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Abstract

The standard approach to formulating stochastic programs is based on the assumption that

the stochastic process is independent of the optimization decisions. We address a class of

problems where the optimization decisions influence the time of information discovery for a

subset of the uncertain parameters. We extend the standard modeling approach by presenting

a disjunctive programming formulation that accommodates stochastic programs for this class

of problems. A set of theoretical properties that lead to reduction in the size of the model is

identified. A Lagrangean duality based branch and bound algorithm is also presented.

1 Introduction

Stochastic programming deals with the problem of making optimal decisions in the presence of

uncertainty. In stochastic programs, the uncertainty is represented by probability distributions

and the interaction between the stochastic and decisions processes is modeled so that the decision-

maker has the option of adjusting the decisions based on how the uncertainty unfolds. From

the modeling perspective, most previous work in the stochastic programming literature deals with

problems with exogenous uncertainty (Jonsbraten (1998)), where the optimization decisions cannot

influence the stochastic process.

Pflug (1990) was the first to address the case with endogenous uncertainty, where the underlying

stochastic process depends on the optimization decisions. Previous work on this class of uncertainty

is limited to a few papers only. Since this paper deals with endogenous uncertainty, we only review
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the previous work in the stochastic programming literature on this type of uncertainty. To motivate

the need for this paper, we also present brief descriptions of some real world problems with this

type of uncertainty. Reviews of previous work on problems with exogenous uncertainty can be

found in Sahinidis (2004), Schultz (2003) and Birge (1997).

In general, project decisions can influence the stochastic process in at least two ways. On one hand,

the decision-maker may cause alteration of the probability distribution by making one possibility

more likely than the other. On the other hand, the decision-maker may not directly affect the

probability distributions but could act to get more accurate information by resolving the uncertainty

(partially). The difference is that while in the first case the decision-maker can force one possibility

to become more probable, in the second case the decision-maker can only become more sure as to

which possibility may occur in future.

Viswanath et al. (2004) address an instance of the first type of endogenous uncertainty where

optimization decisions can influence the probability distribution. They consider a two-stage network

traversal problem where each arc is associated with a probability that represents the probability

that the arc will be available for traversal after some disaster. In the first stage, investments are

made to increase the probabilities associated with some of the arcs. This is followed by a random

event which renders some of the arcs unavailable for traversal. In the second stage, a path from

the source to the destination has to be traversed using the available arcs. The aim is to choose the

arcs for investment such that the expected shortest path length from the source to the destination

is minimized. This problem arises in planning disaster relief between cities with the possibility that

some of the inter-connecting routes may become unusable due to the disaster.

Ahmed (2000) presents more examples relating to network design, server selection and facility

location where the decision-maker can influence the probability distributions. The author presents

a 0-1 hyperbolic programming formulation and an exact solution algorithm for single stage problems

with discrete decisions.

The gas field development planning problem is a real world example of the second type of endoge-

nous uncertainty where the optimization decisions give more accurate information by resolving the

uncertainty. In this problem, a set of fields (reservoirs of gas) are available for production. The

size and quality of the reserves of these fields are uncertain. The uncertainty in a field will be

resolved only when a facility is installed at the field. Thus, the investment decisions control when

the uncertainty will be resolved. Therefore, apart from considering the large capital expenditures

(over US $100 Million) and revenues associated with investment at a field, it is also important

to consider the potential of obtaining valuable information as a result of the investment. This

information could lead to “better” decisions in the future.

A similar problem is the capacity expansion of process networks under yield uncertainty where an
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existing network of processing units can be expanded by installing units that are based on new

technology. The yields (or productivities) of these units are uncertain and the uncertainty in a

unit is resolved only after the unit is installed and operated in the existing conditions. Thus, the

investment decisions determine when the uncertainty will be resolved. We use this problem in

section 9 to illustrate that when the value of information is sufficiently high, it may be optimal

for the decision-maker to first resolve the uncertainty by making small investments and then make

higher investments based on the observations.

Another instance of this type of endogenous uncertainty arises in the multistage network interdiction

problem. In each stage, the interdictor interdicts some of the nodes followed by which the operator

tries to traverse the network along the shortest path. The exact network structure is unknown to

the interdictor, but various possibilities are postulated through a set of scenarios. In each stage,

the uncertainty is (partially) resolved based on the path taken by the operator, which is implicitly

determined by the interdiction decisions. Thus, the aim of the interdictor is to interdict the nodes

such that the most “valuable” information is obtained and the objective maximized.

Jonsbraten et al. (1998) first addressed problems with endogenous uncertainty where project deci-

sions give more accurate information by resolving the uncertainty. The authors present an implicit

enumeration based branch and bound algorithm for this class of problems. Results for two-stage

problems are also presented. Held and Woodruff (2003) present heuristic solution methods for

the multistage network interdiction problem. Both these papers assume that every resolution of

uncertainty excludes at least one realization or scenario from the set of future possibilities. Jons-

braten (1998) addresses a variant of the oil (or gas) field problem where investment decisions lead

to resolution of uncertainty but none of the scenarios may be excluded from the set of future possi-

bilities. The author proposes an implicit enumeration algorithm where the resolution of uncertainty

is modeled using a Bayesian approach.

Goel and Grossmann (2004) used the gas field problem to illustrate an approach for formulating

rigorous stochastic programs for problems where the decisions give more accurate information by

resolving the uncertainty. In this approach, the interaction between the decisions and the resolution

of uncertainty is captured through a disjunctive formulation of the non-anticipativity constraints.

The authors also present a heuristic algorithm to solve the gas field problem.

In this paper, we generalize the above approach to problems that have both exogenous and en-

dogenous uncertainties. We consider the second type of endogenous uncertainty where the project

decisions lead to resolution of uncertainty. This paper is organized as follows. In section 2 we

present a brief background on stochastic programming formulations with exogenous uncertainty.

In section 3 we present the manufacturing related “sizes problem” to motivate the class of problems

being considered. Next we present a generic description of the broad class of problems under con-

sideration. Sections 5 and 6 explain the notation and the proposed stochastic program, respectively.
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(a) Standard scenario tree (b) Reformulated scenario tree with variables x
s
t

Figure 1: Equivalent scenario trees

Section 7 presents theoretical properties that lead to reduction in the dimensionality of the model.

In section 8 we present a branch and bound algorithm based on Lagrangean duality to solve the

proposed model. Finally, section 9 presents results to illustrate the advantages of our approach.

2 Background

We restrict the scope of this paper to problems where the uncertainty can be represented by

discrete probability distributions and the time horizon is represented by a discrete set of time

periods. For such problems, the stochastic process can be represented by a scenario tree, where

each node represents a possible information state. An arc emanating from a node for time period

t represents a possible transition to a node for time period t + 1. The probability associated with

an arc represents the probability of transition along that arc. Multiple arcs emanating from a node

for time period t represent multiple possibilities for transition and hence, that uncertainty in some

parameter(s) will be resolved at the end of time period t. In a scenario tree, a path from the root

node to a leaf node represents a scenario. Physically, a scenario represents one possible combination

of values for all uncertain parameters. The probability of a scenario is the probability of reaching

the corresponding leaf node from the root node.

Fig. 1(a) represents the scenario tree for a problem with two uncertain parameters ξ1, ξ2 and three

time periods. Possible realizations for both parameters include H (“High”) and L (“Low”) where

both realizations are equally probable. The uncertainties in ξ1 and ξ2 are resolved after the first

and second time periods, respectively. The scenario tree has four scenarios, each with probability

equal to 0.25.

Ruszczynski (1997) illustrates an alternative representation of scenario trees where each scenario

is represented by a set of unique nodes (Fig. 1(b)). If the nodes for scenarios s, s′ in time period
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t correspond to the same information state (represented by horizontal dotted lines linking the

nodes in Fig. 1(b)), the two scenarios are said to be indistinguishable in time period t. In general,

scenarios s, s′ are indistinguishable in time period t if the two scenarios are identical in realizations

for all uncertain parameters in which uncertainty has been resolved up till time t. The concept of

indistinguishability is central to the non-anticipativity based approach to stochastic programming.

(SSP) is a “standard” stochastic program (Jonsbraten et al. (1998)) for a linear problem with T

time periods and scenario tree S.

(SSP) min
∑

s

ps
∑

t

cs
tx

s
t (1a)

s.t.
∑

τ≤t

As
τ,tx

s
τ ≤ as

t ∀(t, s) (1b)

xs
t ∈ X s

t ∀(t, s) (1c)

xs
t = xs′

t ∀(s, s′, t) ∈ N e
S (1d)

Parameter ps represents the probability of scenario s while variables xs
t represent decision variables

for time period t in scenario s. (1a) represents the objective of minimizing the expectation of some

economic criterion. Constraint (1b) represents single-period and period-linking constraints for a

particular scenario which are characteristic of any multi-period model. Constraint (1c) represents

integrality and bound restrictions on variables xs
t . N

e
S represents the set of tuples (s, s′, t) such that

scenarios s and s′ are indistinguishable in time period t for scenario tree S. The non-anticipativity

or implementability constraints (1d) link decisions for different scenarios. These constraints state

that if scenarios s, s′ are indistinguishable in time period t then decisions for s, s′ in t should be the

same. In other words, decisions cannot be based on knowledge that will be revealed in the future.

When the uncertainty is of exogenous nature, the probabilities ps and the set N e
S are independent

of the optimization variables. Thus, these are inputs to the optimization model. However, if the

optimization decisions can influence the probability distribution, then probabilities ps have to be

treated as optimization variables. On the other hand, if the optimization decisions influence the

resolution of uncertainty, then the scenario tree and hence the set N e
S depends on the decisions

(Jonsbraten et al. (1998), Goel and Grossmann (2004)). We generalize the approach of Goel and

Grossmann (2004) to problems with both exogenous and endogenous uncertainty by formulating

the inter-dependence of N e
S and the optimization variables as a disjunctive program.

3 Motivating Example

The sizes problem (Jonsbraten et al. (1998), Jorjani et al. (1999)) is a specific example of the

class of problems under consideration. In this problem, a production line has to meet the demand
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for a product in a set of different sizes, I = {1, 2, . . . , I}, in each time period of a time horizon

T = {1, 2, . . . , T}. If the demand for a size cannot be met, the deficit can be filled by the delivery

of a bigger size. However, this involves a substitution cost. Other costs include fixed production

costs for set-up of equipment for each size produced in each time period, variable inventory costs

and variable production costs for each unit produced.

The demands, represented by ξt for time period t ∈ T , are uncertain. The variable costs of

production, represented by θi for size i ∈ I, remain constant over the time horizon but are also

uncertain. The demand in time period t will be observed automatically in that time period. On the

other hand, the uncertainty in variable production cost for size i, θi, will be resolved only when that

size is produced for the first time. Thus, demand uncertainty is exogenous while the uncertainty

in variable production costs is endogenous.

Decisions to be made in each time period include whether to produce size i or not (binary variables

bi,t), number of units of size i to be produced (variables yi,t) and number of units of size i to be

used to satisfy demands of size i′ (variables xi,i′,t). Production decisions (bi,t, yt) are implemented

at the beginning of time period t. Then uncertainty is resolved in demands for time period t and in

variable production costs for sizes produced for the first time in time period t. Finally, substitution

decisions (xi,i′,t) are implemented to satisfy demands for time period t.

