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1. Summary. Iet X;,---, X, be n independent random vectors,
X, = (X, -, X)), and @@, , - -+ , ) a function of m(<n) vectors z, =
(@, -+, 27). A statistic of the form U = Z"®(X,, , -, Xa,)/nn — 1)
«++ (n — m + 1), where the sum =’ is extended over all permutations
(o, - -+, am) of m different integers, 1 < a; < n, is called a U-statistic. If
Xy, -+, X, have the same (cumulative) distribution function (d.f.) F(x), U is an

unbiased estimate of the population characteristic 6(F) = f e f S(x1, -, Tm)

dF(x1) --- dF(x»). 6(F) is called a regular functional of the d.f. F(x).
Certain optimal properties of U-statistics as unbiased estimates of regular funec-
tionals have been established by Halmos [9] (cf. Section 4).

The variance of a U-statistic as a function of the sample size n and of certain
population characteristics is studied in Section 5.

It is shown that if X7, --- , X, have the same distribution and ®(z1, -+ - , Zm)
is independent of n, the d.f. of v/n(U — 6) tends to a normal d.f. as n — o
under the sole condition of the existence of E®*(X;, --- , Xn). Similar results
hold for the joint distribution of several U-statistics (Theorems 7.1 and 7.2),
for statistics U’ which, in a certain sense, are asymptotically equivalent to U
(Theorems 7.3 and 7.4), for certain functions of statistics U or U’ (Theorem 7.5)
and, under certain additional assumptions, for the case of the X,’s having dif-
ferent distributions (Theorems 8.1 and 8.2). Results of a similar character,
though under different assumptions, are contained in a recent paper by
von Mises [18] (cf. Section 7). .

Examples of statistics of the form U or U’ are the moments, Fisher’s k-statis-
tics, Gini’s mean difference, and several rank correlation statistics such as Spear-

man’s rank correlation and the difference sign correlation (cf. Section 9)..

Asymptotic power functions for the non-parametric tests of independence based
on these rank statistics are obtained. They show that these tests are not un-
biased in the limit (Section 9f). The asymptotic distribution of the coefficient
of partial difference sign correlation which has been suggested by Kendall also
is obtained (Section 9h).

2. Functionals of distribution functions. et F(z) = F(z®, .-, 2) be
an r-variate d.f. If to any F belonging to a subset 9 of the set of all d.f.’s in the
r-dimensional Euclidean space is assigned a quantity §(F), then 8(F) is called a
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functional of F, defined on 9. In this paper the word functional will always
mean functional of a d.f.

An infinite population may be considered as completely determined by its
d.f., and any numerical characteristic of an infinite population with d.f. F that
is used in statistics is a functional of F. A finite population, or sample, of size n
is determined by its d.f., S(x) say, and its size n. n itself is not a functional of S
since two samples of different size may have the same d f.

If 8@, -+, 2”) is the d.f. of a finite population, or a sample, consisting
of n elements
(21) Lo = (xﬁzl)y Tty x‘(xr)), (a =1, ;n),
then n8(z™, - - , z) is the number of elements z. such that

xil) S x(l), cee, x‘(;‘) S il?(r).

Since Sz, - -+, ) is symmetricin z, , - - - , Z» , and retains its value for a
sample formed from the sample (2.1) by adding one or more identical samples,
the same two properties hold true for a sample functional 6(S). Most statistics
in current use are functions of n and of functionals of the sample d.f.

A random sample {X;, - -+, X,} is a set of » independent random vectors
(22) Xe = (Xl(xl)y.“ ,Xg')), (a = 1’ ot 7n)'
For any fixed values z, - -+ , 2, the d.f. Sz, - - - , z) of a random sample

is a random variable. The functional 6(S), where § is the d.f. of the random
sample, is itself a random variable, and may be called a random functional.

A remarkable application of the theory of functionals to functionals of d.f.’s
has been made by von Mises [18] who considers the asymptotic distributions of
certain functionals of sample d.f.’s. (Cf. also Section 7.)

3. Unbiased estimation and regular functionals. Consider a funectional
9 = 6(F) of the r-variate d.f. F(z) = F(z®, - -- z:10(')), and suppose that for some
sample size n, § admits an unbiased estimate for any d.f. F in . That is, if

X1, -, X, are n independent random vectors with the same d.f. F, there exists
a function ¢(x; , - - - , z,) of n vector arguments (2.1) such that the expected
value of ¢(X;, - -+ , X,) is equal to 9(F), or
3.1) [ [,z b - aP@) = o)
for every F in 9. Here and in the sequel, when no integration limits are indi-
cated, the integral is extended over the entire space of 23, -+ - , 2, . The integral
is understood in the sense of Stieltjes-Lebesgue.

The estimate ¢(z; , - - - , z,) of 8(F) is called unbiased over D.

A functional 8(F) of the form (3.1) will be referred to as regular over D.2

1 This is an adaptation to functionals of d.f.’s of the term “‘regular functional’’ used by
Volterra [21].
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Thus, the functionals regular over D are those admitting an unbiased estimate

over 9D.
If 6(F) is regular over 9, let m(<n) be the smallest sample size for which there

exists an unbiased estimate ®(z; , - - - , m) of 6 over D:
3.2) o) = [+ o, -,z dP@) - AP

for any F in 9. Then m will be called the degree over 9 of the regular func-
tional 6(F).

If the expected value of (X1, - -+, X,) is equal to 6(F) whenever it exists,
o(x1, +++ , x,) will be called a distribution-free unbiased estimate (d-f. u.e.) of 6(F).
The degree of §(F) over the set D of d.f.’s F for which the right hand side of (3.1)
exists will be simply termed the degree of 6(F).

A regular functional of degree 1 over 9 is called a linear regular functional
over D. If 6(F) has the same value for all F in &, 8(F) may be termed a regular
functional of degree zero over .

Any function ®(x;, -« - , ) satisfying (3.2) will be referred to as a kernel of
the regular functional 8(F).

For any regular functional (F) there exists a kernel ®(z: , «* + , ) symmetric
inzy, -+ ,%m. Forif®(x:, ---,zs)is a kernel of §(F),
1
(3'3) ¢O(xl sy " xm) = ;—l" Eé(xal sy " xam),
where the sum is taken over all permutations (e, -+, an) of (1, --- , m), is a

symmetric kernel of 6(F).

If 6:(F) and 6,(F) are two regular functionals of degrees m; and m2 over 9,
then the sum 6:(F) + 6:(F) and the product 6;(F)8:(F) are regular functionals
of degrees <m = Max (m1, ms) and <m; + mg , respectively, over D. For if
®,(x1, - -+, Tm;) is a kernel of 6.(F), (¢ = 1, 2), then

W) + 0@ = [ [ (@, m) + B, 20
dF(z) - -+ dF (zm)
and
a8 = [ [ @, 5Bty nrins)
AF(21) -+ AF (Tmyimy)-

More generally, a polynomial in regular funciionals is ttself a regular functional.
Examples of linear regular functionals are the moments about the origin,

”:1""-% = f e f (x(l))u v (x(r))u,- dF(x(l) RN x(r)).
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A moment about the mean is a polynomial in moments x’ about 0, and hence a
regular functional over the set 9, of d.f.’s for which it exists (cf. Halmos [9]).
For instance, the variance of X°,

# = [ [~ o o) dF) ares?)

is a regular functional of degree 2. A symmetrical kernel of o* is (z — z®)?/2.
If D is the set of univariate d.f.’s with mean u and existing second moment,
o” is a linear regular functional of F over 9, since then we have

= [ @ - W),

The function

1 ) 1. w oy 1 o _ 1 oY
V= 5 @e’ —2g') = IZ xa—;LZxa

=n(n—-1)a,452 n — ]

is a distribution-free unbiased estimate of o*>. The function

*(5) ¢/ v )

is known to be an unbiased estimate of & over the set of univariate normal d.f.’s,
but it is not a d.-f. u.e.

