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A CLASS OF STRONGLY COOPERATIVE SYSTEMS
WITHOUT COMPACTNESS

BY

JANUSZ M I E R C Z Y Ń S K I (WROC LAW)

We consider a system of ordinary differential equations (ODE’s)

(1) ẋ = F (x), x ∈ P ⊂ Rn, x = (x1, . . . , xn), F = (F1, . . . , Fn) ,

where P is open and F : P → Rn is a C1 vector field. System (1) is called
strongly cooperative if at each x ∈ P , (∂Fi/∂xj)(x) > 0 for i 6= j. For a
survey the reader is referred to [S].

Strongly cooperative systems of ODE’s have many interesting properties.
To formulate them it is necessary to introduce some notation:

For x, y ∈ P we write

x ≤ y if xi ≤ yi for all i,
x < y if x ≤ y and x 6= y,
x � y if xi < yi for all i.

Since F is C1, it generates on P a local flow of class C1, denoted by
ϕt (this means that ϕt(x) is the value taken on at time t by the solution
to (1) passing through x ∈ P at 0). A theorem due to Müller and Kamke
states that for a strongly cooperative system defined on an open convex P
the resulting local flow ϕt is strongly monotone, which means that x < y
implies ϕt(x) � ϕt(y) for t > 0 as long as both exist. The reader interested
in an abstract theory of strongly monotone (semi)flows is referred to [H2]
and [ST].

A most important feature of strongly cooperative systems of ODE’s is a
strong tendency for their trajectories to converge to an equilibrium. More
precisely, if for each x ∈ P its forward semitrajectory has compact closure
in P , then the set of points convergent to a stable equilibrium is open dense
in P (cf. [H2] and [P]).

Results so far published on asymptotic behavior of (the majority of) for-
ward semitrajectories for strongly cooperative systems have been formulated
and proved under the assumption that (some of) the forward semitrajecto-
ries under consideration have compact closures. On the contrary, in the
present note we require no compactness hypotheses (except, of course, local
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compactness of the ambient Euclidean space Rn). Our Main Theorem is
a generalization of the author’s previous result, formulated without proof
in [M2]; compare also [M1]. No knowledge of the latter papers is needed,
however, for reading this note.

By a first integral for (1) we mean a C1 function H : P → R such that
〈gradH(x), F (x)〉 = 0 at each x ∈ P , where 〈 , 〉 stands for the standard
inner product in Rn and gradH is the vector with components ∂H/∂xi.

In the sequel, the letters x, y etc. represent points in P , whereas the
letters u, v etc. represent tangent vectors. A vector is called nonnegative
(resp. positive) if all its components are nonnegative (resp. positive). The
set of nonnegative (resp. positive) vectors is denoted by C (resp. C◦).

The remaining part of the note is devoted to the proof of the following

Main Theorem. Assume that (1) is a strongly cooperative system of
ODE’s admitting a first integral with positive gradient. Then any forward
semitrajectory either leaves every compact contained in P or converges to
an equilibrium.

For x ∈ P consider the system of nonautonomous linear ODE’s:

(2) v̇i =
n∑

j=1

(∂Fi/∂xj)(ϕt(x)) · vj .

The systems (1)+(2) generate a local flow φt on the tangent bundle P ×Rn.
The flow φt can be written in the form

φt(x, v) = (ϕt(x), ζ(t, x)v) ,

where ζ(t, x) is the corresponding transition operator for (2).

Proposition 1. Let (1) be a strongly cooperative system of ODE’s. Then
for each x ∈ P , t > 0 such that ϕt(x) exists, the inclusion ζ(t, x)(C \{0}) ⊂
C◦ holds.

P r o o f. This is a particular case of Thm. 1.1(b) in [H1].

By definition, the level sets of the first integral H are invariant. The
positivity of gradH implies that each level set of H is an (n−1)-dimensional
C1 submanifold of P .

For the rest of the proof of Main Theorem let a level set L of H be fixed.
The tangent bundle of L is denoted by TL. We have

TL = {(x, v) : 〈gradH(x), v〉 = 0, x ∈ L} .

In particular, {(x, F (x)) : x ∈ L} ⊂ TL. A Finsler structure on TL is given
by a continuous mapping

TL 3 (x, v) 7→ |v|x ∈ R+
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such that for each x ∈ L the mapping | |x is a norm on the subspace

Sx := {v ∈ Rn : 〈gradH(x), v〉 = 0} .

Define Ux := {v ∈ Rn : 〈gradH(x), v〉 = 1}. Since H is a first integral,
we have

(3) Uϕt(x) = ζ(t, x)Ux for x ∈ L, t ∈ R such that ϕt(x) exists .

Further, set Ax := C ∩ Ux, A◦
x := C◦ ∩ Ux. Proposition 1 and (3) yield

(4) ζ(t, x)Ax ⊂ A◦
ϕt(x) for x ∈ L, t ∈ R such that ϕt(x) exists .

