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Abstract

Let f: U — A' be a regular function on a smooth scheme U
over a field K. Pantev, Toén, Vaquié and Vezzosi [30,37] define
the ‘derived critical locus’ Crit(f), an example of a new class of
spaces in derived algebraic geometry, which they call ‘—1-shifted
symplectic derived schemes’.

They show intersections of algebraic Lagrangians in a smooth
symplectic K-scheme, and stable moduli schemes of coherent she-
aves on a Calabi—Yau 3-fold over K, are also —1-shifted symplectic
derived schemes. Thus, their theory may have applications in
algebraic symplectic geometry, and in Donaldson-Thomas theory
of Calabi-Yau 3-folds.

This paper defines and studies a new class of spaces we call
‘algebraic d-critical loci’, which should be regarded as classical
truncations of the —1-shifted symplectic derived schemes of [30].
They are simpler than their derived analogues. We also give a
complex analytic version of the theory, and an extension to Artin
stacks.

In the sequels [4-8] we will apply d-critical loci to motivic and
categorified Donaldson-Thomas theory, and to intersections of
complex Lagrangians in complex symplectic manifolds. We will
show that the important structures one wants to associate to a de-
rived critical locus — virtual cycles, perverse sheaves, Z-modules,
and mixed Hodge modules of vanishing cycles, and motivic Milnor
fibres — can be defined for oriented d-critical loci.
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Pantev, Toén, Vaquié and Vezzosi [30, 37| defined a new notion of
derived critical locus. 1t is set in the context of Toén and Vezzosi’s theory
of derived algebraic geometry [34-36], and consists of a quasi-smooth
derived scheme X equipped with a —1-shifted symplectic structure w. In
fact Pantev et al. [30] define k-shifted symplectic structures on derived
stacks for k € Z, but the case relevant to this paper is k = —1, and
derived schemes rather than derived stacks.
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The following are examples of —1-shifted symplectic derived schemes:

(a) The critical locus Crit(f) of a regular function f : U — A® on a
smooth K-scheme U.

(b) The intersection LNM of smooth Lagrangians L, M in an algebraic
symplectic manifold (S, w).

(¢) A moduli scheme M of stable coherent sheaves on a Calabi—Yau
3-fold.

Parts (b),(c) are the beginning of applications of these structures in
symplectic geometry and in Donaldson—Thomas theory of Calabi—Yau
3-folds.

This paper will define and study a new class of geometric objects
we call d-critical loci (X,s). They are much simpler than —1-shifted
symplectic derived schemes, and are entirely ‘classical’, by which we
mean they are defined up to isomorphism in an ordinary category using
classical algebraic geometry in the style of Hartshorne [14], rather than
being defined up to equivalence in an co-category using homotopy theory
and derived algebraic geometry as in [34-36].

In fact we give two versions of the theory, complex analytic d-critical
loci (X,s) in which X is a complex analytic space, and algebraic d-
critical loci (X, s) in which X is a scheme over a field K. In both cases
s € H°(SY) is a global section of a certain sheaf S$ on X, satisfying
some local conditions. When we can we give results and/or proofs for
both complex analytic and algebraic versions simultaneously, or just
briefly indicate the differences between the two.

In the algebraic case there are several topologies we could work with
— the Zariski topology, the étale topology, and for an embedding X <
U of a K-scheme X into a smooth K-scheme U, it may be natural to
consider the formal completion U of U along X, and work Zariski or
étale locally on U. Whenever we can, we will use the Zariski topology.
One reason is that Theorem 1.4 below, proved in [8], requires the Zariski
rather than the étale topology, as distinct motives in ./\_/lﬁ[l[fl/ 2] can
become equal on an étale open cover of X.