4, U-statistics. Let zy,---,2z, be a sample of n vectors (2.1) and
®(x1, -+ , Zm) a function of m(<n) vector arguments. Consider the function
of the sample,

— .o —_ 1 ” oo
“41) U= U, s Tn) =D =mF D =" &(z,, , s Ta,),
where 2’/ stands for summation over all permutations (o4 , - - - , @.) of m integers
such that
4.2) 1< ;< m, a; # a;if 1 # 7, G,i=1--,m).

U is the average of the values of ® in the set of ordered subsets of m members
of the sample (2.1). U is symmetricinzy, -+ , Zn -

Any statistic of the form (4.1) will be called a U-statistic. Any function
®(x1, -+, Tw) satisfying (4.1) will be referred to as a kernel of the statistic U.

If ®(x1, -+, zm) is a kernel of a regular functional 8(F) defined on a set D,
then U is an unbiased estimate of 8(F) over D:

*3) oF) = [+ [ U, o, m) aP@) - dFGn)

for every Fin 9.
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For n = m, U reduces to the symmetric kernel (3.3) of 8(F).

From a recent paper by Halmos [9] it follows for the case of univariate d.f.’s
(r=1

If 6(F) is a regular functional of degree m over a set & containing all purely
discontinuous d.f.’s, U is the only unbiased estimate over & which is symmetric
inx,---, 2., and U has the least variance among all unbiased estimates

over 9.
These results and the proofs given by Halmos can easily be extended to the

multivariate case (r > 1).
Combining (3.3) and (4.1) we may write a U-statistic in the form

-1
(4.4) U(xl y "y xn) = (:;l) E’ ¢0(xal y Ty xam)y
where the kernel &, is symmetric in its m vector arguments and the sum 2’ is
extended over all subscripts « such that
1fag<a<- - <o <n.

Another statistic frequently used for estimating 8(F) is 0(S), where 8§ = S(z)
is the d.f. of the sample (2.1). If S is substituted for F in (3.2), we have

4.5 8(S) = Z Z B(Tay y *+ y Tay)-

ay=1 a ;=1

In particular, the sample moments have this form; their kernel & is obtained
by the method described in section 3.
Ifm =108 =U. Ifm=2,

6(S) =~

l{lzwa,xa)}

and 6(S) is a linear function of U-statistics with coefficients depending on n.
This is easily seen to be true for any m. In general 8(S) is not an unbiased esti-
mate of 8(F). If, however, the expected value of 8(S) exists for every F in 9,
we have

E{6(S)} = o(F) + 0(n™),

and the estimate 8(S) of 6(F) may be termed unbiased in the limit over <.

Numerous statistics in current use have the form of, or can be expressed in
terms of U-statistics. From what was said above about moments as regular
functionals, it is easy to obtain U-statistics which are d.-f. u.e.’s of the moments
about the mean of any order (cf. Halmos [9]). Fisher’s k-statistics are U-statis-
tics, as follows from their definition as unbiased estimates of the cumulants,
symmetric in the sample values. Another example is Gini’s mean difference

Z |x(1) xél) |.

n(n -~1) 4
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More examples, in particular of rank correlation statistics, will be given in
section 9.

S. The variance of a U-statistic. et Xy, ---, X, be n independent random
vectors with the same d.f. F(z) = F@z®, ---, 2™), and let

-1
(51) U= U(Xl y " Xn) = (:Z) = @(Xal y T Xam)’

where ®(z;, - -+ , ¥,) is symmetric in z; , -+ - , » and =’ has the same meaning
as in (4.4). Suppose that the function ® does not involve n.
If 6 = 6(F) is defined by (3.2), we have

E{U} = E{®(X,, -, Xn)} = 6.

Let

(5.2)  Pe(x1, - ,x) = E{@@, o %, Xty o, X)), (e=1,---,m),

where 2 , - - - , x, are arbitrary fixed vectors and the expected value is taken with

respect to the random vectors X.41, -+, X»n. Then

(5.3) P r(Tr, -0y Toa) = B{P(21, -0, Ter, Xo)},

and

(5.4) E{@ (X, -+, Xo)} = 6, (c=1,--,m).
Define

(5.5) V@1, -, &) =B(@1, -, Tm) — 0,

(5.6) V@i, , %) =@(x1, - ,2) =0, (c=1-,m).
We have

6.7) Vel o 7e) = B0, -+, 2o, X)),

(5.8) E{w(Xy, -, X)} = E{¥(Xy, -, Xu)} =0, (c=1,---,m).
Suppose that the variance of ¥.(X;, -+ , X,) exists, and let

(5.9) =0, {o=E¥X, ,X9}, (c=1---,m).
We have

(5.10) ¢e = B{#((Xy, -+, X0} — 6.

¢ = ¢(F) is a polynomial in regular functionals of F, and hence itself a regular

functional of F (of degree < 2m).

If, for some parent distribution F = F, and some integer d, we have {4(F,) = 0,
this means that ¥,(X;, ---, X,) = 0 with probability 1. By (5.7) and (5.9),
t¢ = O0implies {; = - = ¢4y =
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If ¢1(Fo) = 0, we shall say that the regular functional 8(F) is stationary®
forF =F,. If

(6.11) G(Fo) = «++ = ta(Fo) = 0, Caa(Fo) > 0, 1<d<m,
0(F) will be called stationary of order d for F = F, .
If (o1, -+, am) and (B1, - -+ , Bm) are two sets of m different integers, 1 < a,,

8: < n, and ¢ is the number of integers common to the two sets, we have, by the
symmetry of ¥,

(512) E{‘I’(Xax y T Xam)‘I’(Xﬁl [ Xﬂm)} = e

If the variance of U exists, it is equal to

A(U) = (;)4 E(Z¥(Xa, -, Xap)}

-2 m
= <ZI/> z_:o E(C)E{‘I’(Xtu P 7X¢m)\I,(XBI 17T Xﬁ”‘)}’

where = stands for summation over all subscripts such that
1fa<a< - <an <n, 1< <Be< - <PBu<n,
and exactly ¢ equations
a; = B

are satisfied. By (5.12), each term in =‘” is equal to {.. The number of terms
in = is easily seen to be

e e = (DG G
and hence, since ¢ = 0, ‘
(:13) = (1) ()T

When the distributions of X, --- , X, are different, F,(z) being the d.f. of
X, , let

(5.14) Bayay = E@(Xuy, o+ s X},
‘I/C<“lv'"'ac)ﬂln"'-ﬁm—c(xl » T xc)
(515) = E{@(:ﬁ y "ty ey Xﬁl ee g Xgm_c)} - Oal,...,,c,ﬂl,...,ﬂm_c 5

(C =1)"' ,”’L),

3 According to the definition of the derivative of a functional (cf. Volterra [21]; for
functionals of d.f.’s ¢f. von Mises [18]), the function m(m — 1)...(m — d + 1) ¥q(z1 ... za),
which is a functional of F, is a d-th derivative of 8(F) with respect to F at the “point”’ F
of the space of d.f.’s.
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g-C(ulv"'»aa)ﬂlv"'rﬂm—ci’)'x»"'x‘)'m-c
(516) = E{\I,c(alx""ﬁc)ﬂh'",ﬁm—-c(Xal PR X“c)\I,G(“x-""%)'Yl ..... Ym—c
(Xal IR Xﬁc)}

fon = cllm — ¢)llm — ¢)! 5
T nln = 1) - (n = 2m ¢ F 1) “Seler e i tnme

where the sum is extended over all subscripts «, 8, v such that
1_<__a1<"'<acsn, 1S31<"'<ﬂm-—csny 1_<_.71<""Ym—cgn’
ai#ﬁi) ai#')’i; ﬁi#'Yf'

Then the variance of U is equal to

(5.18) AU = (:;)—1 Z: <7:’) (ZL__ ’Z) Com

Returning to the case of identically distributed X’s, we shall now prove some

(5.17)

inequalities satisfied by ¢1, -+ , {m and ¢’(U) which are contained in the fol-
lowing theorems:
TeEOREM 5.1 The quaniities {1, -, ¢m as defined by (5.9) satisfy the in-
equalities
(5.19) ogz;g%i fi<c<d<m
TBEOREM 5.2 The variance o*(U,) of a U-statistic U, = U(Xy, -+, X.),
where X, --+ , X. are tndependent and identically distributed, satisfies the in-
equalities '
2
(5.20) 20 <dU) <% .
n n

na(U.,) is a decreasing function of n,

(5.21) (n + 1)o’(Unsr) < no*(Un),

which takes on its upper bound m¢,, for n = m and tends to its lower bound m’(,
as n incereases:

(5.22) Uz(Um) = g-m,
(5.23) lim n®(U,) = m* &1 .

