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ABSTRACT 

Class-specific optimizations are compiler optimizations specified by the class imple

mentor to the compiler. They allow the compiler to take advantage of the semantics of 

the particular class so as to produce better code. Optimizations of interest include the 

strength reduction of class: :array address calculations, elimination of large temporar

ies, and the placement of asynchronous send/recv calls so as to achieve computation/ 

communication overlap. We will outline our progress towards the implementation of a 

C++ compiler capable of incorporating class-specific optimizations. © 1994 by John 

Wiley & Sons, Inc. 

1 INTRODUCTION 

During the implementation of complex systems in 

C++, particularly numerical ones, the implemen

tor typically encounters performance problems of 

varying difficulty. These difficulties usually relate 

to the lack of semantic understanding the C++ 

compiler has of the user-defined classes. This 

problem was recently studied [ 1] where the poten

tial solution of class-based optimizations was put 

forth. 

A class-based optimization makes use of se

mantic information normally not known to the 

compiler. These optimization rules are specified 

by the user as part of the class description and 

they are dynamically linked to the compiler's 

standard optimizer. Although the notion of a rule

directed optimizer is not new [2] it is not wide

spread. The authors believe this is the first time 

the optimization rules have been user specified for 

the C++ language. 
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After introducing two example optimizations, 

this article will focus on some of the issues relating 

to the construction of a system implementing 

class-based optimizations. The issues discussed 

relate mainly to optimization specification, detec

tion of applicability, and application. 

2 SAMPLE OPTIMIZATIONS 

Throughout this article two optimizations will be 

used as examples. The first is the temporary vari

able elimination optimization, and the second is 

strength reduction combined with induction vari

able analysis in a general array iterator. The later 

construct is an extension the authors have made 

to the C + + language. 

2.1 Temporary Variable Elimination 

In numerical computations it is often advanta

geous to optimize a program for the amount of 

memory used. One of the easiest ways to optimize 

a program for minimal memory usage is to elimi

nate large temporary variables. We will use the 

example of matrix calculations to demonstrate the 

point. The two code fragments appearing in Fig-
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class Matrix { 
public: 

}; 

Matrix(); 
Matrix& operator=(const Matrix&); 

Matrix& operator+=(const Matrix&); 

friend Matrix& operator+(const Matrix&,const Matrix&); 

main(){ 
Matrix A, B, C, D; 

II· .. 
A = B + C + D; I I Fragment 1 

II· .. 
A= B; A+ = C; A+= D; I I Fragment 2 

I I ... 

FIGURE 1 :vlatrix code fragments. 

ure 1 show the value of this optimization. The first 

fragment requires a temporary matrix whereas the 

second avoids this by performing the calculation 

in place. Ideally the transform from the first to 

second fragment would be handled bv a matrix 

class-specific optimization. · 

The above optimization applies only if the '' + '' 

operator is at the root of the expressi~n tree. The 

same type of optimization will also apply for other 

overloaded operators such at *, I, and.-. This is 

not true in general, but if a user overloads EB then 

the operation is usually one that has similar char

acteristics to the integ~r EB operator. 

We now consider what happens in the optimi

zation of a general expression containing several 

operators. The optimization rule is continually 

applied to the expression tree starting at the root. 

If the operator at the root of this tree is TVE (the 

ability to express the expression without tempo

~ary usage at this level) the single statement is split 

mto two statements (the = and the + =) as was 

done in fragment 2 of Figure 1. The optimization 

is then applied to each statement in turn. The 

statements continue to split into more statements 

as long as the root operator has the TVE property. 

If the root operator for a statement is not TVE 

then a temporary (of potentially large size) must 

be created. 

2.2 Optimizing Abstract Array lterators 

Consider a partitioned array container class as de

scribed by Otto [3]. The partition types that are 

supported are block and block cyclic. 