4 Generic problem description

In the class of problems under consideration, the time horizon is represented by the discrete set

of time periods T = {1, 2, . . . , T}. ξt represents the vector of exogenous uncertain parameters

associated with time period t ∈ T . The uncertainty in ξt will be resolved automatically in time

period t. Ξ represents the discrete set of possible realizations for vector ξ = (ξ1, ξ2, . . . , ξT ).

Set I = {1, 2, . . . , I} represents the set of “sources” of endogenous uncertainty while θi represents

the endogenous uncertain parameter associated with source i ∈ I. The discrete set of possible

realizations for θi is represented by Θi. The resolution of uncertainty in θi depends on binary

decision variables bi,t. Specifically, the uncertainty in θi will be resolved in time period t if binary

decision bi,t = 1 and bi,τ = 0 ∀τ < t. Besides decisions represented by variables bi,t, other decisions

to be made in time period t are represented by variables yt and xt together.

The sequence of events in each time period is as follows. Decisions yt and bi,t are implemented

at the beginning of time period t. This is followed by resolution of uncertainty in the exogenous

parameters ξt and in the endogenous parameter θi for source i if bi,t = 1 and bi,τ = 0 ∀τ < t.

Finally, decisions xt are implemented at the end of the time period.
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In general, variables bi,t may represent investment or operation decisions associated with source i.

In the sizes problem, variables bi,t represent whether size i is produced in time period t or not. In

the gas field problem considered by Goel and Grossmann (2004), these variables represent whether

or not investment is made at field i in time period t. The uncertainty associated with a size or

a field is resolved in time period t if the production of that size or the investment at that field is

carried out for the first time in time period t.

Note that for ease of exposition, we assume that there is only one endogenous uncertain parameter

associated with source i for all i ∈ I. Thus, we assume that θi is a scalar for all i ∈ I. At the

end of section 7 we describe how our approach extends to the more general case where θi may be

a vector for some i ∈ I.

5 Notations and definitions

In order to make the following discussion more comprehensible, we first explain the notation and

definitions used in this paper. Each scenario in this problem corresponds to one possible realization

for the vector (ξ1, ξ2, . . . , ξT , θ1, θ2, . . . , θI). We assume that the set of scenarios corresponds to

Ξ × (×i∈IΘi), i.e., for any realization of the vector of exogenous parameters, ξ = (ξ1, ξ2, . . . , ξT ),

the set of scenarios includes scenarios corresponding to all possible combinations of realizations for

the endogenous parameters. Individual scenarios are indexed as s ∈ S, where S = {1, 2, . . . , S}

represents the set of indices corresponding to all the scenarios. Note that we will use index s to

refer to the corresponding scenario. Further, θs
i and ξs

t will represent the realizations of θi and ξt

respectively, in scenario s.

For scenarios s, s′ ∈ S, the set D(s, s′) = {i|i ∈ I, θs
i 6= θs′

i } represents the set of sources of

endogenous uncertainty that distinguish scenarios s and s′. |D(s, s′)| represents the cardinality of

this set. In general, 0 ≤ |D(s, s′)| ≤ I holds for all s, s′ ∈ S, where I is the number of sources of

endogenous uncertainty. By definition, D(s, s′) = D(s′, s).

For scenarios s, s′ ∈ S, t(s, s′) is the latest time period t such that realizations of all exogenous

parameters resolved up till and including t are the same in scenarios s, s′. In other words, t(s, s′) is

the last time period at the end of which scenarios s and s′ are indistinguishable based on exogenous

uncertainty resolved. Mathematically,

t(s, s′) = max
t

{t|t ∈ T , ξs
τ = ξs′

τ ∀τ ∈ T , τ ≤ t}

If {t|t ∈ T , ξs
τ = ξs′

τ ∀τ ∈ T , τ ≤ t} = ∅ , then we define t(s, s′) = 0. Note that there cannot be

distinct scenarios s, s′ ∈ S such that |D(s, s′)| = 0 and t(s, s′) = T . This is because if s, s′ satisfied

the above conditions then they would be completely identical. By definition, t(s, s′) = t(s′, s).
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L0 = {(s, s′)|s, s′ ∈ S, s < s′, |D(s, s′)| = 0} represents the set of scenario pairs (s, s′) such that

scenarios s and s′ are identical in terms of realizations for all endogenous parameters. The condition

s < s′ prevents duplicate entries in L0 for the same pair of scenarios s, s′.

L1+ = {(s, s′)|s, s′ ∈ S, s < s′, |D(s, s′)| ≥ 1} represents the set of scenario pairs (s, s′) such that s, s′

differ in realizations of θi for at least one i ∈ I. Also, L1 = {(s, s′)|s, s′ ∈ S, s < s′, |D(s, s′)| = 1}.

L1
T = {(s, s′)|(s, s′) ∈ L1, t(s, s′) = T} is the set of scenario pairs (s, s′) such that scenarios s, s′

differ in the realization of only one endogenous parameter and are identical in realizations for all

exogenous parameters.

6 Model

In this section we introduce P1, the declarative form of stochastic programs for the class of problems

described in section 4.

(P1) φ = min
∑

s∈S

ps
∑

t∈T

(

wcs
tw

s
t + xcs

tx
s
t + ycs

ty
s
t +

∑

i∈I

bcs
i,tb

s
i,t

)

(2)

s.t.
∑

τ∈T ,
τ≤t

(

wAs
τ,tw

s
τ + xAs

τ,tx
s
τ + yAs

τ,ty
s
τ +

∑

i∈I

bAs
i,τ ,tb

s
i,τ

)

≤ as
t ∀s ∈ S, t ∈ T (3)

bs
i,1 = bs′

i,1 ∀s, s′ ∈ S, s < s′, i ∈ I (4a)

ys
1 = ys′

1 ∀s, s′ ∈ S, s < s′ (4b)

xs
t = xs′

t ∀(s, s′) ∈ L0, t ∈ T , t ≤ t(s, s′) (5a)

bs
i,t+1 = bs′

i,t+1 ∀(s, s′) ∈ L0, t ∈ T , t ≤ t(s, s′), i ∈ I (5b)

ys
t+1 = ys′

t+1 ∀(s, s′) ∈ L0, t ∈ T , t ≤ t(s, s′) (5c)













Zs,s′

t

xs
t = xs′

t

bs
i,t+1 = bs′

i,t+1 ∀i ∈ I if t ≤ T − 1

ys
t+1 = ys′

t+1 if t ≤ T − 1













∨
[

¬Zs,s′

t

]

∀(s, s′) ∈ L1+, t ∈ T , t ≤ t(s, s′) (6)

Zs,s′

t ⇔
∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬bs
i,τ

)

]

∀(s, s′) ∈ L1+, t ∈ T , t ≤ t(s, s′) (7)

Zs,s′

t ⇔
∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬bs′

i,τ

)

]

∀(s, s′) ∈ L1+, t ∈ T , t ≤ t(s, s′) (8)
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ws
t ∈ Ws

t , xs
t ∈ X s

t , ys
t ∈ Ys

t , bs
i,t ∈ {0, 1} ∀s ∈ S, t ∈ T , i ∈ I

Zs,s′

t ∈ {True, False} ∀(s, s′) ∈ L1+, t ∈ T , t ≤ t(s, s′)

In P1, variables bs
i,t, xs

t and ys
t represent the decisions to be made in time period t of scenario s.

Vector ws
t represents the other variables associated with time period t in scenario s. In process

control terminology, bs
i,t, xs

t and ys
t are “control variables” while ws

t are “state variables”. bs
i,t are

binary variables while xs
t and ys

t are variable vectors that may have both integer and continuous

components. As explained in section 4, decisions ys
t and bs

i,t are implemented at the beginning of

time period t, while decisions xs
t are implemented at the end of the time period after the resolution

of uncertainty in that time period.

The realizations of the cost coefficients of variables b
(·)
i,t , x

(·)
t , y

(·)
t and w

(·)
t in scenario s are represented

by bcs
i,t,

xcs
t ,

ycs
t and wcs

t , respectively. Similarly, bAs
i,τ ,t,

xAs
τ,t,

yAs
τ,t and wAs

τ,t represent the

realizations of the constraint coefficient matrices (or vectors) of these variables in scenario s. (2)

represents the objective of minimizing the expectation of an economic criterion. (3) represents

single-period and period-linking constraints for a particular scenario. These include the square

system of equality constraints which can be used to eliminate “state” variables ws
t .

Decisions for different scenarios are linked by non-anticipativity constraints, (4)-(8). The non-

anticipativity rule requires that if scenarios s and s′ are indistinguishable at some time, then

decisions in scenarios s and s′ should be the same at that time. Based on the sequence of events

described in section 4, uncertainty is resolved in time period t after the implementation of decisions

ys
t and bs

i,t. Thus, if scenarios s, s′ are indistinguishable after resolution of uncertainty in time

period t, then decisions x
(·)
t , b

(·)
i,t+1 and y

(·)
t+1 should be the same for scenarios s, s′. Note that in this

paper, we refer to the “indistinguishability of the two scenarios after the resolution of exogenous

and endogenous uncertainty in time period t” simply by the “indistinguishability of two scenarios

in time period t”.

Based on the sequence of events in each time period, all scenarios are indistinguishable before

decisions bs
i,t and ys

t are implemented in the first time period. Thus, decisions b
(·)
i,1 and y

(·)
1 have to

be the same for all scenarios (4). Note that the condition s < s′ is imposed to avoid duplication of

constraints (4) for the same pair of scenarios s, s′.

(5) represents non-anticipativity constraints linking scenarios s, s′ such that (s, s′) ∈ L0; i.e.,

the realizations of all endogenous parameters in scenarios s and s′ are identical. In this case,

scenarios s, s′ will be indistinguishable in time period t if and only if these scenarios are identical in

realizations of all exogenous parameters observed up till and including time period t. Accordingly,

(5) applies non-anticipativity constraints on decisions x
(·)
t , y

(·)
t+1, b

(·)
i,t+1 for scenarios s, s′ only if t

satisfies t ≤ t(s, s′).

(6)-(8) are non-anticipativity constraints linking scenarios s, s′ such that (s, s′) ∈ L1+; i.e., sce-
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narios s and s′ differ in the realization of at least one endogenous parameter. In this case, the

indistinguishability of scenarios s, s′ in time period t depends on both, endogenous and exoge-

nous uncertainty resolved in the past. Boolean variable Zs,s′

t is True if and only if scenarios s

and s′ are indistinguishable (after the resolution of uncertainty) in time period t. Clearly, for

t > t(s, s′) scenarios s, s′ can be distinguished simply based on realizations of the exogenous pa-

rameters. Hence, Zs,s′

t = False for t > t(s, s′). Therefore constraints (6)-(8) are applied only for t

such that t ≤ t(s, s′), where (s, s′) ∈ L1+.

