

T
models are more

satisfactory than those performed by means of the King and
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Fig. 11. Cumulative mass-to-light ratio as a function of the intrinsic radius r for the best-fit models of two globular clusters. The best-fit models
are found by means of two different procedures, that is, by taking the heavier component as made of only dark remnants or by including in the
heavier component the presence of red giants. The vertical lines indicate the position of the total half-mass radius.

Table 1. Selected sample of globular clusters.

Globular cluster d⊙ log Tc log TM Np Nk

NGC 362 8.6 7.76 8.93 239 8
NGC 7078 (M15) 10.4 7.84 9.32 310 35
NGC 104 (47 Tuc) 4.5 7.84 9.55 231 16
NGC 6121 (M4) 2.2 7.90 8.93 228 10
NGC 6341 (M92) 8.3 7.96 9.02 118 8

NGC 6218 (M12) 4.8 8.19 8.87 143 11
NGC 6254 (M10) 4.4 8.21 8.90 162 6
NGC 6656 (M22) 3.2 8.53 9.23 143 7
NGC 3201 4.9 8.61 9.27 80 16
NGC 6809 (M55) 5.4 8.90 9.29 114 13
NGC 288 8.9 8.99 9.32 85 6

NGC 5139 (ω Cen) 5.2 9.60 10.09 72 37
NGC 2419 82.6 9.87 10.63 137 6

Notes. For each globular cluster the following quantities are recorded:
distance from the Sun (kpc); logarithm of the core relaxation time
(years); logarithm of the half-mass relaxation time (years); number of
points in the surface brightness profile; and number of points in the ve-
locity dispersion profile (adapted from ZBV12).

f (ν) models, for every relaxation class considered (for a com-
parison of the values of the reduced chi-squared, see Table 4 in
ZBV12); indeed, for the majority of the clusters, the minimum
chi-squared is inside the 90% confidence interval. The improve-
ment with respect to the King and f (ν) models is mainly related
to the outer regions of the system, where the truncation of our
models accommodates the observed brightness profiles well.

In addition, the general trends found by ZBV12 for the
non-truncated models are not significantly affected by the trun-
cation. In particular, our models remain able to reproduce the
central peak in the velocity dispersion profiles that is character-
istic of the least relaxed clusters in the sample (NGC 2419 and
NGC 5139).

In Table 3 we report the values of the truncation radius rtr,
the projected core radius Rc (that is the radial location where
the surface brightness equals half its central value), and the

Table 2. Best-fit parameters for the one-component models.

NGC Ψ γ χ̃2
ph

χ̃2
k

(1) (2) (3) (4) (5)

104 8.59 ± 0.01 19.2 ± 0.5 1.14 11.33
288 4.76 ± 0.13 4.52 ± 0.17 1.26 0.89
362 7.32 ± 0.03 47.2 ± 1.6 1.19 2.39
2419 5.55 ± 0.06 58 ± 2 1.15 0.54
3201 5.61 ± 0.17 31.7 ± 5 1.14 2.74
5139 4.81 ± 0.08 27.6 ± 1.6 3.05 2.45
6121 7.38 ± 0.07 4.07 ± 0.2 1.35 0.54
6218 5.60 ± 0.09 18.0 ± 1.1 1.12 0.68
6254 5.62 ± 0.9 46 ± 1.6 4.69 0.60
6341 7.41 ± 0.02 18.2 ± 0.8 6.43 2.96
6656 6.37 ± 0.13 12.7 ± 4 1.03 1.18
6809 3.75 ± 0.09 8.0 ± 0.23 1.15 2.00
7078 8.43 ± 0.01 46.6 ± 0.25 3.72 2.07

Notes. For each cluster, in Cols. (2) and (3) we provide the best-fit pa-
rameters that define the dynamical models together with their formal
errors. We then list the values of the photometric reduced chi-square
χ̃2

ph
(Col. 4) and the kinematic reduced chi-square χ̃2

k
(Col. 5).

intrinsic half-mass radius rM. Then we list other relevant quan-
tities, in particular, the total mass M, the central density ρ0, and
the V-band mass-to-light ratio (M/L)V . For our anisotropic mod-
els, we also calculated the intrinsic anisotropy radius rα defined
as the radius where α(rα) = 1 and the global anisotropy parame-
ter κ (see Sect. 2.4).

