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A CLASS OF UNICYCLIC GRAPHS DETERMINED

BY THEIR LAPLACIAN SPECTRUM∗

XIAOLING SHEN† AND YAOPING HOU†

Abstract. Let Gr,p be a graph obtained from a path by adjoining a cycle Cr of length r to one

end and the central vertex of a star Sp on p vertices to the other end. In this paper, it is proven

that unicyclic graph Gr,p with r even is determined by its Laplacian spectrum except for n = p+4.

Key words. Adjacency spectrum, Laplacian spectrum, Cospectral graph, Unicyclic graph.

AMS subject classifications. 05C05, 05C50.

1. Introduction. Let G be a simple graph on n vertices and A(G) be its adja-

cency matrix. Let dG(v) be the degree of vertex v in G, and D(G) be the diagonal

matrix with the degrees of the corresponding vertices of G on the diagonal and zero

elsewhere. Matrix Q(G) = D(G) − A(G) is called the Laplacian matrix of G. The

eigenvalues of A(G) (resp., Q(G)) and the spectrum (which consists of eigenvalues) of

A(G) (resp., Q(G)) are also called the adjacency (resp., Laplacian) eigenvalues of G

and the adjacency (resp., Laplacian) spectrum of G. Since both matrices A(G) and

Q(G) are real symmetric matrices, their eigenvalues are all real numbers. So we can

assume that λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) and µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0

are the adjacency eigenvalues and the Laplacian eigenvalues of G, respectively.

Two graphs are adjacency (resp., Laplacian) cospectral if they have the same

adjacency (resp., Laplacian) spectrum. Denote by φ(G) = φ(G;λ) = det(λI −A(G))

and χ(G;µ) = det(µI − Q(G)) the characteristic polynomial of adjacency matrix

and Laplacian matrix of G, respectively. A graph is said to be determined by the

adjacency (resp., Laplacian) spectrum if there is no non-isomorphic graph with the

same adjacency (resp., Laplacian) spectrum.

In general, the spectrum of a graph does not determine the graph and the question

“Which graphs are determined by their spectrum?” ([3]) remains a difficult problem.

For the background and some known results about this problem and related topics,

we refer the readers to [4] and references therein. For the unicyclic graphs, Haemers
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Fig. 1.1. Graphs Gr,p and F .

et al. [5] showed that lollipop graphs H with p odd are determined by the adjacency

spectrum. Boulet and Jouve proved in [1] that the remaining lollipop graphs are also

determined by their adjacency spectrum. Haemers et al. showed that lollipop graphs

are determined by their Laplacian spectrum as well. Let Un,r be the graph obtained

by attaching n− r pendent edges to a vertex of cycle Cr . Zhang et al. proved in [13]

that Un,r is determined by its Laplacian spectrum. We shall prove a class of unicyclic

graphs determined by their Laplacian spectra in this paper.

Let Gr,p (see Fig. 1.1) be a graph obtained from a path by adjoining a cycle

Cr of length r to one end and the central vertex of a star Sp on p vertices to the

other end. For p = 2, Gr,p is a lollipop graph, which is determined by its adjacency

spectrum and Laplacian spectrum respectively. Without loss of generality, we assume

that p ≥ 3 and n is the order of Gr,p. In this paper, we prove that Gr,p with r even is

determined by its Laplacian spectrum except for n = p+4, which extends the known

families of unicyclic graphs determined by their Laplacian spectrum.

2. Preliminaries. The following lemmas will be used in the next section.

Lemma 2.1. ([3]) For n× n matrices A and B, the following are equivalent:

(i) A and B are cospectral;

(ii) A and B have the same characteristic polynomial;

(iii) tr(Ai) = tr(Bi) for i = 1, 2, . . . , n.

If A is the adjacency matrix of a graph, then tr(Ai) gives the total number of

closed walks of length i. So cospectral graphs have the same number of closed walks

of each given length i. In particular, they have the same number of edges (taking

i = 2) and triangles (taking i = 3).

Lemma 2.2. ([2]) Let G be a connected graph, and H a proper subgraph of G.

Then λ1(H) < λ1(G).

Lemma 2.3. ([2]) Let G be the graph obtained from the disjoint union H1

⋃
H2
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by adding an edge v1v2 joining the v1 of H1 and v2 of H2, then φ(G) = φ(H1)φ(H2)−

φ(H1 − v1)φ(H2 − v2), where Hi − vi denote the graph obtained from Hi by deleting

the vertex vi and the edges incident to vi.