Disjunction (6) imposes the non-anticipativity constraints on variables x
(·)
t , y

(·)
t+1, b

(·)
i,t+1 for scenarios

s, s′ only if Zs,s′

t is True, i.e., if scenarios s and s′ are indistinguishable in time period t. By

definition of t(s, s′), if t ≤ t(s, s′) then the indistinguishability of scenarios s, s′ in time period t

depends purely on the endogenous uncertainty resolved through the decisions. Logic constraints

(7) and (8) relate the indistinguishability of scenarios s, s′ in time period t with decisions bs
i,τ

and bs′

i,τ respectively. Scenarios s, s′ differ in realizations of a finite set of endogenous parameters.

Constraint (7) states1 that Zs,s′

t is True if and only if uncertainty has not been resolved in any of

these parameters up till (and including) time period t of scenario s. Similarly, (8) relates variables

Zs,s′

t to the corresponding decision variables for scenario s′.

Note that to account for the offset in the time index of these variables, the non-anticipativity

constraints on variables b
(·)
i,t+1, y

(·)
t+1 for scenarios s, s′ are applied only if t ≤ T −1. Although it may

seem that a similar restriction is needed in (5b)-(5c), however, as explained earlier in this section,

we cannot have distinct scenarios s, s′ ∈ S such that (s, s′) ∈ L0 and t(s, s′) = T . Hence, the

condition that t ≤ T − 1 is implicit in the condition t ≤ t(s, s′) in (5b)-(5c).

Ws
t , X s

t and Ys
t represent the bounds and integrality restrictions on variables ws

t , xs
t and ys

t respec-

tively, for all t ∈ T , s ∈ S.

7 Model properties

In this section, we present a set of properties that lead to reduction in the dimensionality of the

proposed model. Note that we will use bs to represent the vector of variables bs
i,t for all (i, t).

Similarly, vector b will represent the vector of bs for all s. The same convention will be used

to represent vectors of variables ws
t , x

s
t , y

s
t , Z

s,s′

t and parameters introduced later in the paper.

The tuple (b, w, x, y, Z) will be used to represent a solution to the model under consideration.

Further, in all properties presented in this paper, it is assumed that variables bs
i,t ∈ {0, 1} and

1In theory, the logical operator “¬” should only be used with Boolean variables. Since b
s
i,t are binary variables,

therefore constraints (7) and (8) involve a slight inconsistency in notation. A more rigorous formulation can be

obtained at the expense of additional notation by defining (7) and (8) in terms of Boolean variables B
s
i,t and specifying

an equivalence between variables B
s
i,t and b

s
i,t.
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Zs,s′

t ∈ {True, False}. Similarly, solutions b̂s
i,t ∈ {0, 1} and Ẑs,s′

t ∈ {True, False}.

Proposition 1. Consider constraints (9)-(11) for given s, s′, t̂ where s, s′ ∈ S, t̂ ∈ T , t̂ ≤ T − 1.

bs
i,1 = bs′

i,1 ∀i ∈ I (9)

[

Zs,s′

t

bs
i,t+1 = bs′

i,t+1∀i ∈ I

]

∨
[

¬Zs,s′

t

]

∀t ∈ T , t ≤ t̂ (10)

Zs,s′

t ⇔
∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬bs
i,τ

)

]

∀t ∈ T , t ≤ t̂ (11)

If vectors b̂s, b̂s′ , Ẑs,s′ satisfy (9)-(11) then,

(a) For t ∈ T , t ≤ t̂,

∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s
i,τ

)

]

⇒
[

b̂s
i,τ = b̂s′

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t + 1
]

(b) For t = t̂ + 1,

∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s
i,τ

)

]

⇒
[

b̂s
i,τ = b̂s′

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t
]

(c) For t ∈ T , t ≤ t̂ + 1,

∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s
i,τ

)

]

⇔
∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s′

i,τ

)

]

(d) For t ∈ T , t ≤ t̂,

∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s′

i,τ

)

]

⇒
[

b̂s
i,τ = b̂s′

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t + 1.
]

(e) For t = t̂ + 1,

∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s′

i,τ

)

]

⇒
[

b̂s
i,τ = b̂s′

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t.
]

Note that the left hand sides of (a) and (b) involve variables bs
i,τ while the left hand sides of (d) and

(e) involve variables bs′

i,τ .
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Proof. See Appendix A.

We use Proposition 1 as a basis to prove the following theorem.

Theorem 1. If solution (b̂, ŵ, x̂, ŷ, Ẑ) satisfies (4a), (6) and (7), then it also satisfies (8). Thus,

constraint (8) is redundant in P1.

Proof. Suppose solution (b̂, ŵ, x̂, ŷ, Ẑ) satisfies (4a), (6) and (7). Consider scenarios sa, sb ∈ S such

that (sa, sb) ∈ L1+. We will prove that solution (b̂, ŵ, x̂, ŷ, Ẑ) satisfies (8) for (s, s′) = (sa, sb). The

theorem follows as a result.

By definition, t(sa, sb) = max
t

{t|t ∈ T , ξsa
τ = ξsb

τ ∀τ ∈ T , τ ≤ t}. If {t|t ∈ T , ξsa
τ = ξsb

τ ∀τ ∈

T , τ ≤ t} = ∅, then by convention t(sa, sb) = 0. Hence, (b̂, ŵ, x̂, ŷ, Ẑ) satisfies (8) vacuously for

(s, s′) = (sa, sb).

If {t|t ∈ T , ξsa
τ = ξsb

τ ∀τ ∈ T , τ ≤ t} 6= ∅, then t(sa, sb) ≥ 1. Since (b̂, ŵ, x̂, ŷ, Ẑ) satisfies (4a), (6)

and (7) and (sa, sb) ∈ L1+, therefore sub-vectors b̂sa , b̂sb , Ẑsa,sb satisfy (9)-(11) for (s, s′) = (sa, sb),

t̂ = min(T − 1, t(sa, sb)). (The equality constraint on variables b
(·)
i,t+1 inside (6) is applied only if

t ≤ T − 1. Hence, (b̂sa , b̂sb , Ẑsa,sb) is guaranteed to satisfy (10) only for t ≤ min(T − 1, t(sa, sb))).

Using result (c) of Proposition 1, we get

∧

i∈D(sa,sb)

[

t
∧

τ=1

(

¬b̂sa

i,τ

)

]

⇔
∧

i∈D(sa,sb)

[

t
∧

τ=1

(

¬b̂sb

i,τ

)

]

∀t ∈ T , t ≤ min(T − 1, t(sa, sb)) + 1

Since t(sa, sb) ≤ T , therefore min(T − 1, t(sa, sb)) + 1 = min(T, t(sa, sb) + 1) ≥ t(sa, sb). Hence,

∧

i∈D(sa,sb)

[

t
∧

τ=1

(

¬b̂sa

i,τ

)

]

⇔
∧

i∈D(sa,sb)

[

t
∧

τ=1

(

¬b̂sb

i,τ

)

]

∀t ∈ T , t ≤ t(sa, sb) (12)

Since sub-vectors b̂sa , b̂sb , Ẑsa,sb satisfy (7) for (s, s′) = (sa, sb), we can combine (7) with (12) to

infer that sub-vectors b̂sa , b̂sb , Ẑsa,sb satisfy (8). The result follows.

Proposition 2. Consider constraints (13)-(16) in variables b, x, y, Z defined over the tuple (s, s′, t)

bs
i,t = bs′

i,t ∀i ∈ I (13a)

ys
t = ys′

t (13b)

xs
t = xs′

t (14a)

bs
i,t+1 = bs′

i,t+1 ∀i ∈ I (14b)

ys
t+1 = ys′

t+1 (14c)

12















Zs,s′

t

xs
t = xs′

t

bs
i,t+1 = bs′

i,t+1 ∀i ∈ I if t ≤ T − 1

ys
t+1 = ys′

t+1 if t ≤ T − 1













∨
[

¬Zs,s′

t

]

(15)

Zs,s′

t ⇔
∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬bs
i,τ

)

]

(16)

If vectors b̂, x̂, ŷ, Ẑ satisfy

(i) Constraints (13a)-(13b) for (s, s′, t) such that s, s′ ∈ S, s < s′, t = 1

(ii) Constraint (14) for (s, s′, t) such that (s, s′) ∈ L0, t ∈ T , t ≤ t(s, s′)

(iii) Constraints (15)-(16) for (s, s′, t) such that (s, s′) ∈ L1
T , t ∈ T

then b̂, x̂, ŷ, Ẑ satisfy constraints (15)-(16) for (s, s′, t) such that (s, s′) ∈ L1+, t ∈ T , t ≤ t(s, s′).

Proof. See Appendix C (Based on Lemma 1, Appendix B).

Based on the above proposition, we define model P2 where (17) and (18) are applied instead of (6)

and (7), respectively. Also, (8) has been dropped.

(P2) φ = min
∑

s∈S

ps
∑

t∈T

(

wcs
tw

s
t + xcs

tx
s
t + ycs

ty
s
t +

∑

i∈I

bcs
i,tb

s
i,t

)

s.t. (3), (4), (5)












Zs,s′

t

xs
t = xs′

t

bs
i,t+1 = bs′

i,t+1 ∀i ∈ I if t ≤ T − 1

ys
t+1 = ys′

t+1 if t ≤ T − 1













∨
[

¬Zs,s′

t

]

∀(s, s′) ∈ L1
T , t ∈ T (17)

Zs,s′

t ⇔

[

t
∧

τ=1

(

¬bs
i,τ

)

]

∀(s, s′) ∈ L1
T , t ∈ T , {i} = D(s, s′)

(18)

ws
t ∈ Ws

t , xs
t ∈ X s

t , ys
t ∈ Ys

t , bs
i,t ∈ {0, 1} ∀s ∈ S, t ∈ T , i ∈ I

Zs,s′

t ∈ {True, False} ∀(s, s′) ∈ L1
T , t ∈ T

Theorem 2. If (b̂, ŵ, x̂, ŷ, Ẑ) is an optimal solution P1 then it is also an optimal solution of P2,

and vice versa.
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Proof. Since the objective functions of P1 and P2 are the same, it is sufficient to show that the

feasible regions of P1 and P2 are the same.

Suppose (b̂, ŵ, x̂, ŷ, Ẑ) is a feasible solution of P1. Compare models P1 and P2. Constraints (3)-(5)

are common to both models while disjunctions (17) and (6) differ only in the domain for (s, s′, t).

Constraint (18) differs from (7) in the domain for (s, s′, t) and in the right hand side of the logic

relationship.

Let F1 denote the domain of (s, s′, t) in (6)-(7) and let F2 denote the domain of (s, s′, t) in (17)-(18).

Thus,

F1 = {(s, s′, t)|(s, s′) ∈ L1+, t ∈ T , t ≤ t(s, s′)}

F2 = {(s, s′, t)|(s, s′) ∈ L1
T , t ∈ T }.

where,

L1
T = {(s, s′)|(s, s′) ∈ L1, t(s, s′) = T}

By definition,

L1
T ⊆ L1 ⊆ L1+.