4.2.1. A comparison with the King models

No systematic trends are found. The only exception is repre-
sented by the truncation radius, which is generally larger for the

f
(ν)

T
models, in line with the general finding that the photomet-

ric profiles appear to possess a smoother truncation than that of
King models (see McLaughlin & van der Marel 2005).
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Fig. 12. Photometric and kinematic fits for three globular clusters of the sample. Each cluster is representative of its relaxation class as identified
by the core relaxation time Tc (for NGC 6341, log Tc ≈ 7.96; for NGC 6656, log Tc ≈ 8.53; for NGC 2419 log Tc ≈ 9.87). The curves represent
the surface brightness profile (left panels) and velocity dispersion profile (right panels) calculated by means of dynamical models. In particular,

dotted lines correspond to King models; dashed lines to non-truncated f (ν) models, and solid lines to f
(ν)

T
models. In all panels, the dots are the

observed data. For each datapoint, errors are shown as vertical bars; in the case of the velocity dispersion profile, the horizontal bars indicate the
size ofthe radial bin used to calculate each data point. The King profiles, f (ν) profiles, and observed data are taken from ZBV12.
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Table 3. Derived physical parameters from the best-fit one-component models.

NGC rtr Rc rM
∗ M log ρ0 (M/L)V rα κ

104 2336 3641 22.6 22.09 5.60 5.22 7.18 7.77 5.01 5.09 1.34 1.63 13.98 1.20
288 896 835 79.42 77.32 7.50 7.53 0.74 0.76 2.04 2.09 1.88 2.20 23.82 1.61
362 897 1600 9.88 10.75 2.65 2.26 1.87 1.81 4.83 4.78 1.05 1.09 5.35 1.26
2419 517 1163 18.58 20.20 26.17 23.89 7.84 9.50 1.87 1.90 1.72 2.17 42.85 1.38
3201 1533 2278 71.58 74.77 5.12 5.03 1.31 1.10 3.01 2.98 1.91 1.99 11.29 1.28
5139 2861 3549 127.68 163.53 10.02 10.24 26.45 31.16 3.54 3.39 1.93 2.87 19.83 1.34
6121 3144 2555 71.31 69.49 3.69 3.72 0.65 0.66 3.66 3.68 1.10 1.20 17.52 1.10
6218 982 1105 47.81 50.26 3.29 3.22 0.61 0.66 3.31 3.31 1.96 1.50 8.57 1.22
6254 1126 2191 50.02 51.16 3.31 3.18 1.53 1.72 3.74 3.80 1.61 2.09 6.32 1.33
6341 724 900 14.18 14.42 3.12 2.96 2.86 3.39 4.63 4.71 1.83 2.15 9.51 1.18
6656 2057 2224 80.92 80.74 4.18 4.17 2.08 2.14 3.64 3.65 1.11 1.11 13.95 1.16
6809 1072 1084 110.09 109.23 5.90 5.89 0.60 0.60 2.21 2.24 1.12 1.14 12.55 1.29
7078 560 4289 7.51 5.46 2.97 2.88 3.98 3.95 5.21 5.54 1.12 1.22 5.62 1.28

Notes. For each cluster listed in the first column, in double-column form we provide the relevant physical quantities derived from the King models

(as reported in ZBV12 left columns) and from our truncated anisotropic models f
(ν)

T
(right columns). In single-column form, as the final items, we

provide the anisotropy radius for the best-fit f
(ν)

T
models and the global anisotropy parameter κ. The truncation radius rtr and the core radius are

expressed in units of arcsec; the intrinsic half-mass radius and the anisotropy radius are expressed in pc. The total mass is expressed in units of
105 M⊙ and the central mass density ρ0 in M⊙ pc−3. Finally, the mass-to-light ratio is given in solar units M⊙/L⊙. (∗) Most values of the half-mass
radii for the King models reported in ZBV12 are incorrect; we report the corrected values.

Table 4. Dimensionless best-fit parameters for the two-component
models.

NGC 104 NGC 5139

RG no RG RG no RG

Ψ 7.00 7.12 4.00 4.00
γ 12.5 36.25 22.50 26.25

χ̃2
ph

1.61 4.89 1.89 5.61

χ̃2
k

8.87 22.23 2.26 3.23

Notes. For two clusters considered either by including or by not includ-
ing RG stars in the heavier component, we provide the best-fit param-
eters that define the dynamical models (Ψ, γ). We then list the values
of the reduced photometric chi-square χ̃2

ph
and the reduced kinematic

chi-square χ̃2
k
.