In Fortran, access at array el~ments inside of 

do loops is very efficient. Thi~ is possible because 

Fortran does not have the pointer aliasing prob

lems of C and C++, and the semantics of the do 

$X.iterate i over [0: 100 : 1]$ { 

X.elem(i) =a* X.elem(i) + y.elem(i); 

} 

FIGURE 2 One-dimensional array iterator. 

loop are simpler than those of for. As a result 

Fortran compilers are able to perform induction 

variable analysis and strength reduction so that 

array address calculations are done efficiently. Al

though there are C++ compilers, g+ + for e~am
ple, capable of such optimizations, this is not the 

norm. One of our goals is to provide such a 

strength reduction optimization on a class by class 

basis. Using this approach it is possible to. avoid 

illegal applications and to guarantee the optimiza

tion will be applied without relying on the underly-

ing compiler to implement it. · 

Consider the simple example of an iterator for a 

one-dimensional array in Figure 2. If X is a block 

partitioned array this iterator might be imple

mented along the lines of Figure 3, and if X is 

block-cyclic partitioned, the iterator might be im

plemented as in Figure 4. 

Clearly the situation becomes complex for mul

tidimensional, block-cyclic partitioned arravs. 

With proper optimizations for array iterators the 

c_oding complexity of multidimensi~nal com~uta
tlons can be reduced. General iterators also ex

pose opportunities for additional optimization due 

to the less restrictive nature of the control struc

ture. That is, because a precise ordering of the 

iteration space is not specified by the programmer 

the optimizer has more flexibility in loop restruc

turing. 

3 OPTIMIZATION SPECIFICATION 

Two of the most difficult technical problems in the 

implementation of class-based optimizations are 

defining a language in which to describe general 

optimizations, and the implementation of the pat

tern matching routine that detects when to applv 

optimizations. What is presented in this and in th~ 
next section are not complete answers to these dif

ficult problems, rather the current direction of re

search of the authors. 

FIGURE 3 

iterator. 

for (i = X.start(O); i < X.end(O); i + +) { 
•(X.base + i) = ... 

} 

One-dimensional block partitioned array 



for (I= 0; I< X.numBiocks(O); ++I) { 
for (i = X.start(O, I); i < X.end(O, I);++ i) { 

*(X.base[l] + i) = 
} 

FIGURE 4 One-dimensional block-cyclic partitioned 

array itcrator. 

In attempting to define a language to describe 

general optimizations there are a number of issues 

to be considered. It must be possible to not only 

describe the syntactic pattern to match, but to 

also specify the semantics, and dependencies of 

this code. Any optimization triggering heuristics 

must also be specifiable in this language. 

The syntactic patterns to be matched may not 

necessarily be contiguous. It is quite reasonable to 

expect user-defined optimizations to require the 

ability to skip past statements searching for some 

matching condition, or to require a certain set of 

conditions for an arbitrarily long list of com

mands. For example, the iteration optimizations 

discussed earlier require the examination of the 

entire loop body. 

A language for the specification of optimiza

tions called GOSPEL was presented by Whitfield 

and Sofa [ 4]. This language expresses optimiza-

AssignmentPtr=Find( Assignment); 

while ( AssignmentPtr) { 

I I check the type of this assignment 

if(Type(AssignmentPtr)==MatrixClass) { 

I I check for the pattern B+C on the right 

I I hand side of the assignment where B and C 

I I are any su bexpression. 

Expr Ptr=RightHandSide( AssignmentPtr); 

if( Operator(Expr Ptr )==0 P _Plus) { 

I I break A=B+C into A=B;A+=C 
I I since a match was found this statement should be 

I I re-processed in hopes of finding another. 

I I AssignmentPtr should not be changed before the 

I I next loop iteration. 

Tree construction code omitted for brevity. The 

newly constructed tree is pointed to by APiusCTree 

RightHandSide( AssignmentPtr )=LeftOperand(Expr Ptr); 

InsertStatementAfter(AssignmentPtr,APlusCTree) 

} 
else { 

I I didn't find a pattern match. 

I I move to the next assignment statement 

Assign men tPtr= FindN ext( Assignment, Assignment Ptr); 

} 
} 

else { 

I I didn't find a pattern match because 

I I the class type was wrong 

Assign men tPtr= Find Next (Assignment ,Assignment Ptr); 

} 
} 

FIGURE 5 Current specification form for temporary 

elimination. 
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tions in terms of both the general program struc

ture to be matched as well as the data dependen

cies necessary for the optimization to result in 

semantically correct code. Currently we are imple

menting optimizations at a much l~wer mechani

cal level (Fig. 5). Future research includes the defi

nition of a language similar to GOSPEL, but more 

closely tied to C++. 