Now,

F2 = {(s, s′, t)|(s, s′) ∈ L1
T , t ∈ T }

≡ {(s, s′, t)|(s, s′) ∈ L1
T , t ∈ T , t ≤ t(s, s′)} (since t(s, s′) = T for (s, s′) ∈ L1

T )

⊆ {(s, s′, t)|(s, s′) ∈ L1+, t ∈ T , t ≤ t(s, s′)} (since L1
T ⊆ L1+)

= F1

Also, |D(s, s′)| = 1 for (s, s′, t) ∈ F2. Therefore, the right hand side of (7) reduces to the right

hand side of (18). Since F2 ⊆ F1, therefore P2 is a relaxation of P1. Thus (b̂, ŵ, x̂, ŷ, Ẑ) should be

a feasible solution of P2.

Conversely, suppose (b̂, ŵ, x̂, ŷ, Ẑ) is a feasible solution of P2. Thus, (b̂, ŵ, x̂, ŷ, Ẑ) satisfies (3),

(4), (5), (17) and (18). Using Proposition 2 we can infer that (b̂, ŵ, x̂, ŷ, Ẑ) satisfies (6) and (7).

Further, using Theorem 1 we can infer that (b̂, ŵ, x̂, ŷ, Ẑ) satisfies (8). Thus, (b̂, ŵ, x̂, ŷ, Ẑ) is a

feasible solution of P1.

The following remarks can be made about the proposed model.

1. According to model P2, non-anticipativity constraints need to be applied for scenarios s

and s′ only if the scenarios either differ exclusively in realizations for exogenous uncertain

parameters, or differ exclusively in the realization of one endogenous uncertain parameter.

2. The “standard” stochastic programming formulation (1) is clearly a specific case of model P2

when there is only exogenous uncertainty (L1+ = L1
T = ∅).
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3. The proofs of Proposition 1, Theorem 1 and Theorem 2 are independent of the choice of

the set of scenarios. To illustrate the dependence of Proposition 2 on the set of scenarios,

consider indices sa, sb ∈ S such that the corresponding scenarios differ in the realizations of

r endogenous parameters, where r = |D(sa, sb)| ≥ 1. Broadly, Proposition 2, which is used

in Theorem 2, is based on the assumption that there exist indices s1, s2, . . . , sr ∈ S such

that (sa, s1), (s1, s2), (s2, s3), . . . , (sr−1, sr) ∈ L1
T while (sr, sb) ∈ L0. Proposition 2 is then a

result of the fact that the non-anticipativity constraints linking sa with sb are implied by the

“chaining” of non-anticipativity constraints linking sa with s1, s1 with s2, s2 with s3, . . .,

sr−1 with sr and sr with sb.

Since we choose the set of scenarios as Ξ × (×i∈IΘi), for any realization of the vector of

exogenous parameters ξ, the set of scenarios includes all possible combinations of realizations

for the endogenous parameters. Thus, we can generate r “intermediate” scenarios from sce-

nario sa by progressively changing the realization of one of the r distinguishing endogenous

parameters to the corresponding realization in scenario sb. The realizations of all exogenous

parameters in these r scenarios are identical to those in sa. Since sa ∈ S, these r scenar-

ios also belong to the set of scenarios. Thus, we can choose indices s1, s2, . . . , sr ∈ S for

these r scenarios. Hence, the non-anticipativity constraints for sa, sb follow by “chaining”, as

explained above.

4. The models and proofs presented here are based on the assumption that the endogenous

uncertainty associated with source i can be represented by one parameter. Thus, θi is a

scalar. To consider the more general case, suppose θi is an ni × 1 vector. For example, in

the gas field problem, the uncertainty in a field is represented by uncertainty in the size and

quality of the field. Therefore, in that problem ni = 2 for each field i.

If we choose the set of scenarios as Ξ × (×i∈IΘi), where (×i∈IΘi) represents all possible

combinations of realizations for vectors θi for all i, then we can again use the “chaining”

argument to prove that the solutions to models P1 and P2 are the same for

L1
T = {(s, s′)| s, s′ ∈ S, s < s′, t(s, s′) = T,

∃(i∗, l∗), i∗ ∈ I, l∗ ∈ {1, 2, . . . , ni∗} such that

θs
l∗,i∗ 6= θs′

l∗,i∗ ,

θs
l,i = θs′

l,i ∀l ∈ {1, 2, . . . , ni}, i ∈ I \ {i∗}}

However, stronger results may be obtained if the set of scenarios is chosen as Ξ×
(

×i∈I

(

×ni

l=1Θl,i

))

,

where Θl,i represents the set of possible realizations for endogenous uncertain parameter θl,i

associated with source i. The “chaining” argument can then be used to prove that the solu-

tions to models P1 and P2 are the same for

L1
T = {(s, s′)| s, s′ ∈ S, s < s′, t(s, s′) = T,
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∃(i∗, l∗), i∗ ∈ I, l∗ ∈ {1, 2, . . . , ni∗} such that

θs
l∗,i∗ 6= θs′

l∗,i∗ ,

θs
l,i∗ = θs′

l,i∗ ∀l ∈ {1, 2, . . . , ni∗} \ {l
∗},

θs
l,i = θs′

l,i ∀l ∈ {1, 2, . . . , ni}, i ∈ I \ {i∗}}

In other words, the disjunctive non-anticipativity constraints will need to be applied between

scenarios s, s′ only if the two scenarios differ in the realization of exactly one endogenous

scalar parameter, θl∗,i∗ for some source i∗ ∈ I.

5. In the present form, P2 has disjunctions and linear constraints linking Boolean, binary and

continuous variables. The model can be reformulated as a mixed integer linear program

by representing Boolean variables Zs,s′

t as 0-1 variables zs,s′

t and reformulating the logic con-

straints and disjunctions as linear constraints using big-M or convex hull reformulations (Balas

(1985), Turkay and Grossmann (1996)). It should be noted that if (18) is reformulated as

linear constraints, then variables zs,s′

t will satisfy the integrality condition even if they are

represented by continuous variables with bounds 0 ≤ zs,s′

t ≤ 1.

However, solving the MILP reformulation of P2 may be an inefficient approach for large

problems. In the next section, we present a specialized branch and bound algorithm motivated

by the work of Caroe and Schultz (1999).

8 Branch and bound algorithm

Model P2 is coupled in scenarios through the non-anticipativity constraints. In the proposed

branch and bound algorithm, lower bounds at each node are generated by solving a Lagrangean

dual problem which is obtained by relaxing the non-anticipativity constraints. Each sub-problem

in the Lagrangean dual problem corresponds to an MILP for one of the scenarios. An outline of

the proposed algorithm is presented in Fig. 2. P denotes the list of current problems together with

the associated lower bounds, φRLD, while φUB represents the objective value of the best feasible

solution obtained. The steps of the algorithm are explained in more detail below. For simplicity,

we assume that all integer components of variables xs
t and ys

t correspond to binary variables.
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Step 1 Initialization: φUB = ∞,P = {P2ref}.

Step 2 Termination: If P = ∅, stop. Current best solution is optimal.

Step 3 Node selection: Select and delete P from P. Solve relaxed Lagrangean dual of P to obtain the solution

(b̂, ŵ, x̂, ŷ, Ẑ) with objective value φRLD(P ). If the Lagrangean dual is infeasible, go to step 2. Set

φLB = φRLD(P ).

Step 4 Bounding: If φLB ≥ φUB , go to step 2 (This step can be carried out as soon as the value of the

Lagrangean dual goes above φUB).

Apply heuristic on solution (b̂, ŵ, x̂, ŷ, Ẑ) to generate feasible solution (b̄, w̄, x̄, ȳ, Z̄) with objective

value φ̄. If heuristic is successful, let φUB := max
(

φUB , φ̄
)

. Delete from P all problems P ′ with

φRLD(P ′) ≥ φUB .

If φLB ≥ φUB , go to step 2.

else, go to step 5.

Step 5 Branching: Execute step (a) or (b).

(a) On dualized equality constraints: Select (sa, s′a, ta) ∈ N e
P . Create problems P1, P2 identical to P .

Execute branching sub-step.

(b) On relaxed disjunctions: Select (sb, s
′

b, tb) ∈ N d
P . Create problems P1, P2, P3 identical to P .

Add restrictions Z
sb,s′

b

tb
= Z

s′

b
,sb

tb
= True to P1 and P2 and Z

sb,s′

b

tb
= Z

s′

b
,sb

tb
= False to P3,

respectively. For P1 and P2 update N e
(·) := N e

(·) ∪ (sb, s
′

b, tb),N
d
(·) := N d

(·) \ (sb, s
′

b, tb). Set

N d
P3

:= N d
P3

\ (sb, s
′

b, tb). Add P3 to P. Select (sa, s′a, ta) ∈ N e
P1

. Execute branching sub-step.

Branching sub-step:

If ta = 0, execute (ii) or (iii).

else if ta = T , execute (i).

else, execute any one of (i), (ii) and (iii).

(i) Select component xl,ta
of xta

.

If xl,ta
∈ {0, 1} Add bounds xsa

l,ta
, x

s′

a

l,ta
≥ 1 to P1 and xsa

l,ta
, x

s′

a

l,ta
≤ 0 to P2.

else Add bounds xsa

l,ta
, x

s′

a

l,ta
≥ x̃

sa,s′

a

l,ta
to P1 and xsa

l,ta
, x

s′

a

l,ta
≤ x̃

sa,s′

a

l,ta
to P2.

(ii) Select component yl,ta+1 of yta+1.

If yl,ta+1 ∈ {0, 1} Add bounds ysa

l,ta+1, y
s′

a

l,ta+1 ≥ 1 to P1 and ysa

l,ta+1, y
s′

a

l,ta+1 ≤ 0 to P2.

else Add bounds ysa

l,ta+1, y
s′

a

l,ta+1 ≥ ỹ
sa,s′

a

l,ta+1 to P1 and ysa

l,ta+1, y
s′

a

l,ta+1 ≤ ỹ
sa,s′

a

l,ta+1 to P2.

(iii) Select variable bi,ta+1.

Add bounds bsa

i,ta+1, b
s′

a

i,ta+1 ≥ 1 to P1 and bsa

i,ta+1, b
s′

a

i,ta+1 ≤ 0 to P2.

Add P1, P2 to P. Go to step 2.

Figure 2: Proposed branch and bound algorithm
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(P2ref ) φref = min
∑

s∈S

ps
∑

t∈T

(

wcs
tw

s
t + xcs

tx
s
t + ycs

ty
s
t +

∑

i∈I

bcs
i,tb

s
i,t

)

s.t. (3), (4), (5), (17), (18)

Zs′,s
t ⇔

[

t
∧

τ=1

(

¬bs′

i,τ

)

]

∀(s, s′) ∈ L1
T , t ∈ T , {i} = D(s, s′)

(19)

Zs′,s
t = Zs,s′

t ∀(s, s′) ∈ L1
T , t ∈ T (20)

ws
t ∈ Ws

t , xs
t ∈ X s

t , ys
t ∈ Ys

t , bs
i,t ∈ {0, 1} ∀s ∈ S, t ∈ T , i ∈ I

Zs,s′

t , Zs′,s
t ∈ {True, False} ∀(s, s′) ∈ L1

T , t ∈ T

We first illustrate the formulation of the Lagrangean dual for the problem at the root node. Model

P2ref is a reformulation of P2 obtained by introducing dummy variables Zs′,s
t for (s, s′) ∈ L1

T ,

t ∈ T . In P2ref , constraint (19) relates Zs′,s
t to variables bs′ while (18) relates Zs,s′

t to variables bs.