T -3 00

If E{U,} = 6(F) is stationary of order >d — 1 for the d.f. of X, (5.20) may
be replaced by

(5.24) 7 Ealm, d)ga < *(U) < Knlm, d)im,
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where

w0 mms-()EEINEID

We postpone the proofs of Theorems 5.1 and 5.2.
(5.13) and (5.19) imply that a necessary and sufficient condition for the
existence Of.az(U) is the existence of

(5.26) tm = EB@Xy, -, Xn)} — &

or that of E{®*(Xy, --+ , Xn)}.

If & > 0, 6*(U) is of order n™".

If 9(F) is stationary of order d for F = Fy , that is, if (5.11) is satisfied, ¢*(U)
is of order n~*™. Only if, for some F = Fy, 8(F) is stationary of order m, where
m is the degree of 8(F), we have ¢*(U) = 0, and U is equal to a constant with
probability 1.

For instance, if 8(F,) = 0, the functional 6°(F) is stationary for F = F,.
Other examples of stationary “points” of a funetional will be found in section 9d.

For proving Theorem 5.1 we shall require the following:

Lumma 5.1, If

(527) 8= ta— (‘f) a1 + @) taz - o+ F+ (=1 <d f 1) &1,

we have

(5.28) 8 > 0, @d=1,---,m)
and
(5.29) $a = 5d+((11>5d—1+ +.(di 1)61-

Proor. (5.29) follows from (5.27) by induction.
For proving (5.28) let

m=0 g =EB@&X, -, X)}, (=1,-,m).
Then, by (5.10),
$e =10 — Mo,

and on substituting this in (5.27) we have
d
e [ d
0= 3 =07 (Y.
¢=0 c

From (5.9) it is seen that (5.28) is true for d = 1. Suppose that (5.28) holds
forl,---,d — 1. Then (5.28) will be shown to hold for d.
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Let
&o(z1) = 1(m) — 6, So(xy, T2, '+, Teqr)
= ®ea(®1, -, Topr) — D@2, -+, Togr), ce=1,+-+,d —1).
For an arbitrary fixed x; , let
() = E{®e(as, Xa, -+, Xoqn)}, (c=0,--+,d —1).
Then, by induection hypothesis,

da-1(x) = g (1% (d ; 1> fe(z) > 0

for any fixed z; .
Now,

E{'ﬁc(Xl)} = Net1 = e,

and hence
d—1 d
Bea() = 2 071 T ) o — 0 = 5 02 ($ = s

The proof of Lemma 5.1 is complete.
Proor or TaEOREM 5.1. By (5.29) we have for¢c < d

d [3
Cg‘d— di‘c = Cz<d>3a - dz<c>6a
a=1 \& a=1 \@

(5.30) = .,Z=:1 ,:c <Z> —d <Z)] b+ .,,él (Z) S

From (5.28), and since c(Z) — d<2> >0if1 < a < ¢ <d,itfollows that each

term in the two sums of (5.30) is not negative. “This, in connection with (5.9)
proves Theorem 5.1.
Proor oF TaroreM 5.2. From (5.19) we have

c
Cg‘lsg-cs/;ig'mr (C=13"')m)'

Applying these inequalities to each term in (5.13) and using the identity

(531 CY E(m(@Im)-2,
we obtain (5.20).

(5.22) and (5.23) follow immedistely from (5.13).
For (5.21) we may write

(5.32) D, 20,
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where
D, = n0'2(U,,) — (n+ 1)‘72(U'n+1)-
Let

Dn = Zdn,c?c-

c=1

Then we have from (5.13)

o aemn(YEZE e ()
FLCLY
or

9 [ LR (A IR TR AR R )

c m—c
1<eg<m<na)
Putting

¢ = l-l-l:(m;l)z],

where [u] denotes the largest integer < u, we have

dnc X0 ife<a,
dn,c>0 ifC>Co.
Hence, by (5.19),
dn,c$e ZércOCdn,c, (C= | ERR )m)7
0
and
Da 2 %ty 2 cdn.
Co c=1

By (5.33) and (5.31), the latter sum vanishes. This proves (5.32).
For the stationary case {1 = - -+ = {aq = 0, (5.24) is a direct consequence of
(5.13) and (5.19). The proof of Theorem 5.2 is complete.

6. The covariance of two U-statistics. Consider a set of g U-statistics,

-1
U(‘Y) - <m?7)) EI(D(v)(XaU ) X"m(v))r (7 =1, g)’
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each U™ being a function of the same n independent, identically distributed

random vectors Xy, -+, X». The function & is assumed to be symmetric
in its m(y) arguments (v = 1, .-+, g).
Let
E{ U(7)} = E{@(Y)(X1 y "t Xm(‘y))} = 0(7): r=1,--,9;

6.1) T, Twm) = P @1, 0, ) — 0P, =1, 9);
(6.2) ¥ (@1, e, @) = B{¥ (@, 0 %o, Xogr, o0 5 Xmen) s
c=1,,m@y)sy=1"---,9);
6.3) P = BE"(X,y, -+, X)¥O Xy, -0, X},
(r,6=1,--,9).
If, in particular, v = §, we shall write
(6.4) D= = BY(Xy, -, X))
Let
(U™, UP) = E{(U‘“’) — eMU® — 0(6))}

be the covariance of U and U®.
In a similar way as for the variance, we find, if m (v) < m (3),

o) B ()5

The right hand side is easily seen to be symmetric in v, 6.
For v = 8, (6.5) is the variance of U (cf. (5.13)).
We have from (5.23) and (6.5)

lim ne®(U™) = m*(v)¢{”,

n—s00

lim ne(U™, U®) = m(y)m(@)es"?.

N

Hence, if 1" 5 0 and {® 5 0, the product moment correlation o(U®, U®)
between U and U® tends to the limit

(7,8
: (7 3y _ 1
(6.6) ,}Ti (U, U™) = Ve

7. Limit theorems for the case of identically distributed X,’s. We shall now
study the asymptotic distribution of U-statistics and certain related functions.
In this section the vectors X, will be assumed to be identically distributed. An
extension to the case of different parent distributions will be given in section 8.

Following Cramér [2, p. 83] we shall say that a sequence of d.f.’s Fi(x),
Fy(x), - - - converges to a d.f. F(z) if lim F,(z) = F(z) in every point at which
the one-dimensional marginal limiting d.f.’s are continuous.
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Let us recall (ef. Cramér [2, p. 312]) that a g-variate normal distribution is
called non-singular if the rank r of its covariance matrix is equal to g, and singular

ifr<g.

The following lemma will be used in the proofs.

Lemma 7.1. Let Vy, V2, --- be an infinite sequence of random vectors V, =
(VE, -oo, V), and suppose that the d.f. Fn(v) of Va tends to a d.f. F(v) as
n— . Lt V' = V' 4+ di”, where
(7.1) lim E{d"}* = 0, (ry=1+-,9):
Then the d.f. of Vo = (V', -+, V') tends to F(v).

This is an immediate consequence of the well-known fact that the d.f. of Vr,
tends to F(v) if d{” converges in probability to 0 (cf. Cramér [2, p. 299]), since
the fulfillment of (7.1) is sufficient for the latter condition.