To persuade the reader that d-critical loci are a useful idea, we quote
four results from the sequels [4-8] to this paper:

Theorem 1.1 (Bussi, Brav and Joyce [6]). Suppose (X,w) is a —1-
shifted symplectic derived scheme in the sense of Pantev et al. [30] over
an algebraically closed field K of characteristic zero, and let X = to(X)
be the associated classical K-scheme of X. Then X extends naturally
to an algebraic d-critical locus (X, s). The canonical bundle Kx s from
§2.4 is naturally isomorphic to the determinant line bundle det(IL.x )| yred
of the cotangent complex Lx of X. Zariski locally on X one can recon-
struct (X,w) from (X, s) up to equivalence, but this may not be possible
globally.
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That is, there is a (non-full) truncation functor from —1-shifted sym-
plectic derived schemes to algebraic d-critical loci. The theorem implies
that examples (a)—(c) above have the structure of d-critical loci.

Theorem 1.2. (a) (Bussi, Brav and Joyce [6, Cor. 6.8]) Suppose
(S,w) is an algebraic symplectic manifold over K, and L, M are smooth
algebraic Lagrangians in S. Then the intersection X = L N M, as
a K-subscheme of S, extends naturally to an algebraic d-critical locus
(X,s). The canonical bundle Kx s from §2.4 is isomorphic to Kp|xrea ®
K| xred.

(b) (Bussi [7, Th. 3.1]) Suppose (S,w) is a complex symplectic mani-
fold, and L, M are complex Lagrangian submanifolds in S. Then the
intersection X = LN M, as a complex analytic subspace of S, extends
naturally to a complex analytic d-critical locus (X,s), with canonical
bundle Kx s = K| xrea @ Kpp|xred.

Theorem 1.2(a) is a corollary of Theorem 1.1 and [30, Th. 2.10], but
Theorem 1.2(b) is proved directly, without going via derived algebraic
geometry.

In §2.4, for a d-critical locus (X, s) we construct a line bundle Ky g
on the reduced complex analytic subspace or subscheme X9, called the
canonical bundle of (X, s), and in §2.5 we define an orientation on (X, s)

to be a choice of square root K)lﬁ of Kx s on X' If X = Crit(f) for U

a complex manifold and f : U — C holomorphic then Kx ¢ = K 592 | xred,
so there is a natural square root Ky/|yra for Kx . Examples in §2.5
show that orientations need not exist, or be unique. Here are two results
on oriented d-critical loci:

Theorem 1.3 (Bussi, Brav, Dupont, Joyce and Szendréi [5]). Sup-
pose (X, s) is a complex analytic d-critical locus with orientation Ky 1/ 2.
Then we construct a Z-perverse sheaf P)’(’S a P-module Dy s, and a
mized Hodge module HS , on X. If (X,s), K;/i are locally modelled
on Crit(f), Kulcrig(fyrea for U a complex manifold and f : U — C
holomorphic, then PX’S,DX@,HX’S, are modelled on the perverse sheaf,
Z-module and mized Hodge module of vanishing cycles of U, f.

Analogues hold for oriented algebraic d-critical loci (X, s), yielding
an algebraic Z-perverse sheaf P% o P -module Dy s, and mized Hodge
module HS s on X if X isa C- scheme and a Z;-perverse sheaf P)’(

and a P-module Dx s on X if X is a K-scheme and | # char K a prime.

Theorem 1.4 (Bussi, Joyce and Meinhardt [8]). Let (X,s) be an
algebraic d-critical locus over K with an orientation K;(/i Then we

construct a motive M Fx ¢ in a certain ring of motives ./\71’;< over X. If
(X, s), K;gz are Zariski locally modelled on Crit(f), Ku|cyig(fyrea for U a
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smooth K-scheme and f: U — Al regular, then MFx , is locally mod-
elled on L~ 4mU/2([x] — MFF), where MERS is the motivie Milnor
fibre of f.

In [4] we will generalize Theorems 1.1, 1.3 and 1.4 from K-schemes to
Artin K-stacks. Theorems 1.3 and 1.4 (and their extension to stacks [4])
also have applications to extensions of Donaldson—Thomas theory of
Calabi-Yau 3-folds, as in [17-19,33]. Theorem 1.3 is important for cat-
egorification of Donaldson—Thomas invariants — defining a graded vec-
tor space (the hypercohomology H* (P)’( ¢) of the perverse sheaf) whose
dimension is the Donaldson—Thomas invariant, as proposed by Dimca
and Szendréi [9] — and hence for constructing cohomological Hall alge-
bras, following Kontsevich and Soibelman [19]. Theorem 1.4 is helpful
for defining motivic Donaldson-Thomas invariants, as in [18].