(20) represents the symmetry restriction on Zs,s′

t with respect to s, s′. From the proofs presented

in the previous section, it is clear that any solution of model P2 will also satisfy (19) and (20).

Therefore, the optimal solutions of P2 and P2ref will be the same and hence, φ = φref . While

(19) and (20) are redundant (as shown in Theorem 1), inclusion of these constraints in the model

tightens the Lagrangean dual and hence the lower bounds. A qualitative reasoning for the same

will be presented later in this section.

Model P2RLR is obtained from P2ref by relaxing disjunctions (17) and replacing equality con-

straints (4), (5) and (20) by penalty terms in the objective. Parameters bλs,s′

i,t , xλs,s′

t , yλs,s′

t and
zλs,s′

t represent Lagrange multipliers.

(P2RLR) φRLR(bλ, xλ, yλ, zλ) =

min
∑

s∈S

ps
∑

t∈T

(

wcs
tw

s
t + xcs

tx
s
t + ycs

ty
s
t +

∑

i∈I

bcs
i,tb

s
i,t

)

+
∑

s,s′∈S
s<s′

[

∑

i∈I

bλs,s′

i,0

(

bs
i,1 − bs′

i,1

)

+ yλs,s′

0

(

ys
1 − ys′

1

)

]

+
∑

(s,s′)∈L0

t(s,s′)
∑

t=1

(

∑

i∈I

bλs,s′

i,t

(

bs
i,t+1 − bs′

i,t+1

)

+ yλs,s′

t

(

ys
t+1 − ys′

t+1

)

+ xλs,s′

t

(

xs
t − xs′

t

)

)

+
∑

(s,s′)∈L1
T

∑

t∈T

zλs,s′

t

(

zs,s′

t − zs′,s
t

)

s.t. (3)

zs,s′

t ≤ 1 − bs
i,τ ∀(s, s′) ∈ L1

T , t ∈ T , {i} = D(s, s′), τ ∈ T , τ ≤ t (21a)
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zs,s′

t ≥ 1 −
∑

τ∈T
τ≤t

bs
i,τ ∀(s, s′) ∈ L1

T , t ∈ T , {i} = D(s, s′) (21b)

zs′,s
t ≤ 1 − bs′

i,τ ∀(s, s′) ∈ L1
T , t ∈ T , {i} = D(s, s′), τ ∈ T , τ ≤ t (22a)

zs′,s
t ≥ 1 −

∑

τ∈T
τ≤t

bs′

i,τ ∀(s, s′) ∈ L1
T , t ∈ T , {i} = D(s, s′) (22b)

ws
t ∈ Ws

t , xs
t ∈ X s

t , ys
t ∈ Ys

t , bs
i,t ∈ {0, 1} ∀s ∈ S, t ∈ T , i ∈ I

0 ≤ zs,s′

t , zs′,s
t ≤ 1 ∀(s, s′) ∈ L1

T , t ∈ T

Boolean variables Zs,s′

t have been replaced by continuous variables zs,s′

t . As explained in section 6,

variables zs,s′

t will take discrete values even if the integrality condition is not imposed. Constraints

(21a)-(21b) and (22a)-(22b) are linear algebraic formulations of (18) and (19) respectively. P2RLR

is therefore an MILP model and clearly a relaxation of P2ref (and hence of P2) for any values of

the Lagrange multipliers. Thus,

φRLR(bλ, xλ, yλ, zλ) ≤ φ ∀(bλ, xλ, yλ, zλ)

Further, P2RLR can be decomposed into one MILP sub-problem for each scenario. Note that

since the disjunctions have been completely relaxed, P2RLR is not the Lagrangean relaxation of

P2ref . Therefore, we refer to it as the “relaxed” Lagrangean relaxation of P2ref . Then, the relaxed

Lagrangean dual problem (Guignard and Kim (1987), Nemhauser and Wolsey (1988)) corresponding

to P2ref is

φRLD = max
bλ,xλ,yλ,zλ

φRLR

(

bλ, xλ, yλ, zλ
)

Clearly, φRLD gives a lower bound to φ. The solution of the Lagrangean dual may not satisfy

the relaxed disjunctions. The penalty term corresponding to (20) tries to force Zs,s′

t = Zs′,s
t and

hence

[

t
∧

τ=1

(

¬bs
i,τ

)

]

=

[

t
∧

τ=1

(

¬bs′

i,τ

)

]

for all (s, s′) ∈ L1
T , t ∈ T , {i} = D(s, s′). Since (s, s′) ∈ L1

T ,

therefore scenarios s, s′ differ only in realization for θi. Thus forcing decisions for source i to follow

non-anticipativity should force other decisions to follow non-anticipativity too. This motivates the

inclusion of (19) and (20) in model P2ref .

Lower bounds at each node are generated by solving one such Lagrangean dual problem. Model P

represents the problem at any node in the branch and bound tree.

(P ) φP = min
∑

s∈S

ps
∑

t∈T

(

wcs
tw

s
t + xcs

tx
s
t + ycs

ty
s
t +

∑

i∈I

bcs
i,tb

s
i,t

)

s.t. (3), (18), (19)
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xs
t = xs′

t if t > 0

bs
i,t+1 = bs′

i,t+1 ∀i ∈ I if t ≤ T − 1

ys
t+1 = ys′

t+1 if t ≤ T − 1











∀(s, s′, t) ∈ N e
P (23)













Zs,s′

t

xs
t = xs′

t

bs
i,t+1 = bs′

i,t+1 ∀i ∈ I if t ≤ T − 1

ys
t+1 = ys′

t+1 if t ≤ T − 1













∨
[

¬Zs,s′

t

]

∀(s, s′, t) ∈ N d
P (24)

Zs,s′

t = Zs′,s
t ∀(s, s′, t) ∈ N d

P (25)

ws
t ∈ Ws

t , xs
t ∈ X s

t,P , ys
t ∈ Ys

t,P , bs
i,t ∈ Bs

i,t,P ∀s ∈ S, t ∈ T , i ∈ I

Zs,s′

t , Zs′,s
t ∈ Zs′,s

t,P ∀(s, s′) ∈ L1
T , t ∈ T

N e
P represents the set of tuples (s, s′, t) for which equality non-anticipativity constraints link vari-

ables x
(·)
t , y

(·)
t+1 and b

(·)
i,t+1 for scenarios s, s′ in problem P . Similarly, N d

P represents the set of tuples

(s, s′, t) for which non-anticipativity constraints are applied in the form of disjunctions in problem

P . For example, for model P2ref

N e
P2ref

= {(s, s′, t)|(s, s′) ∈ L0, t ∈ T , t ≤ t(s, s′)} ∪ {(s, s′, 0)|s, s′ ∈ S, s < s′}.

N d
P2ref

= {(s, s′, t)|(s, s′) ∈ L1
T , t ∈ T }

X s
t,P , Ys

t,P , Bs
i,t,P and Zs,s′

t,P represent the bounds and domain restrictions on variables xs
t , ys

t , bs
i,t

and Zs,s′

t respectively, in model P . The (relaxed) Lagrangean relaxation problem corresponding to

P is obtained by relaxing all disjunctions for (s, s′, t) ∈ N d
P and replacing the symmetry conditions

on variables Zs,s′

t with respect to (s, s′) and the equality constraints corresponding to (s, s′, t) ∈ N e
P

by penalty terms in the objective function. The corresponding relaxed Lagrangean dual is solved

to obtain the lower bound for problem P .

In general, the solution of the Lagrangean dual may not satisfy the relaxed disjunctions and the

dualized equality constraints. Feasible solutions can be generated at each node by applying problem-

specific heuristics to the solution of the Lagrangean dual.

The branching step partitions the feasible space by branching on violated equality constraints and

disjunctions. The strategy used for branching on dualized equality constraints is similar to that

used by Caroe and Schultz (1999). Branching on equality constraints linking variables b
(·)
i,t , or the

binary components of variables x
(·)
t or y

(·)
t , across scenarios s, s′ is based on the standard dichotomy

branching strategy. When branching on constraint xs
l,t = xs′

l,t, where x
(·)
l,t is a continuous component

of x
(·)
t , the feasible space is partitioned about x̃s,s′

l,t = (psx̂s
l,t + ps′ x̂s′

l,t)/(ps + ps′), which is the mean

value of variables xs
l,t and xs′

l,t in the solution of the Lagrangean dual. The same strategy is used

for branching on equality constraints on continuous components of variables y
(·)
t .

20



When branching on a relaxed disjunction corresponding to (s, s′, t) ∈ N d
P , the feasible region is

bifurcated into regions where Zs,s′

t = Zs′,s
t = True and Zs,s′

t = Zs′,s
t = False, respectively. The set

of dualized equality constraints on the up-branch (Zs,s′

t = Zs′,s
t = True) is augmented by the set of

equality constraints inside the disjunction corresponding to (s, s′, t). Note that the solution of the

relaxed Lagrangean dual of problem P may be such that Ẑs,s′

t = Ẑs′,s
t = True. Thus, introducing

the restriction Zs,s′

t = Zs′,s
t = True may not alter the solution of the Lagrangean dual. Thus, the

first branch is further bifurcated to eliminate infeasibility in one of the violated equality constraints

(see branching sub-step in Fig. 2).

The problem at hand will govern the order in which the dualized equality constraints and the

relaxed disjunctions are chosen for branching. Although we do not mention this step in Fig. 2,

logic inferencing on Boolean and discrete variables can significantly impact the quality of the lower

bounds. In this algorithm, constraints (4a), (18) and (19) can be used for logic inferencing on

variables b and Z. For example, consider problem P with bound bs1

i1,1 ≤ 0. We can use (18) to

infer that Zs1,s2

1 = True for s2 such that D(s1, s2) = {i1}. The set of equality constraints (to be

dualized) can therefore be augmented as N e
P := N e

P ∪ (s1, s2, 1). Also, we can use (4a) to infer

that bs
i1,1 ≤ 0 ∀s ∈ S. These changes to problem P may impact the value of the Lagrangean dual

significantly. Therefore, it is important to use the logic inferencing step before the Lagrangean dual

is solved in step 3 of the algorithm.

It should be noted that if some components of variables xt and yt are continuous, then some stopping

criterion is needed to avoid infinite branching on these components. As explained by Caroe and

Schultz (1999), if the feasible region is bounded and if we branch parallel to the coordinate axes,

then we can stop after the l∞-diameter of the feasible sets of the sub-problems has fallen below a

certain threshold. The algorithm is then guaranteed to converge finitely.

9 Numerical results

In Example 1 we illustrate the advantage of our modeling approach compared to the expected value

solution approach. We also show the effect of the properties presented in section 7 on the size of

the MILP reformulation of the model. Example 2 presents computational results for the proposed

branch and bound algorithm. All problems are solved using ILOG CPLEX 9.0 on a Pentium-IV,

2.4 GHz Linux machine.

Example 1. Fig. 3 shows a process network that can be used to produce chemical A. The demand

for A has to be met in each time period over a ten time period time-horizon. Currently, A is being

produced in unit 3 from chemical B, which is purchased from the market. Units 1 and 2, which are

based on new technology can produce B from raw materials C and D, respectively, which can be
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Figure 3: Example 1

purchased from the market. If needed, A can also be purchased from the market. Also, inventory

of chemical A can be maintained.