It is straightforward that Ax is the (n−1)-dimensional simplex whose vertex
lying on the ith coordinate axis has coordinate equal to the reciprocal of
(∂H/∂xi)(x). Finally, define

Bx := Ax −Ax := {u ∈ Rn : u = v − w, v, w ∈ Ax} .

Lemma 1. For each x ∈ L the set Bx constructed above has the following
properties:

(a) Bx is a relative neighborhood of 0 in Sx,
(b) Bx is compact , convex and balanced ,
(c) Bx is a (convex ) polyhedron.

P r o o f. (a) First, let Bx 3 u = v−w, v, w ∈ Ax. We have 〈gradH(x), u〉
= 〈gradH(x), v〉 − 〈gradH(x), w〉 = 1− 1 = 0. This shows that Bx ⊂ Sx.

Further, fix some v ∈ A◦
x. We have

Ax − v ⊂ Bx .

The convex set Ax − v has dimension n − 1, so Bx ⊂ Sx has the same
dimension. Moreover, since v ∈ A◦

x (= the relative interior of Ax in Ux), its
translate 0 = v− v belongs to the relative interior of Ax− v in Sx = Ux− v,
hence to the relative interior of Bx in Sx.

(b) and (c). These are propositions in the theory of convex sets (see e.g.
Theorems 8.1 and 8.6 in [L]).

For any x ∈ L define a norm on Sx as

(5) |u|x := inf{λ ≥ 0 : u ∈ λBx} .

In order to show that the mapping (x, u) 7→ |u|x is a Finsler structure
it is necessary and sufficient to ensure that | |x and the Euclidean norm
are equivalent uniformly in x in compact sets. This is established by the
following

Lemma 2. Let | |x be the family of norms defined by (5) and let ‖ ‖ be
the Euclidean norm. Then for any compact K ⊂ L we can find positive
constants d ≤ D such that for every x ∈ K, u ∈ Sx

d|u|x ≤ ‖u‖ ≤ D|u|x .
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P r o o f. For x ∈ K we define dx to be the Euclidean distance between 0
and the relative boundary of Bx in Sx, and Dx to be the maximum Euclidean
norm of vertices of Bx. Evidently for u ∈ Sx, dx|u|x ≤ ‖u‖ ≤ Dx|u|x. From
the continuous dependence of vertices of the polyhedra Bx on x it follows
that the assignments x 7→ dx and x 7→ Dx are continuous. Now it suffices
to take d := inf{dx : x ∈ K}, D := sup{Dx : x ∈ K}.

Proposition 2. Assume that (1) is a strongly cooperative system of
ODE’s admitting a first integral with positive gradient. Then for each x ∈ P ,
each t > 0 such that ϕt(x) exists, and each u ∈ Sx \ {0} we have

|ζ(t, x)u|ϕt(x) < |u|x .

P r o o f. Assume |u|x = 1. This means that u belongs to the relative
boundary of Bx in Sx. By (4)

ζ(t, x)Bx = ζ(t, x)Ax − ζ(t, x)Ax ⊂ A◦
ϕt(x) −A◦

ϕt(x) .

The last set lies in the relative interior of Bϕt(x) in Sϕt(x), so |ζ(t, x)u|ϕt(x) <
1.

Now, our Main Theorem will be a consequence of the following abstract
result, which can be regarded as a form of the Invariance Principle.

Proposition 3. Let F be a C1 vector field on a manifold L, generating
a local flow ϕt with derivative φt. Assume that there is a Finsler structure
| | on the tangent bundle TL of L such that for any nonzero v ∈ TL one has
|φtv| < |v| for all t > 0 such that φtv exists. Then any forward semitrajec-
tory of ϕt either leaves every compact set or converges to an (exponentially
asymptotically stable) equilibrium.

P r o o f. The assertion of the proposition is equivalent to saying that for
any x ∈ L its ω-limit set ω(x) is either empty or a singleton {y} such that
y is exponentially asymptotically stable.

First, suppose that some ω(x) contains a point y which is not an equi-
librium. Choose T > 0 such that ϕT (y) 6= y, and two neighborhoods, M of
y and N of ϕT (y), such that sup{|F (z)| : z ∈ N} < inf{|F (z)| : z ∈ M}.
Since y, ϕT (y) ∈ ω(x), there are t1, t2 > t1+T such that ϕt1(x), ϕt2(x) ∈ M ,
ϕt1+T (x), ϕt2+T (x) ∈ N . By the choice of M and N we have |F (ϕt2(x))| >
|F (ϕt1+T (x))|. But from the assumptions of the proposition it follows that

|F (ϕt2(x))| = |φt2−t1+T F (ϕt1+T (x))| < |F (ϕt1+T (x))| .
We have thus proved that any nonempty ω-limit set consists entirely of

equilibria. Now, let y ∈ ω(x) be an equilibrium, and let v be a nonzero vector
tangent at y. We have |φ1v| < |v|, so the spectral radius of φ1, considered
a linear operator from the tangent space at y into itself, is less than 1.
Therefore y is exponentially asymptotically stable, hence ω(x) = {y}.
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