We have explained that d-critical loci are classical truncations of —1-
shifted symplectic derived schemes in [30]. There is another geometric
structure which is a semiclassical truncation of —1-shifted symplectic
derived schemes: Behrend’s schemes with symmetric obstruction theo-
ries [2], which we now define.

Definition 1.5. Let X be a K-scheme. A perfect obstruction theory
on X in the sense of Behrend and Fantechi [3] is a morphism ¢ : £® —
Ly in the derived category D(qcoh(X)), where Lx is the cotangent
complex of X, satisfying:

(i) £° is quasi-isomorphic locally on X to a complex [F~! — FO] of

vector bundles in degrees —1, 0;
(ii) hO(¢) : h°(E®) — h(LLy) is an isomorphism; and
(iii) h=(p) : h~H(E®) — h~ (L) is surjective.
Following Behrend [2], we call ¢ : £* — Lx a symmetric obstruction
theory if we also are given an isomorphism 6 : £* — £*Y[1] with 0V [1]=4.

If U is a smooth K-scheme and f : U — A! a regular function then
X = Crit(f) has a natural symmetric obstruction theory ¢ : £* — Lx
with
(1.1) & =[TU|x T*U|x].

But Pandharipande and Thomas [29] give examples of schemes X with
symmetric obstruction theories with X not locally isomorphic to a crit-
ical locus. Schemes with symmetric obstruction theories are the basis
of Joyce and Song’s theory of Donaldson—Thomas invariants of Calabi—
Yau 3-folds [17]. If (X, w) is a —1-shifted symplectic derived scheme in
the sense of Pantev et al. [30], then the classical scheme X = to(X) has
a symmetric obstruction theory ¢ : £* — Ly with £* = i*(Lx) and
0 = i*(wp), where i : X < X is the inclusion.

We illustrate the relations between these structures in Figure 1.1. The
two dotted arrows ‘--+’ indicate a construction which works locally, but

0 flx
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not globally. That is, given an algebraic d-critical locus (X, s), then
Zariski locally on X we can construct both a —1-shifted symplectic
derived scheme (X,w), and a symmetric obstruction theory ¢ : £* —
Lx, 0, uniquely up to equivalence, but we cannot combine these local
models to make (X,w) or £°, ¢, 6 globally on X because of difficulties
with gluing ‘derived’ objects on open covers.

‘ —1-shifted symplectic derived schemes [30] ‘

/.\

schemes with symmetric
obstruction theori}e/zs 2] < algebralc d-critical loci ‘
ENY
2,3] / W
- - perverse sheaves, %-modules
virtual cycles | motivic Milnor fibres | and mixed Hodge modules

= )

categorified D-T| |‘Fukaya categories’
motivic  D-T'||theory [9] and co-| |of complex and al-
invariants [18] | |homological Hall||gebraic  symplectic
algebras [19] manifolds

DT invariants
of Calabi—Yau
3-folds [17,18,33]

Figure 1.1. Relations between different structures, and applications

If X is a proper K-scheme with obstruction theory ¢ : £* — L x then
Behrend and Fantechi define a virtual cycle [X]V'" in Chow homology
A, (X). If the obstruction theory is symmetric, and K algebraically
closed of characteristic zero, then Behrend [2] (see also [17, §4]) shows
that [X]VI" € Ag(X), and

(12) ../‘[X]Vir 1 = X(X7 VX)’

where vy is a Z-valued constructible function on X called the Behrend
function, which depends only on X as a K-scheme. In particular, [X]Vi*
is independent of the choice of symmetric obstruction theory on X.

If (X,s) is a proper algebraic d-critical locus, we define the virtual
cycle of X to be x(X,vx) € Z, as in (1.2). Although we will not do it
in this paper, one can define a notion of family of d-critical loci over a
base Y, and show that the virtual cycles of a proper family of d-critical
loci are locally constant on Y.