TaeEorEM 7.1. Let Xy, - -+ , X, be n independent, identically distributed random
vectors,

Xo = (Xfxl)7"' 7X£zr)), (OI= 1, .- )n)'
Let
@(7)(:51 y " xm('r))) (7 =1, g))
be g real-valued functions not involving n, 7 being symmetric in its m(y) (<n)
vector arguments o = (5, -, ), (@ =1, -, mly); v =1, -+, g).
Define
-1
n )
(72) U(‘Y) — (m(’y)> Z/ q,('Y (Xal RN Xam(‘y))’ (’Y = 1, cee, g),
where the summation is over all subscripts such that 1 < a1 < +++ < Ampy < N
Then, if the expected values
(7‘3) 0(7) = E{‘I)(y)(Xl y " Xm(‘v))}) ('Y =1, g);
and
(7.4) E(a" Xy, -+, X)) h=1-",9,

exist, the joint d.f. of
'\/’E(U(D — 0(1)), cer \/;(U(v) - 0(0))

tends, as n — o, o the g-variate normal d.f. with zero means and covariance matriz
(m(y)m@) i), where ¢{? is defined by (6.3). The limiting distribution s
non-singular if the determinant | ¢17'® | is positive.

Before proving Theorem 7.1, a few words may be said about its meaning and
its relation to well-known results.

For g = 1, Theorem 7.1 states that the distribution of a U-gtatistic tends, under
certain conditions, to the normal form. For m = 1, U is the sum of n inde-
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pendent random variables, and in this case Theorem 7.1 reduces to the Central
Limit Theorem for such sums. For m > 1, U is a sum of random variables
which, in general, are not independent. Under certain assumptions about the
function ®(x1, -+, m) the asymptotic normality of U can be inferred from
the Central Limit Theorem by well-known methods. If, for instance, ® is a
polynomial (as in the case of the k-statistics or the unbiased estimates of mo-
ments), U can be expressed as a polynomial in moments about the origin which
are sums of independent random variables, and for this case the tendency to
normality of U can easily be shown (cf. Cramér [2, p. 365]).

Theorem 7.1 generalizes these results, stating that in the case of independent
and identically distributed X,’s the existence of E{&* (X3, - - - , X,»)} is sufficient
for the asymptotic normality of U. No regularity conditions are imposed on the
function ®. This point is important for some applications (cf. section 9).

Theorem 7.1 and the following theorems of sections 7 and 8 are closely related
to recent results of von Mises [18] which were published after this paper was
essentially completed. It will be seen below (Theorem 7.4) that the limiting
distribution of A/n[U — 6(F)] is the same as that of \/n[8(S) — 6(F)] (cf. (4.5))
if the variance of 6(8) exists. 6(S) is a differentiable statistical function in the
sense of von Mises, and by Theorem I of [18], v/2[0(S) — 6(F)]is asymptotically
normal if certain conditions are satisfied. It will be found that in certain cases,
for instance if the kernel ® of 0 is a polynomial, the conditions of the theorems of
sections 7 and 8 are somewhat weaker than those of von Mises’ theorem.
Though von Mises’ paper is concerned with functionals of univariate d.f.’s only,
its results can easily be extended to the multivariate case.

For the particular case of a discrete population (where F is a step function),
U and 6(8) are polynomials in the sample frequencies, and their asymptotic
distribution may be inferred from the fact that the joint distribution of the fre-
quencies tends to the normal form (cf. also von Mises [18]).

In Theorem 7.1 the functions & (x;, -+ , Zpey) are supposed to be sym-
metric. Since, as has been seen in section 4, any U-statistic with non-symmetric
kernel can be written in the form (4.4) with a symmetric kernel, this restriction
is not essential and has been made only for the sake of convenience. Moreover,
in the condition of the existence of E{®*(Xy, -+ - , Xm)}, the symmetric kernel
may be replaced by a non-symmetric one. For, if ® is non-symmetric, and & is
the symmetric kernel defined by (3.3), E{® (X1, - -+ , Xm)} is a linear combina-
tion of terms of the form E{®(X,, , -« , Xa,) ® (Xg, , -+, Xg,)}, whose exist-
ence follows from that of E{®*(X:, - -- , X»)} by Schwarz’s inequality.

If the regular functional (F) is stationary for F = F, , that is, if {1 = {1(Fo) = 0
(cf. section 5), the limiting normal distribution of A/n(U — ) is, according to
Theorem 7.1, singular, that is, its variance is zero. As has been seen in section
5, ¢’(U) need not be zero in this case, but may be of some order n °,
(c =2, 38, ,m), and the distribution of n?*(U — 6) may tend to a limiting
form which is not normal. According to von Mises [18], it is a limiting dis-
tribution of type e, (c = 2,3, --- ).



A CLASS OF STATISTICS 307

According to Theorem 5.2, ¢*(U) exceeds its asymptotic value m?,/n for any
finite n. Hence, if we apply Theorem 7.1 for approximating the distribution of
U when n is large but finite, we underestimate the variance of U. For many
applications this is undesirable, and for such cases the following theorem, which
is an immediate consequence of Theorem 7.1, will be more useful.

TraEOREM 7.2. Under the conditions of Theorem 7.1, and if

g.{7)>0, (’Y=17"'yg)7
the joint d.f. of
(U(l) — 0(1))/0'(U(1)), cee (U(a) - 0(0))/0((](0))

tends, as n — «, to the g-variaie normal d.f. with zero means and covariance matrix
(1,8
(""", where

_ e, u® __dr? B
= ”11% U(U(‘y))a-(U('”) - _\/g-l(..y)g-l(.s) b ('Y, 8 — 1, e, g).

Proor or THEOREM 7.1. The existence of (7.4) entails that of
" = B@P(Xy, -, Xnen)}® — (67
which, by (5.19), (5.20) and (6.6), is sufficient for the existence of
o7 e, 5, of AU, andof ¢ < /D

Now, consider the g quantities

(7,8)
o

a=1
‘where ¥{”(z) is defined by (6.2). ¥®, ..., ¥ are sums of n independent,
random variables with zero means, whose covariance matrix, by virtue of (6.3), is
(7.5) {o(Y, YD)} = {m(y)m@)s{"P}.

By the Central Limit Theorem for vectors (cf. Cramér [1, p. 112]), the joint d.f.
of (Y, ... Y tends to the normal g-variate d.f. with the same means and
covariances.

Theorem 7.1 will be proved by showing that the g random variables

(7'6) Z(’Y) = '\/ﬁ-(U(V) - 0(7))’ ('Y =1,---, g)’
have the same joint limiting distribution as ¥®, ... , Y@,
According to Lemma 7.1 it is sufficient to show that

(7~7) lim E(Z(‘Y) - Y(‘Y))2 =0, ('Y = 1, Tty n)'

For proving (7.7), write
(78) E{Z(‘i) _ Y('y)}2 — E{z(‘v)}2 + E{y('y)}z _ 2E{Z(7)Y(7)}'
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By (5.13) we have

(7.9) E{Z?} = 0’ (U™) = m* ()il + 0(n™),
and from (7.5),
(7.10) (Y = m' )"

By (7.2) and (6.1) we may write for (7.6)

-
— n
Z("/) — ,\/,n (m('y)> >/ \II(‘Y)(Xal, ceey, Xam(‘r)))

and hence
-1 =
E{Z77?} = m() <m?v>> > Y B (XY (K, - X))
The term
E{‘I’{W)(Xa)\P(y)(Xdl y " de(-,'))}

is = ¢ if
(7.11) a=a Oor ag =o' O amy = a
and 0 otherwise. For a fixed «, the number of sets {a1, < - , @mn} such that

1<y <+ < amep < nand (7.11) is satisfied, is (m?'y)——-l 1) Thus,

(712)  E{Z"Y™} = m(y) <m?,y)>—ln (m?y)__l 1) P = m)e.

On inserting (7.9), (7.10), and (7.12) in (7.8), we see that (7.7) is true.

The concluding remark in Theorem 7.1 is a direct consequence of the definition
of a non-singular distribution. The proof of Theorem 7.1 is complete.

Theorems 7.1 and 7.2 deal with the asymptotic distribution of U®, -+, U?,
which are unbiased estimates of 8%, - -+, 8. The unbiasedness of a statistic
is, of course, irrelevant for its asymptotic behavior, and the application of Lemma
7.1 leads immediately to the following extension of Theorem 7.1 to a larger class
of statistics.