Hoffman and Smith defined an internal path [6] of a graph as a walk v0, v1, . . . , vk

(k ≥ 1) such that v1, . . . , vk are distinct (v0, vk need not be distinct), dv0 > 2, dvk > 2

and dvi = 2, 0 < i < k.

Lemma 2.4. ([6]) Let G be a connected graph that is not isomorphic to Wn, where

Wn is a graph obtained from the path Pn−2 (indexed in natural order 1, 2, . . . , n− 2)

by adding two pendant edges at vertices 2 and n − 3. Let Guv be the graph obtained

from G by subdividing the edge uv of G. If uv lies on an internal path of G, then

λ1(Guv) ≤ λ1(G).

Lemma 2.5. ([2]) Let the eigenvalues of graphs G and G−v be λ1 ≥ λ2 ≥ · · · ≥ λn

and λ′

1 ≥ λ′

2 ≥ · · · ≥ λ′

n−1, respectively. Then λ1 ≥ λ′

1 ≥ λ2 ≥ λ′

2 ≥ · · · ≥ λ′

n−1 ≥

λn.

Lemma 2.6. ([2]) Let Cn, Pn be the cycle and path on n vertices respectively.

Then

φ(Cn) =

n∏

j=1

(λ− 2 cos
2πj

n
) = λφ(Pn−1)− 2φ(Pn−2)− 2;

φ(Pn) =

n∏

j=1

(λ− 2 cos
πj

n
) = λφ(Pn−1)− φ(Pn−2).

We write the Laplacian characteristic polynomial as χ(G;µ) = q0µ
n + q1µ

n−1 +

· · ·+ qn−1µ+ qn.

Lemma 2.7. ([3, 11]) Let G be a graph with n vertices and m edges and d =

(d1, . . . , dn) be its non-increasing degree sequence. Then

q0 = 1; q1 = −2m; q2 = 2m2 −m−
1

2

n∑

i=1

d2i ; qn−1 = (−1)n−1nt(G); qn = 0;

where t(G) is the number of spanning trees in G.

Part (i) and (ii) of the following are given in [10] and [9], respectively.

Lemma 2.8. Let G be a graph with V (G) 6= ∅ and E(G) 6= ∅.

(i) Then ∆(G)+1 ≤ µ1 ≤ max{ du(du+mu)+dv(dv+mv)
du+dv

, uv ∈ E(G)}, where ∆(G)

denotes the maximum vertex degree of G, u1 is the largest Laplacian eigenvalue of G,

dvmv means the sum of degrees of vertices adjacent to v in G.
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Fig. 3.1. Graphs G1, G2 and G3.

(ii) If G is a connected graph with at least 2 vertices, then µ1 = ∆(G) + 1 if and

only if |V (G)| = ∆(G) + 1.

Lemma 2.9. ([7, 8]) Let G be a graph with n vertices and G its complement, then

µi(G) = n− µn−i(G) for 1 ≤ i ≤ n− 1.

Lemma 2.10. ([12]) Let F be the graph in Fig. 1.1, NG(F ) the number of

subgraphs F of a graph G, and NG(i) the number of closed walks of length i in G.

Then NG(5) = 30NG(K3) + 10NG(C5) + 10NG(F ), where K3 is the complete graph

of order 3, C5 is the circle of length 5.

For a bipartite graphG with n vertices andm edges, the Laplacian matrixQ(G) =

D−A and signless Laplacian matrix |Q(G)| = D+A are similar by a diagonal matrix

with diagonal entries ±1, hence they have the same spectrum. Let N be the vertex-

edge incidence matrix of G and B the adjacency matrix of the line graph L(G) of

G. Since |Q(G)| = NNT , NTN = 2I + B, NNT and NTN have the same non-zero

eigenvalues, for µ 6= 0, µ is an eigenvalue of |Q(G)| with multiplicity a if and only if

µ− 2 is an eigenvalue of B with multiplicity a, and the multiplicity of the eigenvalue

−2 equals m−n+1 ([3]). For a unicyclic connected bipartite graph G, Q(G) has one

eigenvalue 0, since m = n, the multiplicity of eigenvalue −2 of B is 1. Thus, we have

the following lemma.

Lemma 2.11. Let G be a connected unicyclic bipartite graph with n vertices and

L(G) its line graph. Then µi(G) = λi(L(G))+2 for i = 1, 2, . . . , n−1, where λi(L(G))

is the i-th largest adjacency eigenvalue of L(G).

