
A Class-Specific Optimizing Compiler

MICHAEL D. SHARP AND STEVE W. OTTO

Oregon Graduate Institute of Science and Technology, Beaverton, OR 97006-1999

ABSTRACT

Class-specific optimizations are compiler optimizations specified by the class imple

mentor to the compiler. They allow the compiler to take advantage of the semantics of

the particular class so as to produce better code. Optimizations of interest include the

strength reduction of class: :array address calculations, elimination of large temporar

ies, and the placement of asynchronous send/recv calls so as to achieve computation/

communication overlap. We will outline our progress towards the implementation of a

C++ compiler capable of incorporating class-specific optimizations. © 1994 by John

Wiley & Sons, Inc.

1 INTRODUCTION

During the implementation of complex systems in

C++, particularly numerical ones, the implemen

tor typically encounters performance problems of

varying difficulty. These difficulties usually relate

to the lack of semantic understanding the C++

compiler has of the user-defined classes. This

problem was recently studied [1] where the poten

tial solution of class-based optimizations was put

forth.

A class-based optimization makes use of se

mantic information normally not known to the

compiler. These optimization rules are specified

by the user as part of the class description and

they are dynamically linked to the compiler's

standard optimizer. Although the notion of a rule

directed optimizer is not new [2] it is not wide

spread. The authors believe this is the first time

the optimization rules have been user specified for

the C++ language.

Received April 1993
Revised June 1993

© 1994 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 2, pp. 235-238 (1993)

CCC 1058-9244/94/040235-04

After introducing two example optimizations,

this article will focus on some of the issues relating

to the construction of a system implementing

class-based optimizations. The issues discussed

relate mainly to optimization specification, detec

tion of applicability, and application.

2 SAMPLE OPTIMIZATIONS

Throughout this article two optimizations will be

used as examples. The first is the temporary vari

able elimination optimization, and the second is

strength reduction combined with induction vari

able analysis in a general array iterator. The later

construct is an extension the authors have made

to the C + + language.

2.1 Temporary Variable Elimination

In numerical computations it is often advanta

geous to optimize a program for the amount of

memory used. One of the easiest ways to optimize

a program for minimal memory usage is to elimi

nate large temporary variables. We will use the

example of matrix calculations to demonstrate the

point. The two code fragments appearing in Fig-

235

236 SHARP AND OTTO

class Matrix {
public:

};

Matrix();
Matrix& operator=(const Matrix&);

Matrix& operator+=(const Matrix&);

friend Matrix& operator+(const Matrix&,const Matrix&);

main(){
Matrix A, B, C, D;

II· ..
A = B + C + D; I I Fragment 1

II· ..
A= B; A+ = C; A+= D; I I Fragment 2

I I ...

FIGURE 1 :vlatrix code fragments.

ure 1 show the value of this optimization. The first

fragment requires a temporary matrix whereas the

second avoids this by performing the calculation

in place. Ideally the transform from the first to

second fragment would be handled bv a matrix

class-specific optimization. ·

The above optimization applies only if the '' + ''

operator is at the root of the expressi~n tree. The

same type of optimization will also apply for other

overloaded operators such at *, I, and.-. This is

not true in general, but if a user overloads EB then

the operation is usually one that has similar char

acteristics to the integ~r EB operator.

We now consider what happens in the optimi

zation of a general expression containing several

operators. The optimization rule is continually

applied to the expression tree starting at the root.

If the operator at the root of this tree is TVE (the

ability to express the expression without tempo

~ary usage at this level) the single statement is split

mto two statements (the = and the + =) as was

done in fragment 2 of Figure 1. The optimization

is then applied to each statement in turn. The

statements continue to split into more statements

as long as the root operator has the TVE property.

If the root operator for a statement is not TVE

then a temporary (of potentially large size) must

be created.

2.2 Optimizing Abstract Array lterators

Consider a partitioned array container class as de

scribed by Otto [3]. The partition types that are

supported are block and block cyclic.

In Fortran, access at array el~ments inside of

do loops is very efficient. Thi~ is possible because

Fortran does not have the pointer aliasing prob

lems of C and C++, and the semantics of the do

$X.iterate i over [0: 100 : 1]$ {

X.elem(i) =a* X.elem(i) + y.elem(i);

}

FIGURE 2 One-dimensional array iterator.

loop are simpler than those of for. As a result

Fortran compilers are able to perform induction

variable analysis and strength reduction so that

array address calculations are done efficiently. Al

though there are C++ compilers, g+ + for e~am
ple, capable of such optimizations, this is not the

norm. One of our goals is to provide such a

strength reduction optimization on a class by class

basis. Using this approach it is possible to. avoid

illegal applications and to guarantee the optimiza

tion will be applied without relying on the underly-

ing compiler to implement it. ·

Consider the simple example of an iterator for a

one-dimensional array in Figure 2. If X is a block

partitioned array this iterator might be imple

mented along the lines of Figure 3, and if X is

block-cyclic partitioned, the iterator might be im

plemented as in Figure 4.

