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Abstract. A well known result of Schur states that if n is a positive integer and

a0, a1, . . . , an are arbitrary integers with a0an coprime to n!, then the polynomial

fn(x) = an
xn

n!
+an−1

xn−1

(n−1)!
+ . . .+a1x+a0 is irreducible over the field Q of rational

numbers. In case each ai = 1, it is known that the Galois group of fn(x) over

Q contains An, the alternating group on n letters. In this paper, we extend this

result to a larger class of polynomials fn(x) which leads to the construction of

trinomials of degree n for each n with Galois group Sn, the symmetric group on

n letters.
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1 Introduction

In 1929, Schur [11] proved that the polynomial

fn(x) = an
xn

n!
+ an−1

xn−1

(n− 1)!
+ . . . + a1x + a0, ai ∈ Z, (a0an, n!) = 1 (1)

is irreducible over the field Q of rational numbers. In 1930, he further showed

that the Galois group of the nth Taylor polynomial of the exponential function

given by
xn

n!
+

xn−1

(n− 1)!
+ . . . + x + 1

contains An, the alternating group on n letters for every n (see [12]). In this

paper, we extend the above mentioned result of Schur to polynomials fn(x)

defined by (1). Precisely stated, we prove

Theorem 1.1. Let n > 4 and a0, a1, . . . , an be integers with a0an coprime to

n!. Assume that there exists a prime p not dividing ap such that n
2

< p < n if

n 6 7 and n
2

< p < n − 2 if n > 8. Then the Galois group of the polynomial

fn(x) = an
xn

n!
+ an−1

xn−1

(n−1)!
+ . . . + a1x + a0 over Q contains An for n 6= 6.

It is shown that the above theorem leads to a class of trinomials of degree n

for each n with Galois group Sn, the symmetric group on n letters. Examples

of trinomials with Galois group Sn occur in [1], [7] and [9]. These do not cover

the class of trinomials given by the following theorems; moreover our method of

constructing such trinomials is quite different.

Theorem 1.2. Let n > 4 be an integer and p be a prime such that n/2 <

p < n, if n 6 7 and n/2 < p < n − 2 for n > 8. Let A, B be integers such

that A is not divisible by p and B is coprime to n!A. If the absolute value of

Bn−p + (−1)n+1(n−p
p

)n−p(n!)pAn is not the square of an integer, then the Galois

group of the trinomial gn(x) = xn +
n!

p
nAxp + n!B over Q is Sn.

The following corollaries will be quickly deduced from the above theorem.

Corollary 1.3. Let n > 4 and p be as in the above theorem. Let A, B be integers

such that A is not divisible by p and B is coprime to n!A. Then the Galois group

of the trinomial gn(x) = xn +
n!

p
nAxp +n!B over Q is Sn, if one of the following

conditions is satisfied.
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(i) n is even and B 6≡ ±1(mod 8).

(ii) n is odd, A is positive and there exists a prime p′ dividing B such that n!A

is a quadratic non-residue modulo p′.

Corollary 1.4. Let A be an integer not divisible by 35. Then the Galois group

of the trinomial t6(x) = x6 + 864Ax5 + 720 is S6.

The theorem stated below to be proved in the last section gives another class

of trinomials over Q with Galois group Sn.

Theorem 1.5. Let n > 4 be an integer and p be a prime such that n/2 < p < n,

if n 6 7 and n/2 < p < n− 2 for n > 8. Let A and B be integers such that A is

not divisible by p and B is coprime to n!. Then the following hold

(i) If n ≡ 2(mod 4), n 6= 6 and Bn−p > ((n − p)/p)n−p(n!)p, then the Galois

group of hn(x) = xn +
n!

p
nxp + n!B over Q is Sn.

(ii) If n 6≡ 2(mod 4) and (−1)
n−1

2 An < 0 in case n is odd, then the Galois group

of tn(x) = xn +
n!

p
nAxp + n! over Q is Sn.

2 Preliminary results

Let K be a field equipped with a real valuation v and let f(x) = anxn+an−1x
n−1+

. . . + a1x + a0 be a polynomial over K with a0an 6= 0. Let Pi stand for the point

in the plane having coordinates (i, v(an−i)) with an−i 6= 0, 0 6 i 6 n. Let µij

denote the slope of the line joining the points Pi and Pj when an−ian−j 6= 0. Let

i1 be the largest index 0 < i1 6 n such that

µ0i1 = min{ µ0j | 0 < j 6 n, an−j 6= 0}.
If i1 < n, let i2 be the largest index such that i1 < i2 6 n and

µi1i2 = min{ µi1j | i1 < j 6 n, an−j 6= 0}
and so on. The Newton polygon of f(x) with respect to v is the polygonal line

having segments P0Pi1 , Pi1Pi2 , . . . , Pik−1
Pik with ik = n.