TrEOREM 7.3. Let

b;'v)
Vn’
where U is defined by (7.2) and b” is a random variable. If the conditions of
Theorem 7.1 are satisfied, and lim E{b{”}* = 0, (y = 1, -+, 9), then the joint
distribution of

('Y= 1”"79)7

(7.13) U =U? +

'\/’IL(U(I)' _ 0(1))’ e, \/;L'(U(a)' _ 0(0))
tends to the normal distribution with zero means and covariance matrix
{my)m@®)si"?}.
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This theorem applies, in particular, to the regular functionals 6(S) of the
sample d f.,

O(S) = — Z Z Q(Xal’ ) Xam)’

ar=1 A=l

in the case that the variance of 8(8S) exists. For we may write
wa(®) = (1) U+ 3 8K, -+, X,

where the sum =* is extended over all m-tuplets (o4, - -+ , @») in which at least
one equality of = a;(i # j) is satisfied. The number of terms in =* is of order

—1
n™ . Hence

6(S) — U = 1 D,
n

where the expected value E{D?}, whose existence follows from that of a{6(8)},

is bounded for n — . Thus, if we put U’ = 6”(8), the conditions
of Theorem 7.3 are fulfilled. We may summarize this result as follows:

TupoREM 7.4. Let X, --- , X, be a random sample from an r-variate popula-
tion with d.f. F(z) = F@x®, -+ ,2%), and let
07 = [ [ 80, zwe) dF @) o dF ™), (=100 g,
be g regular functionals of F, where ® V(@y, -, Tmeyy) 1S Symmetric in the vectors
Ty, ", Tmey and does not tnwolve n. If S(x) ts the d.f. of the random sample,
and if the variance of

0(7)(8) Z E q:'(-Y)(XaU ] X“m(v))
a1=1 am(y)=1

exists, the joint d.f. of
V(6P (8) — 60}, -+ ,Vnl8?(8) — 89 ()
tends to the g-variate normal d.f. with zero means and covariance matrix
{m(y)m@i""}.

The following theorem is concerned with the asymptotic distribution of a
function of statistics of the form U or U’.

TurorEM 7.5. Let (U") = (UY', .-+, U9’ be a random vector, where U™’
is defined by (7.13), and suppose that the condmons of Theorem 7.3 are satisfied.
If the function h(y) = h(y®, -+ , y'”) does not involve n and is continuous together

with 1ts second order partial derivatz'ves in some neighborhood of the point (y) = (8) =
(0%, -+ -, 69), then the distribution of the random variable \/n{h(U’) — h(6))
tends to the normal distribution with mean zero and variance

3 S mim) (29) (26)) oo,

g=1 51 oy 3y(6)
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Theorem 7.5 follows from Theorem 7.3 in exactly the same way as the theorem
on the asymptotic distribution of a function of moments follows from the fact
of their asymptotic normality; cf. Cramér [2, p. 366]. We shall therefore omit
the proof of Theorem 7.5. Since any moment whose variance exists has the
form U’ = 6(S) (cf. section 4 and Theorem 7.4), Theorem 7.5 is a generalization
of the theorem on a function of moments.

8. Limit theorems for U(X;, ---, X,) when the X,’s have different distri-
butions. The limit theorems of the preceding section can be extended to the
case when the X.’s have different distributions. We shall only prove an exten-
sion to this case of Theorem 7.1 (or 7.2), confining ourselves, for the sake of
simplicity, to the distribution of a single U-statistic.

The extension of Theorems 7.3 and 7.5 with ¢ = 1 to this case is immediate.
One has only to replace the reference to Theorem 7.1 by that-to the following
Theorem 8.1, and 6 and {1 by E{U} and {1,» .

TaeoreM 8.1. Let Xy, -+, X, be n tndependent random vectors of r com-
ponents, X o having the d.f. Fo(z) = Fo(x®, - - (’)) Let ®(x1, -+ , Zm) be a
function symmetric in its m vector arguments xg = (a: ceey :v,é’)) which does not
tnwolve n, and let

- n —1 -t ’
(8.1) Vi (@) = 2 Wioay,ee ey (2, w=1--,n),
m—1 ()

where ¥ is defined by (5.15), and the summation is exiended over all subscripts o
such that

lI<a<a<- - <ana1<n, aFv, @E=1--,m).
Suppose that there is a number A such that for everyn = 1,2, - -+

(8.2) f [ Bz, -, 1) AFay@r) -+ dFa () < A,

<< s - <ansn),

that
(83) E |\r’?{(l‘)(Xl') | < @, (V = 1) 2) te :n)v
and
n _ 3/2
84 tm 35 B 205 | /{35 B} = o

Then, asn — «, the d.f. of (U — E{U})/a(U) tends to the normal d.f. with mean

0 and variance 1.
The proof is similar to that of Theorem 7.1.

Let

711 E (v) (Xv)
n y=1
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It will be shown that
(a) the d.f. of
_ W — E{W}
Y=y

tends to the normal d.f. with mean 0 and variance 1, and that

(b) the d.f. of
_ U - E{U}

o(U)

tends to the same limit as the d.f. of V.

Part (a) follows immediately from (8.3) and (8.4) by Liapounoff’s form of the

Central Limit Theorem.
According to Lemma 7.1, (b) will be proved when it is shown that

‘V’I

i ' _ 2 _ 1 f _ 0'(U,W)}=
Lm E{V ‘ 14 11m12 2 Vo) 0
or
. U,w)
. 1 U W) _ .
®5) o e
Let ¢ be an integer, 1 < ¢ < m, and write
x=(x1,~~-,xc), y=(?/1,“',ym—c), z=(z1,---,zm_c)

Fay(x) = Fo,(1) -+« Fo (20, Fe(y) = Fo,()) -+ Fgpo (Yo,
Fy (2) = F’n(zl) cer Fv,,.—c(zm—c)-
Then, by Schwarz’s inequality,

f f ®(x, )B(x, 2) dF o (x) dF 5 (y) dF op(2)

<{[ -+ [ 9w ot dFaw
o [ #2) dF o dFe (z)}},

which, by (8.2), is < 4 for any set of subscripts.

By the inequality for moments, 0q,.....q,, , a8 defined by (5.14), is also uni-
formly bounded, and applying these inequalities to (5.16), it follows that there
exists a number B such that
(86) lg‘c(al,...‘ac)gl,...,gm__c; YL Ym—c I < B, (C == 1, sty m),
for every set of subscripts satisfying the inequalities
o, # ap, Bs #= B, Yo 7 Ya if g # h, a; # B;, o; F v,

(’L = 17 ,C;j = 1: e, M — C).
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Now, we have

E{W} =0
and
&) AW = T > B ()

or, inserting (8.1) and recalling (5.16),

2 —2 n
2 - m n—1 1 1
(8'8) g (W) = ;2‘ (m _ 1> v=El (;‘Zv) & g-]-(")ah"‘-am—l:ﬁlv“‘vﬁm—l )

the two sums =’ being over oy < -+ < @, (s #Z v),and g1 < + -+ < By,
(B: # »), respectively. By (5.17), the sum of the terms whose subscripts
Pyby,* y @m1,P1,  , Bm- are all different is equal to

S e LR (k) (S LS

The number of the remaining terms is of order n*”%. Since, by (8.6), they are
uniformly bounded, we have

2
(89) (W) = ’% 1 4+ 0(n7).

Similarly, we have from (5.18)
2
G'Z(U) = 7% g-l,n + 0(n~2)7

and hence
(8.10) o(U) = o(W) + O(n™).
The covariance of U and W is

—1 n ”
(8.11) o(U, W) = (") ’71:5;; > E{F10) (X)) Uy oremy Ky 5+ + 3 K)o

m

All terms except those in which one of the o’s = », vanish, and for the re-
maining ones we have, for fixed oy , -+ , @m ,

E{\-I-}I(V)(Xv)‘:[’mml,w.am)(Xa1 y " Xam)}

— 1\
_ (" > DG TING & TNINING &)

m—1

(#v)
_(n - 1 - Zlg_
m — 1 &) 181 Bm—1t Y107+ Tm—1
where the summation sign refers to the 8’s, and v1, **+ , Ym— are the o’s that

are = ». Inserting thisin (8.11) and comparing the result with (8.8), we see that
(8.12) o(U, W) = & (W).
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From (8.12) and (8.10) we have

(U, W) _ (W) _ na(W)
s(e(W)  o(U)  ne(W) + 0Q1)"

Comparing condition (8.4) with (8.7), we see that we must have no(W) — «
asn—> «. Thisshows the truth of (8.5). The proof of Theorem 8.1 is complete.