3. Main results. We need the following key lemmas to prove our results. Let

Kp be a complete graph on p vertices, and Gi a graph depicted in Fig. 3.1, x1x2 an

edge of Gi (i = 1, 2, 3).

Lemma 3.1. λ1(G1) < min{λ1(G2), λ1(G3)} for p > 3.
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Proof. By Lemma 2.3 and direct calculation, we obtain the characteristic poly-

nomial of Gi (i = 1, 2, 3):

φ(G1) = (λ+ 1)p−2((λ(λ + 1)(λ− p+ 1)− (λ− p+ 2))φ(Cr)

−2(λ+ 1)(λ− p+ 1)(φ(Pr−1) + φ(Pr−2) + 1)),

φ(G2) = (λ+ 1)p−2((λ(λ − p+ 2)− (p− 1))φ(Cr)− 2(λ− p+ 2)(φ(Pr−1)

+φ(Pr−2) + 1)),

φ(G3) = (λ+ 1)p−3((λ(λ − p+ 3)− 2(p− 2))φ(Pr−1)− 2(λ+ 1)(φ(Pr−2) + 1)).

Let

φ∗(G1) = (λ(λ + 1)(λ− p+ 1)− (λ− p+ 2))φ(Cr)− 2(λ+ 1)(λ− p+ 1)(φ(Pr−1)

+φ(Pr−2) + 1),

φ∗(G2) = (λ(λ − p+ 2)− (p− 1))φ(Cr)− 2(λ− p+ 2)(φ(Pr−1) + φ(Pr−2) + 1),

φ∗(G3) = (λ(λ − p+ 3)− 2(p− 2))φ(Pr−1)− 2(λ+ 1)(φ(Pr−2) + 1).

Obviously, λ1(Gi) is also the largest root of φ∗(Gi) (i = 1, 2, 3). Since φ∗(G1; p−1) =

−φ(Cr, p − 1) and p > 3, φ∗(G1; p − 1) < 0 by Lemma 2.6. By the intermediate

value theorem, λ1(G1) > p − 1. As G1 is not regular, λ1(G1) < ∆(G1), where

∆(G1) is the maximum degree of G1. Hence λ1(G1) < p. By Lemma 2.6, λφ(Pr−i) =

φ(Pr−i+1) + φ(Pr−i−1), i = 1, . . . , r − 1.

φ∗(G1)− λφ∗(G2)

= (p− 2− λ)φ(Cr) + 2(p− 1)(φ(Pr−1) + φ(Pr−2) + 1)

= (p− 2− λ)(λφ(Pr−1)− 2φ(Pr−2)− 2) + 2(p− 1)(φ(Pr−1) + φ(Pr−2) + 1)

= (λ(p− 2− λ) + 2(p− 1))φ(Pr−1) + 2(λ+ 1)(φ(Pr−2) + 1)

= (λ(p− 2− λ) + 2(p− 1))φ(Pr−1) + 2(φ(Pr−1) + φ(Pr−3)) + 2φ(Pr−2) + 2(λ+ 1)

= (λ(p− 2− λ) + 2p)φ(Pr−1) + 2(φ(Pr−2) + φ(Pr−3)) + 2(λ+ 1).

Thus, we have

φ∗(G1;λ1(G1))− λ1(G1)φ
∗(G2;λ1(G1))

> (λ1(G1)(p− 2− p) + 2p)φ(Pr−1, λ1(G1)) + 2(φ(Pr−2, λ1(G1))

+φ(Pr−3, λ1(G1)) + 2(λ+ 1)

> 0.

Since p > λ1(G1) > p − 1, φ(Pr−1, λ1(G1)), φ(Pr−2, λ1(G1), φ(Pr−3, λ1(G1)) are all

positive for p > 3. Thus, φ∗(G2;λ1(G1)) < 0. By the intermediate value theorem the

largest root of φ∗(G2) exceeds λ1(G1). So, λ1(G1) < λ1(G2). Similarly, by Lemma
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2.6, we have

φ∗(G1)− λ2(λ− 2)φ∗(G3)

= (2λ4 − (2p− 2)λ3 − 2λ2p+ (5p− 8)λ+ 2p− 2)φ(Pr−1)

+((2p− 10)λ3 + (6p− 14)λ2 + (4p− 2)λ+ 2)(φ(Pr−2) + 1)

= (2λ4 − 2(p− 1)λ3 − 10λ2 + (11p− 22)λ+ 8p− 14)φ(Pr−1) + (6p− 12)φ(Pr−2)

+(6p− 12)φ(Pr−3) + ((2p− 10)λ+ 6p− 14)φ(Pr−4) + (2p− 10)λ3 + (6p− 14)λ2

+(4p− 2)λ+ 2.