4.2.2. Radial-orbit instability

One of the points noted in the analysis by ZBV12 is a general
concern about the possible occurrence of the radial-orbit insta-
bility. Polyachenko & Shukhman (1981) argued that this insta-
bility would occur when the anisotropy parameter κ = 2Kr/KT,
which is the ratio of the radial contribution to the tangential con-
tribution to the total kinetic energy, exceeds 1.7 ± 0.25.

In this respect, for some of the globular clusters considered
by ZBV12 (e.g. NGC 6254) the non-truncated f (ν) models might

not be applicable. The truncation in our f
(ν)

T
models tends to re-

duce the global value of the radial contribution to the kinetic en-
ergy (see Fig. 7), bringing κ down to values typically associated
with stability. Of course, a test by N-body simulations would be
desired to confirm this point, but obviously this would bring us
well beyond the goals of the present paper.

4.3. Fits with two-component models

As anticipated in the previous sections to address the issue of
mass segregation in the simplest mathematical framework, we

Table 5. Derived physical parameters from the best-fit two-component
models.

NGC 104 NGC 5139

RG no RG RG no RG

rtr 71 153 90 89
Rc,1 34.1 16.3 176 155
Rc,2 21.1 10.2 133 117
rM,1 8.7 5.2 11.7 10.4
rM,2 3.3 1.8 7.9 7.0
M1 7.0 5.5 25.6 22.7
M2 2.3 1.8 8.5 7.5
log ρ0,1 4.3 5.1 3.19 3.30
log ρ0,2 4.8 5.6 3.11 3.21
(M/L)V,1 3.76 1.13 5.31 1.53
(M/L)V,2 0.83 / 1.18 /

Notes. For two clusters considered either by including or by not includ-
ing RG stars in the heavier component, we provide the relevant physical
quantities relative to the light component 1 and the heavy component 2.
The truncation radius rtr and the half-mass radius are expressed in pc;
the core radius Rc is expressed in units of arcsec. The total mass is ex-
pressed in units of 105 M⊙ and the central mass density ρ0 in M⊙ pc−3.
Finally, the mass-to-light ratio is given in solar units M⊙/L⊙.

studied the performance of our two-component models in fitting
two globular clusters characterized by different relaxation con-
ditions: 47 Tuc (NGC 104) and ω Cen (NGC 5139).

The photometric and kinematic fits for these clusters are pre-
sented in Fig. 13. The fits are performed by means of the two
procedures outlined in Sect. 4.1. In particular, for the procedure
in which RGs are included in the heavier component, we as-
sumed that RGs contribute 60% of the total luminosity of the
cluster in the V band. As in the previous subsection, we report
the best-fit parameters (see Table 4) and some relevant physical
quantities (see Table 5).

The two-component models appear to provide good fits to
the observed profiles, thus supporting the hypotheses imposed

A16, page 11 of 14



A&A 590, A16 (2016)

Fig. 13. Photometric and kinematic fits for NGC 104 and NGC 5139. The curves represent the surface brightness profile (left panels) and velocity
dispersion profile (right panels) calculated by means of two-component models in two ways: taking the heavier component as made of only dark
remnants or including the presence of RGs in the heavier component.

in their construction. For both clusters the fits performed with
the procedure that includes RG stars in the heavier component
appear to be better. This is particularly evident for the case of
47 Tuc, for which the best-fit model corresponding to the case
without RGs in the heavier component does not adequately re-
produce the kinematic profile. We then argue that the role of the
stars used as kinematic tracer becomes important when we con-
sider more relaxed environments. In turn, the fit to ω Cen sug-
gests that its stellar population is reasonably homogeneous and
mass segregation is probably negligible.