Clearly the situation becomes complex for mul

tidimensional, block-cyclic partitioned arravs.

With proper optimizations for array iterators the

c_oding complexity of multidimensi~nal com~uta
tlons can be reduced. General iterators also ex

pose opportunities for additional optimization due

to the less restrictive nature of the control struc

ture. That is, because a precise ordering of the

iteration space is not specified by the programmer

the optimizer has more flexibility in loop restruc

turing.

3 OPTIMIZATION SPECIFICATION

Two of the most difficult technical problems in the

implementation of class-based optimizations are

defining a language in which to describe general

optimizations, and the implementation of the pat

tern matching routine that detects when to applv

optimizations. What is presented in this and in th~
next section are not complete answers to these dif

ficult problems, rather the current direction of re

search of the authors.

FIGURE 3

iterator.

for (i = X.start(O); i < X.end(O); i + +) {
•(X.base + i) = ...

}

One-dimensional block partitioned array

for (I= 0; I< X.numBiocks(O); ++I) {
for (i = X.start(O, I); i < X.end(O, I);++ i) {

*(X.base[l] + i) =
}

FIGURE 4 One-dimensional block-cyclic partitioned

array itcrator.

In attempting to define a language to describe

general optimizations there are a number of issues

to be considered. It must be possible to not only

describe the syntactic pattern to match, but to

also specify the semantics, and dependencies of

this code. Any optimization triggering heuristics

must also be specifiable in this language.

The syntactic patterns to be matched may not

necessarily be contiguous. It is quite reasonable to

expect user-defined optimizations to require the

ability to skip past statements searching for some

matching condition, or to require a certain set of

conditions for an arbitrarily long list of com

mands. For example, the iteration optimizations

discussed earlier require the examination of the

entire loop body.

A language for the specification of optimiza

tions called GOSPEL was presented by Whitfield

and Sofa [4]. This language expresses optimiza-

AssignmentPtr=Find(Assignment);

while (AssignmentPtr) {

I I check the type of this assignment

if(Type(AssignmentPtr)==MatrixClass) {

I I check for the pattern B+C on the right

I I hand side of the assignment where B and C

I I are any su bexpression.

Expr Ptr=RightHandSide(AssignmentPtr);

if(Operator(Expr Ptr)==0 P _Plus) {

I I break A=B+C into A=B;A+=C
I I since a match was found this statement should be

I I re-processed in hopes of finding another.

I I AssignmentPtr should not be changed before the

I I next loop iteration.

Tree construction code omitted for brevity. The

newly constructed tree is pointed to by APiusCTree

RightHandSide(AssignmentPtr)=LeftOperand(Expr Ptr);

InsertStatementAfter(AssignmentPtr,APlusCTree)

}
else {

I I didn't find a pattern match.

I I move to the next assignment statement

Assign men tPtr= FindN ext(Assignment, Assignment Ptr);

}
}

else {

I I didn't find a pattern match because

I I the class type was wrong

Assign men tPtr= Find Next (Assignment ,Assignment Ptr);

}
}

FIGURE 5 Current specification form for temporary

elimination.

A CLASS-SPECIFIC OPTIYIIZII\G COMPILER 237

tions in terms of both the general program struc

ture to be matched as well as the data dependen

cies necessary for the optimization to result in

semantically correct code. Currently we are imple

menting optimizations at a much l~wer mechani

cal level (Fig. 5). Future research includes the defi

nition of a language similar to GOSPEL, but more

closely tied to C++.

An ideal form of specification would be C++

extended with inspiration from programming

logics. In such a language the general syntactic

form of the optimization could be specified by

fragments of C++, whereas the data dependence

and any heuristics could appear in embedded as

sertions. It would surely be the most useful repre

sentation because optimizations would then be

specified more by partial code examples and a few

language extensions then by another language al

together. Figure 6 shows a possible form of a loop

interchange optimization.