For convenience, we set α = λ1(G1). Then

φ∗(G1;α)− α2(α− 2)φ∗(G3;α)

= (2α4 − 2(p− 1)α3 − 10α2 + (11p− 22)α+ 8p− 14)φ(Pr−1, α)

+(6p− 12)φ(Pr−2, α) + (6p− 12)φ(Pr−3, α) + ((2p− 10)α+ 6p− 14)φ(Pr−4, α)

+(2p− 10)α3 + (6p− 14)α2 + (4p− 2)α+ 2.

Let

b = 2α4 − 2(p− 1)α3 − 10α2 + (11p− 22)α+ 8p− 14,

c = (2p− 10)α3 + (6p− 14)α2 + (4p− 2)α+ 2.

Obviously, c > 0 for p ≥ 5, and

b = (α− p+ 1)(α− 3)(2(α− 3)2 + 18(α− 3) + 43) + α2 + 10α− 13p+ 7

> (α− p+ 1)(α− 3)(2(α− 3)2 + 18(α− 3) + 43) + (p− 1)2 − 3p− 3

+10(α− p+ 1)

> 0

for p ≥ 6. If p = 5, then 5 > α > 4, c = 16α2 + 18α+ 2 > 0. Using

5φ(Pr−i, α) > αφ(Pr−i, α) = φ(Pr−i+1, α) + φ(Pr−i−1, α),

we have

φ∗(G1;α)− α2(α− 2)φ∗(G3;α)

= ((α − 4)(α− 3)(2(α− 3)2 + 18(α− 3) + 43) + α2 + 10α− 58)φ(Pr−1, α)

+18φ(Pr−2, α) + 18φ(Pr−3, α) + 16φ(Pr−4, α) + c

> ((α − 4)(α− 3)(2(α− 3)2 + 18(α− 3) + 43) + α2 + 10α− 54)φ(Pr−1, α)

+2φ(Pr−2, α) + φ(Pr−3, α) + 20φ(Pr−4, α) + c.
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Since α2+10α−54 = (α−4)(α+14)+2 > 0, −α2(α−2)φ∗(G3;α) > 0. This implies

that φ∗(G3;α) < 0.

Similarly, for p = 4, 4 > α > 3, c = −2α3+10α2+8α+2 = −2α2(α−5)+8α+2 >

0. Then

φ∗(G1;α)− α2(α− 2)φ∗(G3;α)

> ((α − 3)2(2(α− 3)2 + 18(α− 3) + 43) + α2 + 10α− 39)φ(Pr−1, α)

+2φ(Pr−2, α) + 5φ(Pr−3, α) + 12φ(Pr−4, α) + c

= ((α − 3)2(2(α− 3)2 + 18(α− 3) + 43) + (α− 3)(α+ 13))φ(Pr−1, α)

+2φ(Pr−2, α) + 5φ(Pr−3, α) + 12φ(Pr−4, α) + c > 0,

which implies that φ∗(G3;α) < 0. Hence, by the intermediate value theorem, the

largest root of φ∗(G3) exceeds λ1(G1). Thus, λ1(G1) < λ1(G3).

Lemma 3.2. Let graphs G and Gr,p be Laplacian cospectral. Then G is a con-

nected unicyclic graph with circle length r and the same degree sequence with Gr,p.

Proof. By Lemma 2.8(i), the largest eigenvalue of Gr,p satisfies p+1 ≤ µ1 < p+2.

Suppose that graph G is Laplacian cospectral to Gr,p. By Lemma 2.8, the largest

vertex degree of G is at most p. By Lemma 2.7, G and Gr,p have the same number of

vertices, edges, spanning trees. So G is a connected unicyclic graph with n vertices.

Since Gr,p has r spanning trees, the length of cycle in G is also r. Assume that G has

ni vertices of degree i, for i = 1, . . . , p. By Lemma 2.7, we have

(3.1)

p
∑

i=1

ni = n,

p
∑

i=1

ini = 2n,

p
∑

i=1

i2ni = p2 + 32 + 22(n− p− 1) + p− 1.