Example 2.16 below shows that locally, schemes with symmetric ob-
struction theories can contain strictly less information than algebraic
d-critical loci. On the other hand, Example 2.17 shows that schemes
with (symmetric) obstruction theories can contain global, nonlocal in-
formation (in the form of a class in Ext?(T* X, T* X ")) which is forgotten
by algebraic d-critical loci.
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The author and his collaborators tried for some time to construct
perverse sheaves, and motivic Milnor fibres, from a scheme with sym-
metric obstruction theory, but failed, and the author now believes this
is not possible. So, one moral of Figure 1.1 is that d-critical loci are
more useful than schemes with symmetric obstruction theories for vari-
ous applications.

Conventions. Throughout K will be an algebraically closed field with
char K # 2. As in Theorem 1.1, the sequel [6] and those parts of [4,5,8]
which depend on [6] also require char K = 0, but this paper does not
need char K = 0. All complex analytic spaces, K-schemes and Artin K-
stacks X will be assumed to be locally of finite type, as this is necessary
for the existence of local embeddings X < U with U a complex manifold
or smooth K-scheme.

Acknowledgements. I would like to thank Oren Ben-Bassat, Den-
nis Borisov, Chris Brav, Tom Bridgeland, Vittoria Bussi, Stephane
Guillermou, Frances Kirwan, Davesh Maulik, Sven Meinhardt, Anatoly
Preygel, Pierre Schapira, Edward Segal, Baldzs Szendréi, and Bertrand
Toén for helpful conversations.

2. The main results

This section, the heart of the paper, gives our central definitions, the
main results, and some examples. The proofs of results stated in §52.1,
2.2, 2.3, 2.4, 2.6, and 2.8 will be deferred until sections 3-8, respectively.

Sections 2.1-2.6 concern d-critical structures on complex analytic
spaces and K-schemes. Some good background references on complex
analytic spaces and analytic coherent sheaves upon them are Gunning
and Rossi [13] and Grauert and Remmert [12]. A good book on K-
schemes and sheaves in algebraic geometry is Hartshorne [14]. The re-
lationship between C-schemes and complex analytic spaces is discussed
in Hartshorne [14, App. B] and Serre [31].

After some background material on Artin stacks and sheaves upon
them in §2.7, section 2.8 extends parts of §2.1-§2.6 from K-schemes to
Artin K-stacks. Given an Artin K-stack X, the main idea is to consider
smooth 1-morphisms ¢t : T — X from K-schemes T, and apply the
results of §2.1-§2.6 on 7.

2.1. The sheaves SX,SQ( and their properties. The next theorem,
which will be proved in §3.1-§3.3, associates a sheaf Sx to each complex
analytic space (or K-scheme) X, such that (very roughly) sections of
Sx parametrize different ways of writing X as Crit(f) for U a complex
manifold (or smooth K-scheme) and f : U — C holomorphic (or f :
U — A regular). This will be needed in the definition of d-critical loci
in §2.2.
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Note our convention from §1 that all complex analytic spaces and
K-schemes X in this paper are locally of finite type, which is necessary
for the existence of embeddings ¢ : X < U for U a complex manifold or
smooth K-scheme.

Theorem 2.1. Let X be a complex analytic space. Then there exists
a sheaf Sx of commutative C-algebras on X, unique up to canonical
1somorphism, which is uniquely characterized by the following two prop-
erties:

(1) Suppose U is a complex manifold, R is an open subset in X, and
i : R — U is an embedding of R as a closed complex analytic
subspace of U. Then we have an exact sequence of sheaves of
C-vector spaces on R:

. it
(2.1) 0 Iru i"'(Oy) —— Ox|rp ——0,

where Ox, Oy are the sheaves of holomorphic functions on X, U,
and it is the morphism of sheaves of C-algebras on R induced by
i, which is surjective as i is an embedding, and Iy = Ker(i*) is
the sheaf of ideals in i~*(Oy) of functions on U near i(R) which
vanish on i(R).