Decisions to be made in each time period include selection of units to be installed or expanded

(variables b), capacities of units and feed flow rates (variables y), and purchase and sales to satisfy

demand of A (variables x).

The yields (tons of product per ton of raw material) of units 1 and 2 are uncertain. The uncertainty

in yield will be resolved only after the unit has been installed and operated for one time period.

Thus the optimization decisions will determine when this uncertainty is resolved. Hence the yield

uncertainty is endogenous.

In general, uncertainty in demand of chemical A can be the source of exogenous uncertainty.

However, for ease of illustration we do not consider exogenous uncertainty. Unit 3 is already

operational with an existing capacity of 3 tons/hour and known yield of 0.70. Possible realizations

for yield of unit 1 are 0.71 and 0.79, both possibilities being equally likely. Similarly, 0.65 and 0.85

are equally probable realizations for yield of unit 2. Note that the mean yield for both these units

is 0.75. However, the yield for unit 2 has greater variance.

For sake of brevity, we do not present the detailed formulation and the data for this example.

Interested readers may contact the authors. We compare the solution of the stochastic program

P2 with that obtained from the deterministic approach where the expected value problem is solved

and the solution implemented partially till some uncertainty is resolved. The deterministic model is

then updated and re-solved to obtain optimal decisions for the future. The solution of the expected

value problem proposes installation of unit 1 and expansion of unit 3 in time period 1 (Fig. 4(a)).

The approach proposes no more investments irrespective of the realization of yield for unit 1. The

expected cost for this solution is US $422,868.

The solution of P2 proposes the expansion of unit 3 and the installation of unit 2 with a small

capacity in time period 1 (Fig. 4(b)). Proposed investments in time period 2 are based on the

realization of yield of unit 2. If yield of unit 2 is found to be 0.85, that unit should be expanded

further in time period 2. Otherwise, unit 1 should be installed in time period 2. The expected cost

for this solution is US $409,222. Therefore, the value of stochastic solution for this problem is US
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Figure 4: Solutions for Example 1

P1 P2 % Reduction

Binary variables 240 240 0.00

Continuous variables 985 965 2.03

Constraints 3,853 2,601 32.49

CPU seconds 92 69 25.00

Table 1: Effect of Theorems 1 and 2 on size of MILP model for Example 1

$13,646.

The stochastic program realizes the “value of information” associated with the yield of unit 2.

Therefore, the solution proposes small investment to resolve the uncertainty in unit 2 and appro-

priate recourse is proposed based on the realization of yield for this unit. The reduction in expected

cost in excess of 3.2% is a result of this flexibility provided by the stochastic program.

Table 1 compares the big-M reformulations of models P1 and P2 in terms of their sizes. The CPU

time corresponds to the time required for these models to be solved using ILOG CPLEX 9.0. As

can be seen, Theorems 1 and 2 presented in section 7 lead to 32.49% reduction in the number of

constraints and hence 25% reduction in the solution time.

Example 2. We compare the performance of the proposed algorithm with the standard LP based

branch and bound algorithm applied to big-M formulations of four instances of the sizes problem (3).

The constraints represented by (3) for the sizes problem are presented in appendix D. The model

specifications for these problems are presented in Table 2, where I, T and S represent the number of

sizes, time periods and scenarios, respectively. Note that we only consider endogenous uncertainty

in problems A-D. Also, because the demands in each time period are fairly high (≈ 10, 000),

variables ys
i,t (number of units produced) and xs

i,i′,t (number of units substituted) are not restricted
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Problem

Name I T S Binary Continuous Constraints

variables variables

A 5 5 16 400 4,977 13,927

B 4 5 27 540 6,103 22,160

C 6 6 32 1,152 18,081 52,581

D 7 7 64 3,136 60,993 181,939

Table 2: Model specifications for sample problems in Example 2

Proposed Branch and Bound LP based Branch and Bound

After t CPU seconds After 2 · t CPU seconds After 10 · t CPU seconds

Best Best Best

Problem t Nodes sol. % Nodes sol. % Nodes sol. %

Name found gap found gap found gap

A 502 9 120,026 0.010 3,061 120,044 0.111 26,490 120,026 0.025

B 430 4 112,608 0.010 708 112,623 0.258 6,899 112,621 0.157

C 11,546 15 144,054 0.065 10,963 144,169 0.411 79,844 144,154 0.332

D 13,507 3 245,930 0.038 15,591 246,029 0.247 71,151 246,026 0.237

Table 3: Computational results for Example 2

to have integer values.

Table 3 compares the status of the proposed algorithm after t seconds with that of the standard LP

based branch and bound algorithm (ILOG CPLEX 9.0) after 2 · t and 10 · t CPU seconds. Clearly,

the LP based branch and bound is not able to obtain the same optimality gap even after one order

of magnitude more CPU time. Also, in comparable CPU time the proposed branch and bound

algorithm generates better feasible solutions. This can be attributed in part to the tighter lower

bounds obtained from the relaxed Lagrangean dual. Table 4 compares the lower bounds generated

by the two algorithms at the root node of the branch and bound tree. The gaps are calculated

relative to the best solution found (column 4 of Table 3).

We developed an object-oriented implementation for the proposed branch and bound algorithm

in C++. In our implementation, the Lagrangean dual problem at each node is solved using a

Problem Proposed algorithm ILOG CPLEX

Name Lower bound % Lower bound %

at root node gap at root node gap

A 120,003 0.019 119,770 0.213

B 112,595 0.012 112,240 0.327

C 143,742 0.217 143,466 0.408

D 245,403 0.214 245,341 0.239

Table 4: Comparison of lower bounds at root node in Example 2
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sub-gradient procedure (Fisher (1981)). This procedure is stopped if the bound does not improve

for a pre-specified number of iterations or if a total iteration limit is reached. At the root node,

the Lagrange multipliers are initialized to zero. At all other nodes, the Lagrange multipliers are

initialized to the optimal values at the parent node.

To generate feasible solutions, we apply a heuristic to the solution of the Lagrangean dual to

obtain values for binary variables such that all non-anticipativity constraints on these variables

are satisfied. The resulting LP is solved to generate feasible values for the continuous variables.

The next node to be solved in the branch and bound tree is chosen based on the best lower

bound rule. The dualized equality constraint with the highest penalty is chosen for branching. If

the corresponding penalty is less than a pre-specified value, the disjunction with the maximum

violation is selected for branching.

10 Conclusions

In this paper, we have addressed a class of stochastic programs where the optimization decisions

determine when uncertainty is resolved. This class of problems is especially relevant to real world

applications where the decision-maker has the option of obtaining information pro-actively by

making some investments. We have extended the stochastic programming modeling framework

by incorporating the interaction between the optimization decisions and the information discovery

process through the use of disjunctive programming. We have presented theoretical properties that

lead to significant reduction in the size of the proposed model. We have also presented a Lagrangean

duality based branch and bound algorithm to solve the model.

Results show that the inclusion of the option of getting information at the cost of investments leads

to significant improvements in the quality of the solution. Results presented for the branch and

bound algorithm show more than one order of magnitude reduction in solution time.
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A Proof of Proposition 1

Suppose vectors b̂s, b̂s′ , Ẑs,s′ satisfy (9)-(11).

Proof of (a). Consider t ∈ T , t ≤ t̂. Let

∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s
i,τ

)

]

= True.

⇒
∧

i∈D(s,s′)

[

t′
∧

τ=1

(

¬b̂s
i,τ

)

]

= True ∀t′ ∈ T , t′ ≤ t

Since t ≤ t̂ and (b̂s, b̂s′ , Ẑs,s′) satisfies (11), therefore,

Ẑs,s′

t′ = True ∀t′ ∈ T , t′ ≤ t

Using index τ instead of t′,

Ẑs,s′

τ = True ∀τ ∈ T , τ ≤ t

Using (10), we get

b̂s
i,τ+1 = b̂s′

i,τ+1 ∀i ∈ I, τ ∈ T , τ ≤ t

Also, from (9),

b̂s
i,τ = b̂s′

i,τ ∀i ∈ I, τ = 1
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Combining, we get

b̂s
i,τ = b̂s′

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t + 1

Thus,
∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s
i,τ

)

]

⇒
[

b̂s
i,τ = b̂s′

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t + 1
]

.

Proof of (b). Suppose

∧

i∈D(s,s′)





t̂+1
∧

τ=1

(

¬b̂s
i,τ

)



 = True.

⇒
∧

i∈D(s,s′)





t̂
∧

τ=1

(

¬b̂s
i,τ

)



 = True.

Now using the result of part (a), we get,

b̂s
i,τ = b̂s′

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t̂ + 1

Thus, for t = t̂ + 1,

∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s
i,τ

)

]

⇒
[

b̂s
i,τ = b̂s′

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t
]

.

Proof of (c). Consider t ∈ T , t ≤ t̂ + 1.

(⇒):

Suppose,
∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s
i,τ

)

]

= True

If t ≤ t̂, then from (a), we get

b̂s
i,τ = b̂s′

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t + 1

If t = t̂ + 1, then from (b), we get

b̂s
i,τ = b̂s′

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t

In either case, we have

b̂s
i,τ = b̂s′

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t
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Therefore,
∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s′

i,τ

)

]

= True

Thus,
∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s
i,τ

)

]

⇒
∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s′

i,τ

)

]

∀t ∈ T , t ≤ t̂ + 1 (A.1)

(⇐):

We prove the contra-positive of the converse. Suppose

∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s
i,τ

)

]

= False

Thus, there exists (i, τ) such that i ∈ D(s, s′), τ ∈ T , τ ≤ t for which b̂s
i,τ = 1. Define

τ∗ = min
τ

{τ |τ ∈ T , τ ≤ t such that ∃i ∈ D(s, s′), b̂s
i,τ = 1}

and

i∗ ∈ {i|i ∈ D(s, s′), b̂s
i,τ∗ = 1}

Case 1: τ∗ = 1. By definition of i∗ and τ∗, b̂s
i∗,τ∗ = 1. Thus, using (9) we get

b̂s
i∗,τ∗ = b̂s′

i∗,τ∗ = 1

Since τ∗ = 1 ≤ t and i∗ ∈ D(s, s′), therefore

∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s′

i,τ

)

]

= False (A.2)

Case 2: τ∗ > 1: By definition of τ∗, b̂s
i,τ = 0 ∀i ∈ D(s, s′), τ ∈ T , τ ≤ τ∗ − 1. Thus,

∧

i∈D(s,s′)

[

τ∗−1
∧

τ=1

(

¬b̂s
i,τ

)

]

= True (A.3)

Now, since 1 < τ∗ ≤ t ≤ t̂ + 1 and τ∗ ∈ T = {1, 2, . . . , T}, therefore 2 ≤ τ∗ ≤ t̂ + 1. Thus,

τ∗ − 1 ∈ T and 1 ≤ τ∗ − 1 ≤ t̂. Then, using the result of part (a) together with (A.3), we get

b̂s
i,τ = b̂s′

i,τ ∀i ∈ I, τ ∈ T , τ ≤ τ∗ (A.4)
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From definition of (i∗, τ∗), b̂s
i∗,τ∗ = 1. Using (A.4) we get b̂s′

i∗,τ∗ = 1. Now, since τ∗ ≤ t and

i∗ ∈ D(s, s′), therefore,

∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s′

i,τ

)

]

= False (A.5)

Combining results for (A.2) and (A.5), we get

¬





∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s
i,τ

)

]



 ⇒ ¬





∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s′

i,τ

)

]



 ∀t ∈ T , t ≤ t̂ + 1 (A.6)

Thus, from (A.1) and (A.6) we get

∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s
i,τ

)

]

⇔
∧

i∈D(s,s′)

[

t
∧

τ=1

(

¬b̂s′

i,τ

)

]

∀t ∈ T , t ≤ t̂ + 1

Proofs for (d) and (e). Follow directly by combining (c) with (a) and (b) respectively.