This gives

(3.2)

p
∑

i=3

(i − 1)(i− 2)ni = p2 − 3p+ 4.

By Lemma 2.11, L(G) and L(Gr,p) are adjacency cospectral, so they have the same

number of triangles. This gives

(3.3)

p
∑

i=3

(
i

3

)

ni =

(
p

3

)

+ 1.

Obviously, np ≤ 1 for p > 3. We assert that np = 1, n3 = 1. Assume that np = 0.

Combining equations (3.2) and (3.3), we have

p(p− 1)(p− 2) + 6 =

p
∑

i=3

(i(i− 1)(i− 2))ni ≤ (p− 1)(

p−1
∑

i=3

(i− 1)(i− 2)ni)

= (p− 1)(p2 − 3p+ 4).
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This gives p2 − 5p+10 ≤ 0, which is a contradiction. It is easy to obtain n3 = 1,

and ni = 0, i = 4, . . . , p− 1 from equation (3.3). By equation (3.1), we easily get that

n2 = n− p− 1, n1 = p− 1. For p = 3, by equation (3.1), we have

n1 + n2 + n3 = n;n1 + 2n2 + 3n3 = 2n;n1 + 4n2 + 9n3 = 4 + 4n.

Solving these equations gives that n1 = 2, n2 = n − 4, n3 = 2, which is the same

degree sequence with Gr,3.

Lemma 3.3. If r is even, n > p + r, p > 3, then Gr,p is determined by its

Laplacian spectrum.

Proof. Assume that G and Gr,p are Laplacian cospectral. By Lemma 3.2, G is a

connected unicyclic graph with circle length r and has the same degree sequence as

Gr,p. Since r is even, G and Gr,p are bipartite graphs. By Lemma 2.11, their line

graphs are adjacency cospectral. Since G and Gr,p have the same degree sequence,

the line graph L(G) is a connected graph with n vertices and contains a subgraph

Gi (i = 1, 2, 3) or a subgraph obtained by subdividing edge uv of G1 several times.

For n = p + r + 1, the line graph of Gr,p is G1. By Lemma 3.1, L(G) ∼= G1. For

n > p + r + 1, by Lemma 2.4, λ1(L(Gr,p)) ≤ λ1(G1). Since L(G) and L(Gr,p) are

adjacency cospectral, neither G2 nor G3 is a subgraph of L(G) by Lemma 3.1. Since

n > p+r+1, G1 is not a subgraph of L(G). Thus, L(G) contains a subgraph obtained

by subdividing edge uv of G1 several times. By Lemmas 2.4 and 2.2, L(G) ∼= L(Gr,p).

For n > p+ r, p = 3, we also have the following.

Lemma 3.4. Gr,3 is determined by its Laplacian spectrum for n > 3 + r.

Proof. Let G and Gr,3 be Laplacian cospectral. By Lemma 3.2, G is a unicyclic

graph with circle length r and has the same degree sequence as Gr,3. Then G is either

G4 or G5 depicted in Fig. 3.2. Let a be the length of path from vertex u to v, b the

length of path from u′ to v′, c the length of path from z to w and d the length of path

from z′ to w′ in Fig. 3.2. Note that x is not necessarily adjacent to y in G5, L(Gr,3)

is G6 with a = b = 0.

By Lemmas 2.1 and 2.11, L(G) and L(Gr,3) are adjacency cospectral , so they

have the same number of closed walks of length i for each i. Consider the closed walks

of length 5. Since the line graphs of Gr,3 and G have the same number of triangles

and C5’s, we only need to enumerate N(F ) in Gi (i = 6, 7) by Lemma 2.10. Clearly,

NL(Gr,3)(F ) = 4.

If there is a path with length no less than 1 between two triangles, then

NG6
(F ) =

{
6, a 6= 0, b 6= 0;

5, either a or b is 0.
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Fig. 3.2. Graphs G4, G5 and the corresponding line graphs G6, G7, respectively.

G8

...







p− 1

G9

p− 2







...

Fig. 3.3. A family of non-isomorphic but Laplacian cospectral graphs.

If two triangles share a common vertex, then

NG6
(F ) =

{
8, a 6= 0, b 6= 0;

7, either a or b is 0 .

If c = 0 (resp., d = 0), then d 6= 0 (resp., c 6= 0) for n > 3 + r.