There is an exact sequence of sheaves of C-vector spaces on R:

LR,U i~ (Oy) d i~HT*U)

22) 0—=8
(22) xlr 2, Ipy - i~ H(T*U)’

where d maps [ + [J%E,U = df + Irpy - i~Y(T*U), and LRU 5 Q
morphism of sheaves of commutative C-algebras.

(ii) Let R,U,i,cpy and S,V,j,tsv be as in (i) with R C S C X, and
suppose ® : U — V is holomorphic with ®oi = j|g as a morphism
of complex analytic spaces R — V. Then the following diagram of
sheaves on R commutes:

Syl MO s T
[§7V R IS,V . j_l(T*V) R
(2.3) id lil(fbﬁ) lil(dé)
0 — Sxln LR,U i~ (Ov) d i"HT*U)
I%%,U IR,U 'i_l(T*U) '

Here ® : U — V induces * : d~1(Oy) — Oy on U, so we have
(24) NN OV) R =i o @7 (Oy) — i (Ov),

a morphism of sheaves of C-algebras on R. As ®oi = j|r, equation
(2.4) maps Isv|r — Iry, and so maps I§7V|R — I%%’U. Thus
(2.4) induces the morphism of sheaves of C-algebras in the second
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column of (2.3). Similarly, d® : ®~YT*V) — T*U induces the
third column of (2.3).
These sheaves Sx also satisfy:

(a) There is a natural decomposition Sx = Cx @ S%, where Cx is
the constant sheaf on X with fibre C, as a sheaf of C-subalgebras
in Sx, and 89( C Sx is a sheaf of ideals in Sx, the kernel of the
composition of morphisms of sheaves of commutative C-algebras

Bx ’ﬁx

(25) SX OX OXred 5

with X the reduced complex analytic subspace of X, and ix :
Xred < X the inclusion.

(b) There are natural exact sequences of sheaves of C-vector spaces
on X :

(2.6) 0—>h_1(Lx) Sx Ox

ax Bx d

T*X = hO(Ly),

BO dEB-ﬁ
= OX ZX T*X ) OXred,

aO
(2.7) 0—h"YLx) ——— S%

where Lx is the cotangent complex and T*X the cotangent sheaf

of X.
(¢) The sheaf 59( is canonically isomorphic to the cohomology of the
complex
(2.8) 13y Ipu - i~ Y(T*U) —— i"L(A2T*D)).

With the exception of (c), the analogue of all the above also holds
for schemes over a field K in algebraic geometry, taking X to be a K-
scheme with structure sheaf Ox and reduced K-subscheme X*4, and
Sx a sheaf of commutative K-algebras on X in either the Zariski or
the étale topology, and R C X a Zariski open K-subscheme, and U a
smooth K-scheme, and replacing Cx by Kx. For (c), we must replace
U by the formal completion U of U along i(R), so that the analogue of
(2.8) is

el

112%,0 4 Irp - i_l(T*ﬁ) i_l(A2T*U), where

(2.9)
i_l(CDg)::ngigoi_l(C?U)/Iﬁlh Ilezznqgéijlj/Iﬁl]c:i_l(C?U).

Here in part (b), for (co)tangent complexes of K-schemes see Illusie
[15,16], and of complex analytic spaces see Palamodov [25-28|.

Remark 2.2. (a) In this paper and the sequels [4-8] we will make
no use of the fact that Sx is a sheaf of commutative C-algebras, rather
than just a sheaf of sets. Material in [5, Th. 6.9] on Verdier duality
and monodromy isomorphisms Y x s, T x s for the perverse sheaves P)'Q s
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in Theorem 1.3 above depends implicitly on being able to multiply s €
H 0(59() by —1 or by €, but we have not yet found an application for
the additive or multiplicative structures on SX,S%. Although (X, Sx)
is a locally ringed space, it is generally far from being a scheme. The
ideals Sg( in Sx need not be square-zero, so the multiplicative structure
on Sy =Cx @ 89( can be nontrivial.