We shall use the following well known result regarding Newton polygons (see

[10, 5.1.F]).

Theorem 2.A. Let K be a field complete with respect to a real valuation v and

f(x) = anx
n + an−1x

n−1 + . . . + a1x + a0 be a polynomial over K with a0an 6= 0.

Let w be the extension of v to the splitting field of f(x) over K. Let µ be the

3



slope of an edge of the Newton polygon of f(x) with respect to v. Then there

exists a root α of f(x) with w(α) = µ.

The results stated below regarding transitive subgroups of Sn will be used in

the sequel (see [5, Theorems 5.6.2, 5.7.2] for Theorem 2.B and [13, Lemma 4.4.3]

for Theorem 2.C).

Theorem 2.B. Let G be a transitive subgroup of Sn, n > 8 which contains a

p-cycle for some prime p strictly between n/2 and n− 2. Then G contains An.

Theorem 2.C. If a transitive subgroup G of Sn contains a transposition and a

(n− 1)-cycle, then G = Sn.

We shall use the following result of Swan regarding the discriminant of trino-

mials (cf. [14, Theorem 2]).

Theorem 2.D. Let n > k > 0 be integers. Let d = (n, k) and n = n1d, k = k1d.

Then the discriminant of the trinomial f(x) = xn +axk +b with coefficients from

any field is

(−1)
n(n−1)

2 bk−1[nn1bn1−k1 + (−1)n1+1(n− k)n1−k1kk1an1 ]d.

Arguing as in the proof of [4, Lemma 3.2.2], the following lemma can be

easily proved. Its proof is omitted.

Lemma 2.E. Let v be a valuation of a field K and P (x) be a monic polyno-

mial of degree n with coefficients from the valuation ring of v such that the

polynomial P (x) obtained by replacing each coefficient of P (x) by its image

in the residue field of v, is irreducible over the residue field of v. Let β be a

root of P (x). Then v has a unique prolongation w to K(β), which is given by

w(
∑n−1

j=0 ajβ
j) = minj{v(aj)}, aj ∈ K. In particular, v and w have the same

value group.

The next result (Theorem 2.1) proved here will be used in the proof of The-

orem 1.2. It is of independent interest as well. For the proof of Theorem 2.1, we

need the following elementary result of valuation theory (see [8, Chap. II, 8.2,

8.5]).

Theorem 2.F. Let v be a real valuation of a field K and θ be a root of a

monic separable irreducible polynomial f(x) belonging to K[x] with factorization

f(x) = f1(x)f2(x) · · · fr(x) into monic irreducible polynomials over the comple-
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tion (K̂, v̂) of (K, v). Then there are exactly r prolongations of v to K(θ). If θi

is a root of fi(x) and ˜̂v is the unique prolongation of v̂ to the algebraic closure

of K̂, then the valuations w1, w2, . . . , wr of K(θ) defined by

wi(
∑

j

ajθ
j) = ˜̂v(

∑
j

ajθ
j
i ), aj ∈ K (2)

are the prolongations of v to K(θ). In particular, the value group of the valuation

wi is same as the value group of the valuation of K̂(θi) extending v̂.

The corollary stated below, to be used in the sequel, is an immediate conse-

quence of the above theorem and Lemma 2.E.

Corollary. Let the hypothesis and notations be as in the above theorem. Suppose

that f(x) has coefficients in the valuation ring of v. If some fi(x) is such that

the polynomial f̄i(x) obtained by replacing the coefficients of fi(x) modulo the

maximal ideal of v̂, is irreducible over the residue field of v̂, then the value group

of wi is same as that of v.

We now prove

Theorem 2.1. Let f(x) be a monic irreducible polynomial of degree n with co-

efficients from the ring Z of integers, having a root θ. Let q be a rational prime

which is ramified in Q(θ). Suppose that f(x) ≡ (x − c)2φ2(x) · · ·φr(x)(mod q),

where (x− c), φ2(x), . . . , φr(x) are monic polynomials over Z which are distinct

and irreducible modulo q. Then the Galois group of f(x) over Q contains a

non-trivial automorphism which keeps n− 2 roots of f(x) fixed.