NG7
(F ) =







5, either c or d is 0, x is not adjacent to y,

7, either c or d is 0, x is adjacent to y,

6, c 6= 0, d 6= 0, x is not adjacent to y,

8, c 6= 0, d 6= 0, x is adjacent to y.

Thus, the number of closed walks of length 5 in L(Gr,3) is different to Gi (i = 6, 7)

if Gi ≇ L(Gr,3). Hence G is isomorphic to Gr,3 for n > 3 + r.

Let n = p + r. We determine a family of non-isomorphic Laplacian cospectral

graphs for r = 4, see Fig. 3.3. Since the line graph of G8 is isomorphic to G2 in Fig.
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Fig. 3.4. Graphs Gj (j = 10, . . . , 15).

3.1, it is easy to check that the line graphs of G8 and G9 have the same adjacency

characteristic polynomial: λ(λ+1)p−2(λ+2)(λ4−pλ3+(p−5)λ2+4(p−1)λ+4−2p).

For n = p+ r, r 6= 4, we have:

Lemma 3.5. Gr,p is also determined by its Laplacian spectrum if n = p + r,

r 6= 4.

Proof. Let graphs G and Gr,p be Laplacian cospectral. By Lemma 3.2, G is a

connected unicycic graph with the same degree sequence as Gr,p. Then G is just one

of these graphs depicted in Fig. 3.4, here G10 is Gr,p for n = p+ r.

By Lemma 2.11, their line graphs have the same adjacency spectrum, thus the

closed walks of length i in these line graphs are the same by Lemma 2.1. The line

graph of Gj (j = 10, . . . , 15) is depicted in Fig. 3.5, here x is adjacent to y in Gk

(k = 16, . . . , 21).

Consider the closed walks of length 5 in Gk (k = 16, . . . , 21). By Lemma 2.10,

since there are the same number of triangles and C5’s respectively in these graphs,

we only need to enumerate the number of subgraphs F in Gk. It is easy to get the
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Cr Kp
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Cr Kp

G17

Cr Kp

G16
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G18

Kp

x x

x

y
y

y

Cr Kp

x

y

G21

Cr Kp

G20

x

y

x

y

Fig. 3.5. Graph Gk, the corresponding line graphs of Gj , j = 10, . . . , 15.

following:

NG16
(F ) = p+ 1 + 2

(
p− 1

2

)

+NKp
(F );NG17

(F ) = 3 + 2

(
p− 1

2

)

+NKp
(F );

NG18
(F ) = p+ 1 + 3

(
p− 1

2

)

+NKp
(F );NG19

(F ) = 2 + 3

(
p− 1

2

)

+NKp
(F );

NG20
(F ) = p+ 4

(
p− 1

2

)

+NKp
(F );NG21

(F ) = p− 1 + 4

(
p− 1

2

)

+NKp
(F );

Obviously, NGk
(F ) 6= NG16

(F ) (k = 17, . . . , 21) except for NG19
(F ) for p = 4.

For p = 4, by Lemmas 2.5 and 2.2, we have λ2(G16) ≤ 2 and λ2(G19) > 2. So if G is

not isomorphic to Gr,p, then their line graphs are not adjacency cospectral. Hence,

G is isomorphic to Gr,p for r 6= 4 and n = p+ r.

From Lemmas 3.3, 3.4 and 3.5, we obtain our main result.

Theorem 3.6. Unicyclic graph Gr,p with r even is determined by its Laplacian

spectrum except for n = p+ 4.

By Lemma 2.9, the complement of Gr,p (n 6= p+4) with r even is also determined

by its Laplacian spectrum.

For r odd, a family of non-isomorphic but Laplacian cospectral graphs is given

in Fig. 3.6.

If r is odd, since Gr,p is not a bipartite graph, ui(Gr,p) 6= λi(L(Gr,p)) + 2 for i =

1, . . . , n in general, and hence we cannot use line graph to characterize the spectrum
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p− 1

p− 2
︷ ︸︸ ︷

}

· · ·

...
G3,p G22

Fig. 3.6. Graphs G3,p and its Laplacian cospectral graph.

of Gr,p. The methods used here are invalid if r is odd. Some new techniques are

needed to prove whether Gr,p with r odd is determined by its Laplacian spectrum.

Acknowledgment. The authors are grateful to the anonymous referee whose

comments and suggestions improved the final form of this manuscript.

REFERENCES

[1] R. Boulet and B. Jouve. The lollipop graph is determined by its spectrum. Electron. J. Combin.,

15:R74, 2008.
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