B Lemma 1

Lemma 1. Consider scenarios s0, s1, s2, . . . , sr ∈ S and time period t̂ ∈ T , t̂ ≤ T − 1. Suppose

vectors b̂, Ẑ are such that for k ∈ {0, 1, . . . , r − 1},

(i) If sk < sk+1, then sub-vectors b̂sk , b̂sk+1 , Ẑsk,sk+1 satisfy (9)-(11) for (s, s′) = (sk, sk+1)

(ii) If sk+1 < sk, then sub-vectors b̂sk+1 , b̂sk , Ẑsk+1,sk satisfy (9)-(11) for (s, s′) = (sk+1, sk).

Then, vector b̂ satisfies

r−1
∧

k=0





t
∧

τ=1





∧

i∈D(sk,sk+1)

(

¬b̂sk

i,τ

)







 ⇔
r−1
∧

k=0





t
∧

τ=1





∧

i∈D(sk,sk+1)

(

¬b̂s0

i,τ

)







 ∀t ∈ T , t ≤ t̂ + 1

Proof. Consider t ∈ T such that t ≤ t̂ + 1. We will first show that

t
∧

τ=1





∧

i∈D(sk,sk+1)

(

¬b̂sk

i,τ

)



 ⇒
[

b̂sk

i,τ = b̂
sk+1

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t
]

k = 0, 1, . . . , r − 1 (B.1)
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(B.1) will be used repeatedly in the proof of the Lemma.

If k ∈ {0, 1, . . . , r − 1} and sk < sk+1, then from condition (i) sub-vectors b̂sk , b̂sk+1 , Ẑsk,sk+1 satisfy

(9)-(11) for (s, s′) = (s1, s2). Hence, we can combine statements (a) and (b) of Proposition 1 to

get (B.1). On the other hand, if sk+1 < sk then from condition (ii), sub-vectors b̂sk+1 , b̂sk , Ẑsk+1,sk

satisfy (9)-(11) for (s, s′) = (sk+1, sk). Hence, in this case we can combine statements (d) and (e)

of Proposition 1 to infer (B.1). Thus, (B.1) holds for k ∈ {0, 1, . . . , r − 1} irrespective of whether

sk < sk+1 or sk+1 < sk. Now we prove the Lemma under consideration.

(⇒): Suppose

r−1
∧

k=0

[

t
∧

τ=1

(

∧

i∈D(sk,sk+1)

(

¬b̂sk

i,τ

)

)]

= True

⇒
t
∧

τ=1

(

∧

i∈D(sk,sk+1)

(

¬b̂sk

i,τ

)

)

= True ∀k ∈ {0, 1, . . . , r − 1}

Using (B.1), we get

b̂sk

i,τ = b̂
sk+1

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t, k ∈ {0, 1, . . . , r − 1}

Thus,

b̂s0

i,τ = b̂s1

i,τ = b̂s2

i,τ = · · · = b̂
sr−1

i,τ = b̂sr

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t

Using this in the hypothesis, we get

r−1
∧

k=0





t
∧

τ=1





∧

i∈D(sk,sk+1)

(

¬b̂s0

i,τ

)







 = True

(⇐): Suppose

r−1
∧

k=0





t
∧

τ=1





∧

i∈D(sk,sk+1)

(

¬b̂s0

i,τ

)







= True

⇒
t

∧

τ=1





∧

i∈D(sk,sk+1)

(

¬b̂s0

i,τ

)



 = True ∀k ∈ {0, 1, . . . , r − 1} (B.2)

Therefore,
t
∧

τ=1

(

∧

i∈D(s0,s1)

(

¬b̂s0

i,τ

)

)

= True. Hence, from (B.1) we get

b̂s0

i,τ = b̂s1

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t (B.3)

Replacing b̂s0

i,τ by b̂s1

i,τ in (B.2) we can infer that
t
∧

τ=1

(

∧

i∈D(s1,s2)

(

¬b̂s1

i,τ

)

)

= True. Once again, using

(B.1) we can infer that

b̂s1

i,τ = b̂s2

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t (B.4)
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Hence, combining (B.2), (B.3) and (B.4) we can infer that
t
∧

τ=1

(

∧

i∈D(s2,s3)

(

¬b̂s2

i,τ

)

)

= True. We

can continue the argument to show that,

b̂s0

i,τ = b̂s1

i,τ = b̂s2

i,τ = · · · = b̂sr

i,τ ∀i ∈ I, τ ∈ T , τ ≤ t

Using this in the hypothesis we get

r−1
∧

k=0





t
∧

τ=1





∧

i∈D(sk,sk+1)

(

¬b̂sk

i,τ

)







 = True

C Proof of Proposition 2

Proof. Suppose vectors b̂, x̂, ŷ, Ẑ satisfy (i)-(iii) in the condition of the proposition. Consider sce-

narios sa, sb such that

θsa

i = θsb

i i ∈ {1, 2, . . . , I − r}

θsa

i 6= θsb

i i ∈ {I − r + 1, I − r + 2, . . . , I}

Thus, D(sa, sb) = {I − r + 1, I − r + 2, . . . , I} and |D(sa, sb)| = r. We consider the case where

1 ≤ r = |D(sa, sb)| ≤ I. Without loss of generality, we assume that sa < sb and that sa, sb differ in

realizations for the last last r endogenous parameters.

Hence, (sa, sb) ∈ L1+. We will prove that vectors b̂, x̂, ŷ, Ẑ satisfy constraints (15)-(16) for (sa, sb, t)

such that t ∈ T , t ≤ t(sa, sb). Since (sa, sb) ∈ L1+, this will establish that (b̂, x̂, ŷ, Ẑ) satisfies

(15)-(16) for all (s, s′, t) such that (s, s′) ∈ L1+, t ∈ T , t ≤ t(s, s′). The result will follow.

Case 1: t(sa, sb) < T . Scenarios sa, sb differ in realizations of r endogenous parameters. We con-

struct r “intermediate” scenarios indexed by variable indices s1, s2, . . . , sr. These scenarios are

derived from scenario sa by progressively changing the realization of one of these r endogenous

parameters to the corresponding realization in scenario sb. For example, scenario s1 is identical to

scenario sa except that θs1

I−r+1 = θsb

I−r+1 6= θsa

I−r+1. Similarly, scenario s2 is identical to scenario sa

except that θs2

I−r+1 = θsb

I−r+1 6= θsa

I−r+1 and θs2

I−r+2 = θsb

I−r+2 6= θsa

I−r+2. Scenarios s1, s2, . . . , sr are

identical to scenario sa in terms of realizations for all exogenous parameters. Mathematically,

θs1

i = θsa

i ∀i ∈ I \ {I − r + 1}, θs1

i = θsb

i ∀i ∈ {I − r + 1}

θs2

i = θsa

i ∀i ∈ I \ {I − r + 1, I − r + 2}, θs2

i = θsb

i ∀i ∈ {I − r + 1, I − r + 2}
...

...
...

...
...

...

θsr

i = θsa

i ∀i ∈ I \ {I − r + 1, . . . , I}, θsr

i = θsb

i ∀i ∈ {I − r + 1, . . . , I}
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and

ξsk
t = ξsa

t ∀t ∈ T , k ∈ {1, 2, . . . , r}

Since we choose the set of scenarios as Ξ × (×i∈IΘi), therefore for any realization of the vector of

exogenous parameters, ξ = (ξ1, ξ2, . . . , ξT ), the set of scenarios includes scenarios corresponding to

all possible combinations of realizations for the endogenous parameters. Therefore, the constructed

scenarios corresponding to the indices s1, s2, . . . , sk belong to the set of scenarios. Therefore, we

can choose indices s1, s2, . . . , sk such that s1, s2, . . . , sk ∈ S.

By construction,

D(sa, s1) = {I − r + 1},D(s1, s2) = {I − r + 2}, . . . ,D(sr−1, sr) = {I}

and,

D(sr, sb) = ∅.

Therefore,

|D(sa, s1)| = |D(s1, s2)| = . . . = |D(sr−1, sr)| = 1

while

|D(sr, sb)| = 0.

Also, by construction, ξsa
t = ξsk

t ∀t ∈ T , k ∈ {1, 2, . . . , r}. Hence,

t(sa, s1) = t(s1, s2) = · · · = t(sr−1, sr) = T and

t(sr, sb) = t(sa, sb).

Consider scenarios sa and s1.

Case 1a: sa < s1. Since |D(sa, s1)| = 1 and t(sa, s1) = T , therefore (sa, s1) ∈ L1
T . Thus, from

condition (iii) of the statement of this proposition, we can infer that vectors b̂, x̂, ŷ, Ẑ) satisfy

(15)-(16) for (sa, s1, t), where t ∈ T . Since D(sa, s1) = {I − r + 1}, from (15) and (16) we have,

[

t
∧

τ=1

(

¬b̂sa

I−r+1,τ

)

]

⇒







x̂sa
t = x̂s1

t

b̂sa

i,t+1 = b̂s1

i,t+1 ∀i ∈ I if t ≤ T − 1

ŷsa

t+1 = ŷs1

t+1 if t ≤ T − 1






∀t ∈ T (C.1)

Case 1b: s1 < sa. In this case, (s1, sa) ∈ L1
T . Therefore from condition (iii) of the statement of

this proposition, we can infer that

[

t
∧

τ=1

(

¬b̂s1

I−r+1,τ

)

]

⇒







x̂sa
t = x̂s1

t

b̂sa

i,t+1 = b̂s1

i,t+1 ∀i ∈ I if t ≤ T − 1

ŷsa

t+1 = ŷs1

t+1 if t ≤ T − 1






∀t ∈ T (C.2)
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Also, since s1 < sa, therefore vectors b̂, x̂, ŷ, Ẑ satisfy (13a) for (s1, sa, t = 1). Thus, sub-vectors

b̂s1 , b̂sa , Ẑs1,sa satisfy (13a) for (s, s′, t) = (s1, sa, 1) and (15)-(16) for (s, s′) = (s1, sa), t ∈ T . Thus,

sub-vectors b̂s1 , b̂sa , Ẑs1,sa satisfy (9)-(11) for (s, s′, t̂) = (s1, sa, T − 1). Thus, using D(sa, s1) =

{I − r + 1} in statement (c) of Proposition 1, we get
[

t
∧

τ=1

(

¬b̂s1

I−r+1,τ

)

]

⇔

[

t
∧

τ=1

(

¬b̂sa

I−r+1,τ

)

]

∀t ∈ T , t ≤ t̂ + 1 = T (C.3)

Combining (C.1)-(C.3), we obtain that irrespective of whether sa < s1 or s1 < sa,

[

t
∧

τ=1

(

¬b̂sa

I−r+1,τ

)

]

⇒







x̂sa
t = x̂s1

t

b̂sa

i,t+1 = b̂s1

i,t+1 ∀i ∈ I if t ≤ T − 1

ŷsa

t+1 = ŷs1

t+1 if t ≤ T − 1






∀t ∈ T (C.4)

Since

|D(s1, s2)| = |D(s2, s3)| = · · · = |D(sr−1, sr)| = 1,

t(s1, s2) = t(s2, s3) = · · · = t(sr−1, sr) = T,

and

D(s1, s2) = {I − r + 2},D(s2, s3) = {I − r + 3}, . . . ,D(sr−1, sr) = {I},

we can use the same logic as above to prove that

[

t
∧

τ=1

(

¬b̂s1

I−r+2,τ

)

]

⇒







x̂s1

t = x̂s2

t

b̂s1

i,t+1 = b̂s2

i,t+1 ∀i ∈ I if t ≤ T − 1

ŷs1

t+1 = ŷs2

t+1 if t ≤ T − 1






∀t ∈ T (C.5)

...
...