Proof. Let vq denote the q-adic valuation of Q defined by vq(q) = 1. By Hensel’s

Lemma [8, Chap. II, 4.6], f(x) factors over the field Qq of q-adic numbers

into monic polynomials as f1(x)f2(x) · · · fr(x), where f1(x) ≡ (x − c)2(mod q),

fi(x) ≡ φi(x)(mod q) and hence fi(x) is irreducible over Qq for 2 6 i 6 r.

Keeping in mind that q is ramified in Q(θ), it now follows from Theorem 2.F

and its corollary that f1(x) is irreducible over Qq and that there is only one

prolongation of vq to Q(θ) which is ramified; in fact it is the valuation w1 given

by (2). Fix a prolongation w of w1 to the splitting field L of f(x) over Q. Let

Zw, Tw denote respectively the decomposition field and the inertia field of the

extension L/Q with respect to w. Then Tw $ L, as Tw/Q is unramified with

respect to w but L/Q is not so. Claim is that Tw contains the splitting field of the

polynomial f(x)/f1(x) over Zw. In view of the fact that Tw is a normal maximal
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unramified extension of Zw with respect to w (cf. [8, Chap. II, 9.11]), the claim is

proved once we show that for each root θ′ of f(x)/f1(x), the extension Zw(θ′)/Zw

is unramified with respect to w. Let θ′ be a root of fi(x), 2 6 i 6 r. Note that

the polynomial fi(x) has coefficients in Zw = L ∩ Qq. Since the residue field of

the valuation w|Zw is same as that of vq and fi(x) is an irreducible polynomial

modulo q, it follows from Lemma 2.E that Zw(θ′)/Zw is an unramified extension

with respect to w. Keeping in mind that Tw 6= L, it is now clear from the

claim that the second degree polynomial f1(x) is irreducible over Tw. Hence

the non-trivial automorphism of the Galois group of L/Tw satisfies the desired

property.

3 Proof of Theorem 1.1.

Consider first the case when n > 8. By hypothesis, there exists a prime p

such that n
2

< p < n − 2 with p not dividing ap. Claim is that the slope µ

(say) of the right most edge of the Newton polygon of fn(x) with respect to

the p-adic valuation vp is 1/p. It is given that a0an is coprime to n! and hence

vp(a0) = vp(an) = 0. So µ is given by

µ = max
16j6n

{
vp(a0)− vp(aj/j!)

n− (n− j)

}
= max

16j6n

{
vp(j!)− vp(aj)

j

}
.

Since n
2

< p < n − 2, vp(j!) = 0 for 1 6 j < p and vp(j!) = 1 for p 6 j 6 n.

Keeping in mind the hypothesis vp(ap) = 0, we conclude that µ = 1/p. This

proves the claim.

Let L denote the splitting field of fn(x) over Q. Let ṽp denote the unique

prolongation of the p-adic valuation of the field Qp of p-adic numbers to the

algebraic closure of Qp. It is immediate from the claim and Theorem 2.A that

fn(x) will have a root α in the splitting field LQp of fn(x) over Qp with ṽp(α) =

1/p. It now follows that p divides the index of ramification and hence the degree

of LQp/Qp which divides the degree of L/Q. Therefore by Cauchy’s Theorem of

finite groups, the Galois group G (say) of L/Q has an element of order p, which

must be a p-cycle as p > n/2. Also G is transitive being the Galois group of an

irreducible polynomial. It now follows in view of Theorem 2.B that G contains

An for n > 8.

For n = 4, by hypothesis 3 does not divide a3. It can be easily seen that the

slope of the right most edge of the Newton polygon of f4(x) with respect to v3
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is 1/3. So arguing as above, we see that 3 divides the order of G and hence 12

divides the order of G which implies that G contains A4.

In the case n = 5, keeping in mind the hypothesis that 3 does not divide a3,

it can be easily seen that the slope of the right most edge of the Newton polygon

of f5(x) with respect to v3 is 1/3. So arguing as in the case n = 4, we see that

15 divides the order of G. The theorem is proved in this case because A5 and

S5 are the only transitive subgroups of S5 whose order is divisible by 15 (see [2,

Appendix A]). In the case n = 7, considering the slope of the right most edge of

the Newton polygon of f7(x) with respect to v5 and arguing as in the previous

cases, it can be seen that 35 divides the order of G. Since the only transitive

subgroups of S7 having order divisible by 35 are A7 and S7 (cf. [2, Appendix

A]), the theorem is proved in this case also.