For some purposes the following corollary of Theorem 8.1 will be useful, where
the conditions (8.2), (8.3), and (8.4) are replaced by other conditions which are
more restrictive, but easier to apply.

THEOREM 8.2. Theorem 8.1 holds if the conditions (8.2), (8.3), and (8.4) are
replaced by the following:
There extist two positive numbers C, D such that

(8.13) f f |81, -+ ) @m) | AFay@) +++ dFu(@m) < C

fora;=12---,6=1,---,m),and

(8.14) S1da1s e omeri Bror By > D

for any subscripts satisfying

lfaa<w< <o, 188 <B< " <Bna, 1Zv#a,p:.

We have to show that (8.2), (8.3), and (8.4) follow from (8.13) and (8.14).

(8.13) implies (8.2) by the inequality for moments. By a reasoning analogous
to that used in the previous proof, applying Holder’s inequality instead of
Schwarz’s inequality, it follows from (8.13) that

(8.15) B |¥n(X) | < ¢
On the other hand, by (8.7), (8.8), and (8.14),
(8¢16) Zl E{“I"{(v} (Xv)} > nDl

(8.15) and (8.16) are sufficient for the fulfillment of (8.4).

9. Applications to particular statistics.

(a) Moments and functions of moments. It has been seen in section 4 that the
k-statistics and the unbiased estimates of moments are U-statistics, while the
sample moments are regular functionals of the sample d.f. By Theorems 7.1,
8.1, and 7.4 these statistics are asymptotically normally distributed, and by
Theorem 7.5 the same is true for a function of moments, if the respective condi-
tions are satisfied. These results are not new (cf., for example, Cramér [2]).

(b) Mean difference and coefficient of concentration. If Y1, ---, ¥, are n in-
dependent real-valued random variables, Gini’s mean difference (without repeti-
tion) is defined by

1
d—n(n—_-i-)"aélya—yﬁl'
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If the Y,’s have the same distribution F, the mean of d is

5= ff or — v | dF (y1) dF (32),

and the variance, by (5.13) is

P@) = 2 2O — D + 66,

(n—1)
where

(9.1) G = f { f ly1 — 2] olF(yz)}2 dF (y) — &,

02 066 = [[ @ - waFe e — & = 2°0) - &

The notation {1(8), ¢2(5) serves to indicate the relation of these functionals of
F to the functional 6(F); 8 is here merely the symbol of the functional, not a par-
ticular value of it. In a similar way we shall write ®(y1, 2 |8) = |y1 — ¥2 |,
etc. When there is danger of confusing {1(8) with {1(F), we may write 1(F | ).

U. S. Nair [19] has evaluated ¢°(d) for several particular distributions.

By Theorem 7.1, /n(d — 5) is asymptotically normal if {»(8) exists.

IfY,, -+, Y, do not assume negative values, the coefficient of concentration
(cf. Gini [8]) is defined by

_4a
T2y
where ¥ = ZY,/n. G is a function of two U-statistics. If the ¥,’s are identi-

cally distributed, if E{ Y?} exists, and if 4 = E{Y} > 0, then, by Theorem 7.5,
V1 (G — §/2u) tends to be normally distributed with mean 0 and variance

G

5 ) 1
e cilu) — e £1(u, 8) + 2 £1(9),
where

fl) = [ aF@) =t = ),

filp, 8) = f f yilyn — | dF(yy) dF (y2) — us,

and {:(6) is given by (9.1).
(c) Functions of ranks and of the signs of variate differences. Let s(u) be the
signum function,

—1ifu < 0;
9.3) s(w) = O0ifu=0;
lifu >0
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and let
Oifu < 0
(9.4) o(w) = H1 + s@)} = }if u = 0;
lifuw > 0.
If
Ta = (@, oo, 2, (@=1,+,n)

is a sample of n vectors of r components, we may define the rank RS of 5" by

n
RY =3+ 2 e — 5"

B=
(9.5) o b
'=n2 -I-%Es(xs)—xp), (1.=1,"',7‘)-
f=1
If the numbers z{?, z5?, -+, 2% are all different, the smallest of them

has rank 1, the next smallest rank 2, etc. If some of them are equal, the rank
as defined by (9.5) is known as the mid-rank.

Any function of the ranks is a function of expressions c(zl’ — #”) or
s(zl? — z8”).

Conversely, since

s@8” — 5§%) = s(BS — R{),

any function of expressions s(z{’ — 2§”) or e(xl” — ") is a function of the
ranks.
Consider a regular functional ¢#(¥) whose kernel ®(z; , - - - , m) depends only
on the signs of the variate differences,
(96) s(xfj) - xé't')), (a: B = 1’ cre, My 1= 17 Tty 7').
The corresponding U-statistic is a function of the ranks of the sample variates.
The function ® can take only a finite number of values, ¢, -+ - , ¢y, say. If

m=P{®=c¢},t=1,---,N), we have

0=cm-+ - +cymw, ZW,-=1.
=1
7 is a regular functional whose kernel ®,(x: , - - - , Zn) is equal to 1 or 0 accord-

ing to whether ® = ¢; or # ¢;. We have
d = C1‘I>1+ e +Cn‘I>N .

In order that ¢(F) exist, the ¢; must be finite, and hence ® is bounded. There-
fore, E{®’} 'exists, and if 'X;, X,, --- are identically distributed, the d.f. of
v/n(U — 6) tends, by Theorem 7.1, to a normal d.f. which is non-singular if
&1> 0.

In the following we shall consider several examples of such functionals.
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(d) Difference sign correlation. Consider the bivariate sample
(9'7) (xfl), x{”)r (xél)’ xéz))g MY (x;!.), xf) .

To each two members of this sample corresponds a pair of signs of the differ-
ences of the respective variables,

(98) 3(1’9) - xél)); s(zc(zz) - xp(2))’ (a # B; o, B = 1) Tty n)'
(9.8) is a population of n{(n — 1) pairs of difference signs. Since
2 5@ — 2f) =0, (i =1,2),

@

the covariance ¢ of the difference signs (9.8) is

1 n 1 @ (2)
. = —— S — z).
(99) =T ;ﬁs(xa 2§)s@d — =)
¢t will be briefly referred to as the difference sign covariance of the sample (9.7).
If all 2% and all ®’s are different, we have
2 S@d — ") = nln — 1), @ =1,2),
axf
and then ¢ is the product moment correlation of the difference signs.
Tt is easily seen that ¢ is a linear function of the number of inversions in the
permutation of the ranks of z® and z®.
The statistic ¢ has been considered by Esscher [6], Lindeberg [15], [16], Kendall
[12], and others.
tis a U-statistic. As a function of a random sample from a bivariate popula-
tion, ¢ is an unbiased estimate of the regular functional of degree 2,

(9.10) r= [[[[ s = s - o) aF@ dFe.

r is the covariance of the signs of differences of the corresponding components
of X; = (XP, XP) and X, = (X{”, X{) in the population of pairs of inde-
pendent vectors X, X, with identical df. F(z) = F@®, z®). If Fiz®, z®)
is continuous, 7 is the product moment correlation of the difference signs.