An ideal form of specification would be C++ 

extended with inspiration from programming 

logics. In such a language the general syntactic 

form of the optimization could be specified by 

fragments of C++, whereas the data dependence 

and any heuristics could appear in embedded as

sertions. It would surely be the most useful repre

sentation because optimizations would then be 

specified more by partial code examples and a few 

language extensions then by another language al

together. Figure 6 shows a possible form of a loop 

interchange optimization. 

The current design of our optimizer is quite 

similar to what one would use to implement an 

optimization in a traditional compiler. It is very 

dependent on the internal representation of the 

code and the writer of such an optimization must 

$pattern 

for ($1,$2,$3) { 

${ 

for ($4,$5,$6) { 

$A; 

} 

/* check for dependence between invariants *I 

/*($!->Statement is the statement containing *I 

/*the fragment represented by $1) *I 

if Dependence($1->Statement,$4->Statement,any) fail; 

/*check for ( <,>) dependence between *I 

/* two statements in the loop body *I 

forAIIStmt($A,$7) { I* for all individual statements $7 in $A *I 

$} 

forAIIStmt($A,$8) { 

I* check dependence for legality of optimization *I 

if (Dependence($7,$8,"( <,> )")) fail; 

} 

$optimization 

for ($4,$5,$6) { 

where: 

for ($1,$2,$3) { 

$A; 

} 

$A is a meta variable representing zero or more statements 

$J-$n are meta variables representing components of a statement 

FIGURE 6 Loop interchange specification. 
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have knowledge of this representation. Although 

neither of the authors is satisfied with this as a 

final goal, it is felt to be a good intermediate step 

to prove the concept of class-based optimizations. 

4 OPTIMIZER IMPLEMENTATION 

The optimizer's implementation is greatly compli

cated by the fact that before an optimization can 

be applied, the associated pattern of unoptimized 

code must be located in the internal representa

tion of the program. In the past various code gen

erated and peephole optimizers [5-7] have done 

this, but either always on small contiguous pat

terns, or, if an attributed grammar is used, with 

restrictions on the use of attributes. In the case of 

this optimizer it must be possible to match non

contiguous patterns, as they were discussed in the 

previous section, and to add additional attributes 

(derived from operations on the compiler supplied 

ones) based on the needs of the optimization. 

Another complicating factor for the implemen

tation of the optimizer is the determination of the 

optimization ordering. Usually this is determined 

by the compiler architect, however because the 

actual optimizations are now being supplied by 

the class designers, it is quite conceivable that the 

ordering of optimizations will play a role in the 

efficiency of the optimized code. Ordering prob

lems will hopefully be minimal because optimiza

tions are triggered by class occurrences, but an 

ordering mechanism should still be explored. Cer

tainly such a mechanism will depend heavily on 

the user's application and should be specified by 

the user if the default ordering is not acceptable. 

5 CURRENT STATUS 

At the time of writing, the authors have a working 

C++ to C++ optimizer that was custom built for 

this project. This is felt to be of great worth due to 

the avoided additional complexity of layering such 

an optimizer on top of a public domain compiler 

that was not designed with such capabilities in 

mind. 

The optimizer was implemented using a tool, 

developed by one of the authors, to describe com

plex attribute relationships and structures. The 

tool allowed a relatively quick implementation of a 

very memory efficient internal representation of 

C++. Because all of the attributes of this repre

sentation are managed and mapped by this tool, 

there is great flexibility in our optimizer when it 

comes to adding to the internal program represen

tation. 

Work is currently under way to define the opti

mization specification language, as well as imple

ment the pattern matcher. As was stated earlier, 

the current approach is very mechanical and 

strongly dependent on the internal representation 

of the program being optimized. It is the authors' 

goal to evolve this into a much higher form in the 

hopes of hiding many of the details of the compiler 

implementation. 
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