4 Proof of Theorem 1.2 and Corollaries 1.3, 1.4.

Proof of Theorem 1.2. Let θ be a root of the polynomial gn(x) which is irre-

ducible over Q in view of [11]. Let K denote the field Q(θ) and dK its discrimi-

nant. As is well known the discriminant D(gn(x)) of gn(x) and the index i(θ) of

Z[θ] in the ring of algebraic integers of K satisfy

D(gn(x)) = (i(θ))2dK . (3)

Applying Theorem 2.D, we have

D(gn(x)) = (−1)
n(n−1)

2 nn(n!)n−1Bp−1[Bn−p + (−1)n+1 (n− p)n−p

pn−p
(n!)pAn]. (4)

Claim is that there exists a prime q which divides dK and q does not divide

n!AB. In view of (3), (4) and the fact that B is coprime to n!A, the claim is

proved once we show that the absolute value of d′ defined by

d′ = Bn−p + (−1)n+1 (n− p)n−p

pn−p
(n!)pAn (5)

is not a perfect square in Z, which is true by virtue of the hypothesis. It now

follows from the claim and Dedekind Theorem [6, p. 158, Corollary 3] charac-

terizing ramified primes that q is ramified in K.

We next show that

gn(x) ≡ (x− c)2φ2(x) · · ·φr(x)(mod q) (6)
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where c ∈ Z and φi(x) (2 6 i 6 r) are monic polynomials with coefficients in Z,

which are distinct and irreducible modulo q. Let ḡn(x) denote the polynomial

obtained by replacing each coefficient of gn(x) by its image in Z/qZ. Since

D(gn(x)) ≡ 0(mod q), the polynomial ḡn(x) has a multiple root in the algebraic

closure of Z/qZ, say ξ. As g′n(x) = xp−1(nxn−p +n!nA) and n!AB is not divisible

by q, it follows that ξn−p is the class of −n!A modulo q. Hence ξ is unique and

it belongs to Z/qZ. This proves (6).

Keeping in mind that q is ramified in K and (6), it follows immediately from

Theorem 2.1 that the Galois group G of gn(x) over Q contains a transposition.

As G already contains An for n 6= 6 by virtue of Theorem 1.1, we see that

G = Sn. For the case n = 6, in view of Theorem 2.C it is enough to show that

G contains a 5-cycle. By the hypothesis of this case, p = 5 does not divide A.

A simple calculation shows that the right most edge of the Newton polygon of

g6(x) with respect to the 5-adic valuation has slope 1/5. So 5 divides the order

of G. Therefore by Cauchy’s Theorem, G contains an element of order 5, which

must be a 5-cycle and hence G = S6 in the present case.

Proof of Corollary 1.3. Let d′ be as in (5). Assume that (i) holds. Keeping in

mind that n−p is odd and n > 4, it is clear that d′ ≡ B 6≡ ±1(mod 8) and so |d′|
cannot be a square in Z which proves the result in this case by virtue of Theorem

1.2. If (ii) holds, then d′ > 0 and the Legendre symbol

(
d′

p′

)
=

(
n!A

p′

)
= −1

by hypothesis. Hence the corollary follows.

Proof of Corollary 1.4. Note that t6(x) = x6 + 6!
5
6Ax5 +6! is a polynomial of the

form given in Theorem 1.2 with n = 6, p = 5 and B = 1. As in the proof of

Corollary 1.3, we need to show that |d′| = (6!)44!6A6 − 1 is not a square in Z.

Since A6 ≡ 1(mod 7) by Fermat’s Theorem, it follows that |d′| ≡ 3(mod 7) and

hence not a square modulo 7.

5 Proof of Theorem 1.5.

Since the polynomial hn(x), n 6= 6 satisfies the hypothesis of Theorem 1.1, it is

irreducible over Q and its Galois group contains An. To prove assertion (i), in

view of [3, Theorem 7.4.1(b)], it is enough to show that the discriminant of hn(x)
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is negative. Using Theorem 2.D, the discriminant of hn(x) is

(−1)
n(n−1)

2 nn(n!)n−1Bp−1[Bn−p + (−1)n+1 (n− p)n−p

pn−p
(n!)p]

which can be easily checked to be negative using the hypothesis. Arguing simi-

larly and verifying that the discriminant of tn(x) is

(−1)
n(n−1)

2 nn(n!)n−1[1 + (−1)n+1 (n− p)n−p

pn−p
(n!)pAn] < 0,

assertion (ii) of the theorem follows.
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