5. Conclusions and perspectives

In this paper we constructed a new class of truncated anisotropic
models as an extension of the so-called f (ν) models introduced
by Stiavelli & Bertin (1987) to describe elliptical galaxies inter-
preted as the result of incomplete violent relaxation. We applied

such f
(ν)

T
models to perform a combined photometric and kine-

matic study of a sample of Galactic globular clusters.
In the first part of the paper, we constructed one-component

truncated models to describe a stellar system made of a sin-
gle homogeneous stellar population. From our analysis, the new
class of models is found to be well suited to describe the globular

clusters of a sample studied earlier. We compared our fits with
those performed for the same sample of globular clusters by
ZBV12 by means of King and f (ν) models. In general, the new
truncated models represent the surface brightness profiles better,
especially in the outer parts of the systems. In addition, the mod-
els tend to reproduce the inner parts of the velocity dispersion
profiles better than the King models. As also noted by ZBV12,
this is probably related to the role played by radially biased pres-

sure anisotropy in partially relaxed clusters. In the f (ν) and in f
(ν)

T
models, such radial anisotropy is a signature of the process of
incomplete violent relaxation, which may have occurred during
the initial stages of the evolution of globular clusters; of course,
we should be aware that other mechanisms may be responsible
for radially biased pressure anisotropy. In contrast to some cases
found earlier by application of the non-truncated f (ν) models, the

f
(ν)

T
models identified by the fits appear to be stable with respect

to the radial-orbit instability.

In the second part of the paper, we extended our analysis
by constructing a family of two-component models with the
aim of characterizing in the simplest way a stellar system made
of stars with different masses. In fact, if some collisionality is
present, stars of different masses are expected to differ in their
dynamical evolution, by exhibiting phenomena associated with
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equipartition and mass segregation. In particular, we assumed
that the stellar system under consideration is made of only dark
remnants and main-sequence stars with the possible inclusion
of red giant stars. Red giant stars would naturally belong to the
component of heavier stars, but obviously differ from the heavy
dark remnants from the point of view of their visibility. This
raises an interesting modelling problem; that is, the question
of the optimal comparison between the two-component mod-
els thus constructed and the available photometric and kinematic
data. To explore the relevant underlying modelling issues, we
tested the new two-component models on two globular clusters
characterized by different relaxation conditions. They generally
provide satisfactory fits to the observed photometric and kine-
matic profiles, in particular when RGs are included in the fitting
procedure, by considering their contribution as heavy stars to
the photometric profile and their role in tracing the kinematics
of the clusters. Interestingly, from our two-component models
only the more relaxed cluster (47 Tuc) exhibits the signature of
mass segregation in a prominent way.

The two-component models that we have introduced ad-
dress the effects induced by collisionality on stars characterized
by different masses. This is only one particular application of
two-component models. In the near future, we plan to consider
the construction of two-component models aimed at addressing
the issue of dark matter in globular clusters and of others able
to touch on the issue of the recently observed multiple stellar
populations, which are generally thought to represent different
episodes of star formation (see Gratton et al. 2012).
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Appendix A: Dark remnants, red giants,

and main-sequence stars

In the present study, we simplified the discussion of the structure
of a system made of stars of different masses by grouping the
various stars into two components, light stars of mass m1 (and to-
tal associated mass M1) and heavy stars of mass m2 (and total as-
sociated mass M2). Real globular clusters are extremely complex
because they contain not only stars with basically a continuous
spectrum of masses, but also objects, such as binary stars, that
fall outside the paradigm of the equations traditionally used in
stellar dynamics. The main goal of this appendix is to determine
“reasonable” estimates for the mass ratios m2/m1 and M2/M1 to
be used in our idealized models, as introduced in Sect. 3.

Most of the objects that are naturally assigned to the heav-
ier component (and collectively should make most of the mass
M2) are often called “dark remnants”. In fact, white dwarfs, neu-
tron stars, and black holes are not expected to contribute much
to the surface brightness profile of the cluster. In turn, most of
the mass M1 is expected to be made of low-mass (typically be-
low 0.5 M⊙) main-sequence stars. There remains a third class
of stars, the red giant stars, which are expected to belong to the
heavier component (because their mass is thought to be in the
range 0.7−0.8 M⊙, very similar to the average mass of the rem-
nants; see below), with only minor contribution to M2; yet, they
are expected to contribute significantly to the observed surface
brightness and, importantly, are generally used as kinematic trac-
ers in the sense that they are the main source of the kinematic
data points collected by spectroscopic observations. The mod-
elling of globular clusters addressed in this paper is thus signif-
icantly different from that used in the two-component descrip-
tion of elliptical galaxies, for which one component represents
the luminous collisionless stellar system and the other compo-
nent the dark matter halo; still, an element of analogy exists
because in both cases the structural profiles of self-consistent
two-component models are generally different from those of
one-component models.