The current design of our optimizer is quite

similar to what one would use to implement an

optimization in a traditional compiler. It is very

dependent on the internal representation of the

code and the writer of such an optimization must

$pattern

for ($1,$2,$3) {

${

for ($4,$5,$6) {

$A;

}

/* check for dependence between invariants *I

/*($!->Statement is the statement containing *I

/*the fragment represented by $1) *I

if Dependence($1->Statement,$4->Statement,any) fail;

/*check for (<,>) dependence between *I

/* two statements in the loop body *I

forAIIStmt($A,$7) { I* for all individual statements $7 in $A *I

$}

forAIIStmt($A,$8) {

I* check dependence for legality of optimization *I

if (Dependence($7,$8,"(<,>)")) fail;

}

$optimization

for ($4,$5,$6) {

where:

for ($1,$2,$3) {

$A;

}

$A is a meta variable representing zero or more statements

$J-$n are meta variables representing components of a statement

FIGURE 6 Loop interchange specification.

238 SHARP AND OTTO

have knowledge of this representation. Although

neither of the authors is satisfied with this as a

final goal, it is felt to be a good intermediate step

to prove the concept of class-based optimizations.

4 OPTIMIZER IMPLEMENTATION

The optimizer's implementation is greatly compli

cated by the fact that before an optimization can

be applied, the associated pattern of unoptimized

code must be located in the internal representa

tion of the program. In the past various code gen

erated and peephole optimizers [5-7] have done

this, but either always on small contiguous pat

terns, or, if an attributed grammar is used, with

restrictions on the use of attributes. In the case of

this optimizer it must be possible to match non

contiguous patterns, as they were discussed in the

previous section, and to add additional attributes

(derived from operations on the compiler supplied

ones) based on the needs of the optimization.

Another complicating factor for the implemen

tation of the optimizer is the determination of the

optimization ordering. Usually this is determined

by the compiler architect, however because the

actual optimizations are now being supplied by

the class designers, it is quite conceivable that the

ordering of optimizations will play a role in the

efficiency of the optimized code. Ordering prob

lems will hopefully be minimal because optimiza

tions are triggered by class occurrences, but an

ordering mechanism should still be explored. Cer

tainly such a mechanism will depend heavily on

the user's application and should be specified by

the user if the default ordering is not acceptable.

5 CURRENT STATUS

At the time of writing, the authors have a working

C++ to C++ optimizer that was custom built for

this project. This is felt to be of great worth due to

the avoided additional complexity of layering such

an optimizer on top of a public domain compiler

that was not designed with such capabilities in

mind.

The optimizer was implemented using a tool,

developed by one of the authors, to describe com

plex attribute relationships and structures. The

tool allowed a relatively quick implementation of a

very memory efficient internal representation of

C++. Because all of the attributes of this repre

sentation are managed and mapped by this tool,

there is great flexibility in our optimizer when it

comes to adding to the internal program represen

tation.

Work is currently under way to define the opti

mization specification language, as well as imple

ment the pattern matcher. As was stated earlier,

the current approach is very mechanical and

strongly dependent on the internal representation

of the program being optimized. It is the authors'

goal to evolve this into a much higher form in the

hopes of hiding many of the details of the compiler

implementation.

REFERENCES

[1] I. G. Angus, Applications Demand Class-Specific

Optimizations: The C++ Compiler Can Do More,

1993 Object-Oriented Numerics Conference. Cor

vallis, OR: Rogue Wave Software, 1993, pp. 25-

27.

[2] J. W. Davidson and D. B. Whalley, "Quick compil

ers using peephole optimization, Software Practice

Experience, vol. 19, pp. 79-97, 1989.
[3] S. W. Otto, 1993 Object-Oriented Numerics Con

ference. Corvallis, OR: Rogue Wave Software,

1993.
[4] D. Whitfield and M. L. Soffa, Proceedings of the

1991 SIGPLAN Conference on Programming Lan

guage Design and Implementation. 1\'ew York:

ACM Press, pp. 120-129.
[5] A. V. Aho, M. Ganapathi, and S. W. K. Tjiang,

"Code generation using tree matching and dy

namic programming, A0\1 Transact Programming

Languages 5_ystems, vol: 11, pp. 491-516. 1989.

[6] M. Ganapathi and C. N. Fischer, "Affix grammar

driven code generation, ACA1 Transact. Program

ming Languages Systems, vol. 7, pp. 560-599.

1985.
[7] R. S. Glanville and S. L. Graham, Proceeding~ of

the Fifth Annual ACM Symposium on Principles of

Programming Languages. ='Jew York: ACM Press,

pp. 231-240.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