...
[

t
∧

τ=1

(

¬b̂
sr−1

I,τ

)

]

⇒







x̂
sr−1

t = x̂sr
t

b̂
sr−1

i,t+1 = b̂sr

i,t+1 ∀i ∈ I if t ≤ T − 1

ŷ
sr−1

t+1 = ŷsr

t+1 if t ≤ T − 1






∀t ∈ T (C.6)

Also, |D(sr, sb)| = 0. Therefore, depending on whether sr < sb or sb < sr, either (sr, sb) ∈ L0 or

(sb, sr) ∈ L0. In either case, from condition (ii) of this proposition we have

x̂sr
t = x̂sb

t

b̂sr

i,t+1 = b̂sb

i,t+1 ∀i ∈ I

ŷsr

t+1 = ŷsb

t+1











∀t ∈ T , t ≤ t(sr, sb)

Now since t(sr, sb) = t(sa, sb), therefore replacing t(sr, sb) by t(sa, sb) we get

x̂sr
t = x̂sb

t

b̂sr

i,t+1 = b̂sb

i,t+1∀i ∈ I

ŷsr

t+1 = ŷsb

t+1











∀t ∈ T , t ≤ t(sa, sb) (C.7)
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Combining (C.4)-(C.7), we get

t
∧

τ=1

[(

¬b̂sa

I−r+1,τ

)

∧
(

¬b̂s1

I−r+2,τ

)

∧
(

¬b̂s2

I−r+3,τ

)

∧ · · · ∧
(

¬b̂
sr−1

I,τ

)]

⇒







x̂sa
t = x̂s1

t = · · · = x̂sr
t = x̂sb

t

b̂sa

i,t+1 = b̂s1

i,t+1 = · · · = b̂sr

i,t+1 = b̂sb

i,t+1 ∀i if t ≤ T − 1

ŷsa

t+1 = ŷs1

t+1 = · · · = ŷsr

t+1 = ŷsb

t+1 if t ≤ T − 1






∀t ∈ T , t ≤ t(sa, sb)(C.8)

We complete the proof using Lemma 1. To streamline the use of Lemma 1, we will refer to sa

as s0. By construction, |D(sk, sk+1)| = |D(sk+1, sk)| = 1 and t(sk, sk+1) = t(sk+1, sk) = T for

k ∈ {0, 1, . . . , r − 1}. Thus, from conditions (i) and (iii) of this proposition,

(a) If sk < sk+1, then (sk, sk+1) ∈ L1
T . Hence, vectors b̂, x̂, ŷ, Ẑ satisfy (13a) for (s, s′, t) =

(sk, sk+1, 1) and (15)-(16) for (s, s′) = (sk, sk+1), t ∈ T .

(b) If sk+1 < sk, then (sk+1, sk) ∈ L1
T . Hence, vectors b̂, x̂, ŷ, Ẑ satisfy (13a) for (s, s′, t) =

(sk+1, sk, 1) and (15)-(16) for (s, s′) = (sk+1, sk), t ∈ T .

Thus, choosing t̂ = T − 1 for k ∈ {0, 1, . . . , r − 1},

(a) If sk < sk+1, then sub-vectors b̂sk , b̂sk+1 , Ẑsk,sk+1 satisfy (9)-(11) for (s, s′) = (sk, sk+1).

(b) If sk+1 < sk, then sub-vectors b̂sk+1 , b̂sk , Ẑsk+1,sk satisfy (9)-(11) for (s, s′) = (sk+1, sk).

Thus, using Lemma 1 for t̂ = T − 1 together with

D(sa, s1) = {I − r + 1},D(s1, s2) = {I − r + 2},D(s2, s3) = {I − r + 3}, . . . ,D(sr−1, sr) = {I},

and s0 ≡ sa, we get

t
∧

τ=1

[(

¬b̂sa

I−r+1,τ

)

∧
(

¬b̂s1

I−r+2,τ

)

∧
(

¬b̂s2

I−r+3,τ

)

∧ · · · ∧
(

¬b̂
sr−1

I,τ

)]

⇔

t
∧

τ=1

[(

¬b̂sa

I−r+1,τ

)

∧
(

¬b̂sa

I−r+2,τ

)

∧
(

¬b̂sa

I−r+3,τ

)

∧ · · · ∧
(

¬b̂sa

I,τ

)]

∀t ∈ T (C.9)

Combining (C.8) and (C.9) together with the fact that D(sa, sb) = {I − r + 1, I − r + 2, . . . , I}, we

get

∧

i∈D(sa,sb)

[

t
∧

τ=1

(

¬b̂sa

i,τ

)

]

⇒







x̂sa
t = x̂sb

t

b̂sa

i,t+1 = b̂sb

i,t+1 ∀i ∈ I if t ≤ T − 1

ŷsa

t+1 = ŷsb

t+1 if t ≤ T − 1






∀t ∈ T , t ≤ t(sa, sb)(C.10)

which is simply the re-statement of (15)-(16) for scenario pair (sa, sb).
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Case 2: t(sa, sb) = T . The line of reasoning used above can be used in this case also. However, by

construction above, D(sr, sb) = ∅ and t(sa, sr) = T . Since t(sa, sb) = T in this case, therefore we

will have t(sr, sb) = T and D(sr, sb) = ∅. Thus, scenarios sr, sb are identical; i.e.,

(ξsr

1 , ξsr

2 , . . . , ξsr

T , θsr

1 , θsr

2 , . . . , θsr

I ) ≡ (ξsb

1 , ξsb

2 , . . . , ξsb

T , θsb

1 , θsb

2 , . . . , θsb

I ).

Thus, we can replace sr by sb in the above proof and use (C.4), (C.5) and (C.6) to obtain (C.8)

(without using (C.7)). As in the previous case, Lemma 1 can then be used to obtain (C.10).

Since all we assumed about sa, sb was that |D(sa, sb)| ≥ 1, we can say that vectors b̂, x̂, ŷ, Ẑ satisfy

(15)-(16) for all (s, s′, t) such that (s, s′) ∈ L1+, t ∈ T , t ≤ t(s, s′).

D Sizes problem: Objective function and constraints represented

by (3)

In the sizes problem, I represents the set of sizes to be produced. We assume that this set is

ordered such that if i, i′ ∈ I and i > i′ then the size corresponding to index i is larger than the

size corresponding to index i′. Hence, delivery of size i can satisfy demand for size i′. Variable bs
i,t

represents whether size i is produced in time period t of scenario s. Variable ys
i,t represents the

number of units of size i produced in time period t while xs
i,i′,t represents the number of units of

size i used to satisfy demand of size i′, where i ≥ i′. ws
i,t represents the inventory of size i at the

end of time period t.

In the case of the sizes problem, parameters wcs
t ,

bcs
i,t,

xcs
t and ycs

t represent variable inventory

costs, fixed production costs, variable substitution costs and variable production costs, respectively.

Constraint (3) is represented by (D.1)-(D.7). (D.1) and (D.2) represent variable lower and upper

bound constraints respectively, on ys
i,t. (D.3) represents the constraint that production in any

time period should not exceed the total production capacity, represented by α. Constraint (D.4)

represents the constraint that demands (represented by ξs
i′,t) of all sizes should be satisfied in all

time periods. (D.5) computes the inventory for each size at the end of a time period while (D.6)

restricts the total inventory at the end of any time period to be not greater than the inventory

capacity, represented by β.

ys
i,t ≥

yLi · b
s
i,t ∀s ∈ S, t ∈ T , i ∈ I (D.1)

ys
i,t ≤

yU s
i,t · b

s
i,t ∀s ∈ S, t ∈ T , i ∈ I (D.2)

∑

i∈I

ys
i,t ≤ α ∀s ∈ S, t ∈ T (D.3)

∑

i∈I,i≥i′

xs
i,i′,t ≥ ξs

i′,t ∀s ∈ S, t ∈ T , i′ ∈ I (D.4)
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∑

τ∈T ,
τ≤t



ys
i,τ −

∑

i′∈I,i≥i′

xs
i,i′,τ



 = ws
i,t ∀s ∈ S, t ∈ T , i ∈ I (D.5)

∑

i∈I

ws
i,t ≤ β ∀s ∈ S, t ∈ T (D.6)

ws
i,t ≥ 0 ∀s ∈ S, t ∈ T , i ∈ I (D.7)

Note that the LP relaxation of the model can be tightened by adding constraints (D.8)-(D.10) which

exploit a Krarup and Bilde (1977) type dis-aggregation of variables xs
i,i′,t into variables x2s

i,i′,τ ,t for

τ ≤ t. Physically, variable x2s
i,i′,τ ,t represents the number of items of size i produced in time period

τ used to satisfy demand of size i′ (≤ i) in time period t (≥ τ). (D.8) relates variables xs
i,i′,t

to dis-aggregated variables x2s
i,i′,τ ,t, while (D.9) represents variable upper bound constraints on

the dis-aggregated variables. (D.10) represents the condition that consumption of any size cannot

exceed the production.

xs
i,i′,t =

∑

τ∈T ,τ≤t

x2s
i,i′,τ ,t∀s ∈ S, t ∈ T ; i, i′ ∈ I, i ≥ i′ (D.8)

x2s
i,i′,τ ,t ≤

x2U s
i,i′,τ ,t · b

s
i,τ ∀s ∈ S; τ , t ∈ T , τ ≤ t; i, i′ ∈ I, i ≥ i′ (D.9)

∑

t∈T ,
t≥τ

∑

i′∈I,
i≥i′

x2s
i,i′,τ ,t ≤ ys

i,τ ∀s ∈ S, τ ∈ T , i ∈ I (D.10)

Results presented in section 9 are obtained by using constraints (D.1)-(D.10). Note that Jonsbraten

et al. (1998) do not consider the variable dis-aggregation and the capacity constraint on total

inventory (D.6).
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