To estimate a priori some quantities that define our idealized
model, we start from the initial mass function (IMF), which de-
fines the initial distribution of stars with mass. Then we make
some very simple assumptions about star evolution to estimate
how stars have evolved from their initial condition and thus infer
some properties of the present distribution of masses. We refer
to three different IMFs. The first has been proposed by Salpeter
(1955) and is a single power law

ξ(m) = Dm−2.35, (A.1)

where D is a constant. Thus, the quantity ξ(m)dm is the initial
number of stars with mass in the range (m,m + dm). The total
mass of stars within the mass range (mmin, mmax) is given by a
simple integration

M =

∫ mmax

mmin

mξ(m)dm. (A.2)

The corresponding number of stars is

N =

∫ mmax

mmin

ξ(m)dm, (A.3)

so that a mean value for the single mass is given by m =

M/N. The other forms of IMF considered are taken from
Miller & Scalo (1979) and Kroupa (2001).

Table A.1. Masses of different stellar components.

Salpeter Kroupa Miller-Scalo

mMS 0.21 M⊙ 0.28 M⊙ 0.29 M⊙
mWD 0.78 M⊙ 0.79 M⊙ 0.77 M⊙
mNS 1.59 M⊙ 1.59 M⊙ 1.57 M⊙
mBH 6.80 M⊙ 6.59 M⊙ 6.59 M⊙
mDR 0.85 M⊙ 0.81 M⊙ 0.79 M⊙
mMS/mDR 0.24 0.35 0.37
MMS/MDR 3.88 2.10 1.47

Notes. Mean values for the masses of the typical main-sequence star
(MS), white dwarf (WD), neutron star (NS), and black hole (BH). By
dark remnant (DR) we mean all the possible remnants in the cluster.
The last row represents the ratio of the total masses.

More massive stars evolve more rapidly, leaving the main
sequence and becoming remnants after a relatively rapid transi-
tion in the giant branch. For our purposes, we assume that the
main-sequence stars with masses larger than ≈0.8 M⊙ become
remnants instantly (i.e. in a time very short compared to the age
of the cluster). In particular, stars with masses from 0.8 to 10 M⊙
become white dwarfs, those with masses from 10 to 25 M⊙ be-
come neutron stars, and those from 25 to 100 M⊙ end up as
black holes (we adopted the same mass ranges used by Gill et al.
2008). A certain fraction of the initial mass is lost through su-
pernova explosions or gas expelled by planetary nebulae. Thus,
for white dwarfs we consider masses in the range 0.5−1.4 M⊙;
for neutron stars we take masses in the range 1.3−2 M⊙, and
for black holes we consider masses in the range 5−10 M⊙. Fast
evolution is thus assumed to map an initial range of masses
0.8−100 M⊙ distributed according to the IMF into a present-day
mass range 0.5−10 M⊙ for the remnants. The mass functions
of the remnants are thus constructed from the IMF by taking
the same slope in the corresponding mass ranges. The number
of remnants must be equal to the initial number of the main-
sequence stars. Such condition fixes the constant D of the mass
function of the remnants. Once the various mass functions have
been properly defined, we proceed to calculate the mean mass
and total mass of each group of objects. The results are summa-
rized in Table A.1.

By identifying the light stars of component 1 with the main-
sequence stars and the heavy stars of component 2 with the rem-
nants, in our models we take4, for simplicity, m1 = 0.25 M⊙,
m2 = 0.75 M⊙, m2/m1 = 3 and M2/M1 = 1/3.

Therefore, the idealized evolution model considered in this
appendix does not include the presence of RGs in the final state.
A posteriori the presence of RGs may be taken into account by
considering the mass-to-light ratio of the heavy component in
the idealized two-component models as a parameter depending
on the number of RGs present in the cluster. By determining
the mass-to-light ratio of the heavy component, a fit to the data
could thus give an estimate of the number of giants in the cluster.
Alternatively, if an estimate of the number of RGs is available
independently, we would have an a priori estimate of the mass-
to-light ratio for the heavy component and thus test the adequacy
of the two-component models under such a constraint.

4 We note that this choice violates the Spitzer criterion (see Spitzer
1969).
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