Two points (or vectors), (", 2®) and (25, 257) are called concordant or
discordant according to whether

@ — o)l — af?)
is positive or negative. If #“ and =® are the probabilities that a pair of vectors
drawn at random from the population is concordant or discordant, respectively,
we have from (9.10)
r=79 — 79,
It F(z®, z®) is continuous, we have 7' + 7 = 1, and hence

(9.11) r=2r9 —1=1-— 279,
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If we put
(9 12) F(x(l), x(2)) —_ ‘%{F(x(l) — 0’ x(2) _ 0) + F(x(l) _ O, x(?) + 0)

) + F@® 4+ 0,2® — 0) + F@z® + 0, 2% + 0)},
we have

(9.13) @ |7) =1 —2F@", o) — 2F(e, 2P) + 4FE?, 2®),

and we may write

9.14) T = E{® (X, ]| n)}.
The variance of ¢ is, by (5.13),
(915) A0 = 22 = 2) + 1),
where
(9.16) alr) = E{ei(X, | 1)} — 7,
(9.17) () = X" — XP)$ &P — X)) -

If F(z®, z®) is continuous, we have (1) = 1 — 7%, and F®, z%) in (9.13)
may be replaced by F(z, z®).

The variance of a linear function of ¢ has been given for the continuous case by
Lindeberg [15], [16].

If X and X® are independent and have a continuous d.f., we find £;(7) = %,
¢a(r) = 1, and hence

2(2n + 5)

(9.18) () = Il ="

In this case the distribution of ¢ is independent-of the univariate distributions
of X® and X®. This is, however, no longer true if the independent variables
are discontinuous. Then it appears that o’(f) depends on P{X{® = X§° }
and P{X{? = X = X"}, ¢ = 1, 2).

By Theorem 7.1, the d f. of \/n(¢t — 7) tends to the normal form. This result
has first been obtained for the particular case that all permutations of the ranks
of X® and X® are equally probable, which corresponds to the independence
of the continuous random variables X®, X® (Kendall [12]). In this case ¢ can
be represented as a sum of independent random variables (¢f. Dantzig [5] and
Feller [7]). In the general case the asymptotic normality of { has been shown
by Daniels and Kendall {4] and the author [10].

The functional +(F) is stationary (and hence the normal limiting distribution
of \/n(t — 7) singular) if {1 = 0, which, in the case of a continuous F, means that
the equation &(X |7) = 7 or

(919) 4F(X(1) X(2)) 2F(X(l), oo) + 2F’(oo X(2)) — 147
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is satisfied with probability 1. This is the case if X® is an increasing function
of X, Thent = r = 1 with probability 1, and ¢’({) = 0. A case where (9.19)
is fulfilled and ¢*() > 0 is the following: X is uniformly distributed in the
interval (0, 1), and

920) XP=XP4+1i0<XV < X% =XP-1if1<X%<1.
In this case r = 0, {z = 1, *(f) = 2/n(n — 1).
(e) Rank correlation and grade correlation. If in the sample {(z%°, &)},

(@ =1,---,m), all 28" and all z&’s are different, the rank correlation co-
efficient, wh1ch we denote by %', is given by

;12§ (1)__7’L+1 @ _n+1
g (e e )

Z s(x(l) _ xa))s(xm (2))

nd — M acl pod
or
(n — 2k 4+ 3¢
LA
9. 21) k= T
where ¢ is the difference sign covariance (9.9), and
3 E” s@® — 28)s@® — &2,

- nn — 1(n —

the summation being over all different subscripts «, 8, v
k is a U-statistic, and as a function of a random sample from a population with
d.f. F, k is an unbiased estimate of the regular functional of degree 3,

k=3 [ f s@@® — 2Ms(e? — xé”) dF (1) dF (w2) dF (x3)
(9.22)

3 f f (2F(x®) — 1}{2F®(x®) — 1} dF(x),

where FO(z®) = Fz®, »), F®@?®) = F(w, 2?).
If F is continuous, we have

[ o abo@) = [(uu =3,
[ 1F9G) — 32 arG) = fo ‘- Pdu=g (=12,

and in this case « is the coefficient of correlation between the random variables

U(l) F(l) (X(l)) U(2) — F(2)(X(2)).
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U® has been termed the grade of the continuous variable X, and in the general
case F(X?) may be called the grade of X (cf., for instance, G. U. Yule and
M. G. Kendall {22, p. 150]). In general, x is 12 times the covariance of the
grades.

From (9.21) we have for the expected value of ¥/,

By = - Bk b

In the continuous case the rank correlation coefficient %’ is an estimate of the
grade correlation «, which is biased for finite » but unbiased in the limit.

The kernel 3s(z® — z5”)s(@{® — {®) of « is not symmetric. Denoting by
®(21, 22 , 23 | k) the symmetric kernel of «, we have

1,23

1 .
(9.23) Bor, 3,25 | 6) = 5 #Zﬁ;é s — 2§")s(=P — 2P)
arfry
a@y

For computing « and the constants ¢; an alternative expression for « and & is
sometimes more convenient. From three two-dimensional vectors z;, %z, s
we can form three pairs (z1, 22), (x1, x3), and (x2, z3). The number of con-
cordant pairs among them can be 3, 2, 1, or 0. If v is the probability that among
the three pairs formed from three random elements of the population at least 2
are concordant, we have, if the d.f. F is continuous,

(9.24) k=2y — 1.

This is analogous to the expression (9.11) for 7.
The truth of (9.24) can be seen as follows: From the definition of ¥ we have

Y= E{q)(xl sy X2, T3 l'Y)})
where ®(z , 22 , 23 | v) is = 1if at least two of the three expressions
(9.25) @ — ") ~ ), (@ <B;a,8=1,23)

are positive, and equal to zero, if no more than one of them is positive. Since,
by the continuity of F, we may neglect the case of (9.25) being zero, we may
write

D(x1, Zey T3 ]Y) = C12,126323C51,31 + C12,12625,235C51,13 + C12,12C0,82C51,31 + C12,21C23,5Ca1,31
where
Caprs = cl@e’ — 55") (@ — %)
and c(u) is defined by (9.4).
®(x1, T2, 23 |v) is symmetric in 21, 22, 3 .
The identity
(9.26) (@1, 22, 23| k) = 20(w1, T2, T3 |¥) — 1
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can be shown to hold either by algebraical calculation using (9.4) or by direct
computation of each side for the different positions of the three points ; , 22 , 25 .
From (9.26) it appears that in the continuous case the symmetric kernel
&(xy , 22, 3 | k) can assume only two values, —1 and +-1.
The variance of k is, according to (5.13),

2 6 -3
W = sy 13 (77 %) 60 + 3 — 906 + 50 |,

where
ale) = B{®I(X: [0} — &,
o) = E{8}(Xy, Xz | )} — &,
to(x) = E{®(X1, Xa, Xs|0)} — &,
®i(z1 | ) = E{®(m1, X2, X5|K)},
Doy, 22 | k) = E{®(21, 22, X3 | x)}.
We find for the continuous case
Gk =1 — &,
9.27) &l |x) =1 — 2F (x, )J[1 — 2F (w0, zP)] — 2F(af®, )

— 2F(m, 2") + 4[F®, y)dF (w0, y*)

+ 4[PG®, 5P, ©),

Bo(x1, 22 | k) = 1 + 2F(z{", 2¥) + 2F (z°, 28?) — 2c(xs? — 2P)F(2f", =)
—2(z? — 2P F @, ©) — 2(zs’ — 2V)F (0, 2 @
— 2c(zY —z P)F (o, zP).

If X®, X® are continuous and independent, we obtain k = 0, {1 = %, {2 = ¥,
t3 = 1, and hence

, nt— 3.
(9.28) (k) = nn—Dn—2"

In the discontinuous case of independence the distribution of %, as that of ¢,
depends on the distributions of X ® and X®, and o*(k) can again be expressed
in terms of P{X{? = X{’} and P{X{? = X{’ = X"}, (i = 1,2).

The variance of the rank correlation coefficient &’ is, by (9 21),

(n — 27 (k) + 6(n — 2ot k) + (1)

(9.29) o (k') = n + 1)
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For ¢(t, k) we have, according to (6.5),
6
o(t, k) = wn— 1D {(n — 3)51(r, k) + alm, 0},
where

rl("') K) = E{CI)I(Xl | T)<I)1(X1 | K)} — TK,

co(r, «) = E{@(Xy, Xo | 1)®8(X1, X2 | 6)} — 7.
In the case of independence we see from (9.13) and (9.27) that

Be|7) = Bz |0 = (L — 2P, )]l — 2F(, z?)],

and we obtain

(9.30) Glr ) = al) = Hir) = 3
Solry k) = 3§,
(9.31) olt, k) = 33,%%
On inserting (9.28), (9.31) and (9.18) in (9.29), we find
(k) = nl_ 1

in accordance with the result obtained for this case by Student and published
by K. Pearson [20].

According to Theorem 7.1, v/n(k — «) tends to be normally distributed with
mean 0 and variance 9¢1(x). The same is true for the distribution of the rank
correlation coefficient, k', as follows from Theorem 7.3 in conjunction with
(9.21). For the special case of independence the asymptotic normality of &’
has been proved by Hotelling and Pabst [11].

From Theorem 7.3 it also follows that the joint distribution of Vnt — 1)
and v/n(k — x) (or v/n(’ — «)) tends to the normal form with the variances
4¢1(7) and 9¢1(x) and the covariance 6{i(x, 7). In the case of independence we
see from (9.30) that the correlation p(¢, k) between ¢ and & tends to 1, and we have
the asymptotic functional relation 3¢ = 2k. This result has been conjectured by
Kendall and others [14], and proved by Daniels [3]. In general, however, p(, k)
does not approach unity. Thus, if X W is uniformly distributed in (0, 1), and

X® =3 -X® #0<X¥<y,
X® =34 X0 ifi<X¥ <
(9.32) X® = x® —1 if 1 g X0 <3
X(2) — 3 _ X(l) if% S X(l) S 1’

wehave r = x = 0, {1(r) = 0, f2(7) = 1, f1(x) = 7o, ti(k, ) = 0, and hence
o(t, k) — 0.
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(f) Non-parametric tests of independence. Suppose that the random variables
X®, X® have a continuous joint d.f. F(z®, 2®), and we want to test the
hypothesis H, that X and X® are independent, that is, that

Fa®, %) = F@®, ) F(»,2?).

The distribution of any statistic involving only the ranks of the variables
does not depend on the d.f. of the population when H, is true. For this reason
several rank order statistics, among them the difference sign correlation ¢ and
the rank correlation &/, have been suggested for testing independence.

From the preceding results we can obtain the asymptotic power functions of
the tests of independence based on tand k'. If H,is true, we have F{t} = r = 0,
and the critical region of size ¢ of the {-test may be defined by | ¢ | > ¢., where
¢, is the smallest number satisfying the inequality

(9.33) P{|t]|> ca| Ho} < .

By Theorem 7.2 and (9.18) we may write ¢, = 2\,/3v/n, where )\, tends to a
positive constant A depending on e.
Since ¢’(f) = O(n™"), the power function

Pu(H) = P{|t| > 2\/3v/n | H}

tends to one as n — <« for any alternative hypothesis H with «(F) £ 0. If,
however, 7 = 0, we have lim P,(H) < 1. If r = 0and {i(r) < %, we have even
lim P,(H) < ¢, and with respect to these alternatives the test is biased in the
limit. Thus, in the case of the distribution (9.20) we have even P,(H) — 0.
In this case there is a functional relationship between the variables, and the
distribution must be considered as considerably different from the case of in-
dependence.

For the rank correlation test we have a similar result. If ¢, is the smallest
number satisfying P{ | k¥’ | > ¢, | Ho} < ¢ we have ¢, = A\./+/n, where
lim A, = A, and the test is biased in the limit if « = 0 and t1(k) < 4. This is ful-
filled in the case of the distribution (9.32), where {1(x) = 5.

The question arises whether there exist non-parametric tests of independence
which are unbiased or unbiased in the limit. This point will be discussed in a
separate paper on tests of independence.

(g) Mann’s test against trend. Let Y1, ---, ¥, be n independent real-valued

random variables, ¥, having the continuous d.f. F.(y), (@ = 1, -+, n).
The hypothesis of randomness,
HI: Fl(y)= e =Fn(y)

is to be tested against the alternative hypothesis of a “downward trend,”
Hy: Fiy) <Fuy) < - <F@.

H. B. Mann [17] has suggested a test of H; against H» based on the number 7
of inequalities Y, < Y3, where a« < 8. We may write

or — M =D S v ¥ = X s — Hs(Va — Y.

2 < a<B
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The U-statistic
t = {4T/n(n — 1)} — 1

is the same as (9.9) for the special case when one component is not a random

variable.
Let

Tap

sta = 0 [ [ st = vs) dFuly) aFa(e)

o = {2 [ Fule) ar.te) = 1.

We have 745 = 0 if Hyis true and 7.5 < 0 if H; is true.
Since

2
it follows that E{t} = 0 under H; and E{t} < 0 under H,.

Mann’s test against trend has the power function P.(H) = Pt < a. | H},
where @, is the largest number satisfying P{t < a. | Hi} < e.

Since ¢, — 0 and, by (5.18), ¢°({) = O(n™), it follows from Tchebycheff’s
inequality that the test is consistent (that is, P.(H;) — 1) and hence unbiased
in the limit. This has been shown by Mann who also gave sufficient conditions
under which the test is unbiased for finite n.

By Theorems 8.1 and 8.2 the distribution of (¢ — 7.)/¢(f) is asymptotically
normal if certain conditions are satisfied. Since (8.2), (8.3) and (8.13) are ful-
filled, either of the conditions (8.4) and (8.14) is sufficient.

(h) The coefficient of partial difference sign correlation. Consider a three-
variate sample 1, * -+ , Zu ; Zo = (5, 20, 28), (@ =1, .-+, n). Inasim-
ilar way as in section 9d we may form the set of the n(n — 1) triplets of differ-
ence signs,

(9.34) s@d — o),  s@P — ),  s@d — "),
(a #ZBia,=1,--- , 1.

We shall assume that all z®’s, 2®’s, and z®’s are different. Then the triplets
(9.34) contain only two different numbers, +1 and —1. Hence the regression
functions of the three-variate population (9.34) are linear.

If tn, ts, and &s are the difference sign correlations of {s(@$ — 2§,
s@P — o)}, (s — 25"), s@P — )} and {s@P — 2”), 5@ — )}
respectively, we have for the coefficient #4123 of partial correlation between
sz — 2”) and s(z® — z5?) with respect to s — 25?),

b — tiztes
9.35 fog = ——o BB
(9:35) s = A = B
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This measure of partial correlation has been suggested by Kendall [13] who
gave an alternative definition of # .

If we have two independent three-dimensional random vectors
X'= (X2, X, X{® and X, = (X§?, X{”, X{¥) with the same continuous
df. Fz®, x@, z®), the distribution of the difference signs s(X{” — X§?),
(i = 1, 2, 3), has again linear regression functions, and we may define the
partial difference sign correlation

Tis — 713723
T12.3 =
V(L= 1) (1 — 13)’

where 7.; 1s the difference sign correlation of X O X9,

If ts3 is a function of a random sample, and if 735 # 1, T3 # 1, the d.f. of
v/nltes — 712.3) tends, by Theorem 7.5, so the normal d.f. with mean zero and
variance

4 (123 — T2 T13)?

o8 = 1 2y — 723){&(712) + A= 2y 1)

(115 — T2 T3)? Toz — TioT o pn
+ ﬁ fa(rm) — 2 _231—1—_7-1.2?13 f1(rz, 718) — 2 -131—_——71_23——2—351(,.12, 725)
(195 — T12718) (718 — Ti2Tas)
+2 a- Tfa)(l — 733) 6alrs, 1)
where

¢(r) =B {(®1(X | 1)} — 7%,
Oilris, ) = EI@(X | 7:)@(X | 7o)} — rij7an,
and, for instance (cf. (9.13)),
Bz | ) = 1 — 2F(x-“), w, o) — 2F(ew0,2®, o) + 4F@@P, 2?, o).
If 713 = 723 = 0, we have
ohrs = 41(rn),

and v/n(tes — 7125) has the same limiting distribution as v/n(fiz — 712). This is
in particular the case when X°, X® X® are independent.
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