(b) Equation (2.6) suggests the following interpretation of the sheaf
Sx: on a complex analytic space or K-scheme X we have the de Rham
differential dgr : Ox — LLx, which is a morphism in D mod-Cx or
D mod-Kx, the derived category of complexes of sheaves of C- or K-
vector spaces on X. Write D% for the cone on dgg, so that we have a
distinguished triangle

(2.10) Ox MLy D3, Ox[1].

Comparing (2.6) with the long exact sequence of cohomology sheaves of
(2.10), we see that Sy = h~1(D%).

There are natural pullback morphisms ¢* for the sheaves SX,S%:

Proposition 2.3. Let ¢ : X — Y be a morphism of complex analytic
spaces, and Sx,SS)(,LR7U,IR7U,Sy,830/,Ls7v,IS7V be as in Theorem 2.1.
Then there is a unique morphism ¢* : ¢~ (Sy) — Sx of sheaves of
commutative C-algebras on X, which maps ¢_1(S€/) — 89(, such that if
R C X, S CY are open with ¢(R) C S, U,V are complex manifolds,
i: R <— U j: 8 <V are closed embeddings, and ® : U — V is
holomorphic with ®oi = jo¢|g : R — V, then as for (2.3) the following
diagram of sheaves on R commutes:

(2.11)
_ “lojH(Oy)] ¢ (7T V)]
0=¢ (S o (Ol o )
Rl s 17 P S i ) P
¢*|R \Llfl(@ﬁ) Zil(dq))l
LR,U i_l(OU) d i_l(T*U)
0~ Sxlr 3, Iy i~ (T"0)

If Y — Z is another morphism of complex analytic spaces, then
(212) (Yog)" = ¢ 0d™ (") : (Vod) ! (Sz) = ¢ oy} (Sz) — Sx.
If $: X - Y isidy : X — X then idy = ids, : id! (Sx) = Sy — Sx.

If ¢ : X =Y is an étale morphism of complex analytic spaces, then
¢+ $~H(Sy) — Sx is an isomorphism of sheaves of commutative C-
algebras.

With the exception of the last part, the analogue of all the above holds

for schemes over a field K in algebraic geometry, taking ¢ : X — Y
to be a morphism of K-schemes, R C X, S CY to be Zariski open,
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and U,V to be smooth K-schemes, and taking Sx,Sy to be sheaves
of commutative K-algebras on X,Y in either the Zariski or the étale
topology, as in Theorem 2.1.

For the last part, if Sx,Sy are sheaves in the Zariski topology, then
¢* is an isomorphism if ¢ : X — Y is a Zariski open inclusion, and if
Sx,Sy are sheaves in the étale topology, then ¢* is an isomorphism if
¢: X =Y is étale.

The next example, central to our theory, shows the point of Sx.

Example 2.4. Let U be a complex manifold, f : U — C be holo-
morphic, and X = Crit(f), as a closed complex analytic subspace of
U. Write i : X < U for the inclusion, and Ixy C i~*(Op) for the
sheaf of ideals vanishing on X C U. Then i~!(f) € H(i"*(Op)) with
d(i7'(f)) € H(Ixp -~ (T*U)) € HO(i/(T*U)), s0 i ' (f) + I3 €
HO(i""(Ou) /1% ) with d(i7'(f) + I3 ) = 0 in HO(im N (T*U)/Ix v -
i~1(T*U)). Thus by equation (2.2) with R = X, we see there is a unique
section s € HO(Sx) with vx v (s) =i 7' (f) + Ix y-

Thus, if we can write X = Crit(f) for f : U — C holomorphic, then
we obtain a natural section s € H(Sx). Essentially s = f + 1, gf, where
Iqy € Oy is the ideal generated by df. Note that flx = f + Iaf, so
s determines f|x. Basically, s remembers all of the information about
f which makes sense intrinsically on X, rather than on the ambient
space U.

We can also explain the decomposition Sy = Cx 6959( in this example.
We will see in Example 2.13 that if X = Crit(f) then f need not be
locally constant on X, but f is locally constant on the reduced complex
analytic space X", Since locally constant functions on X™d C U
extend uniquely to locally constant functions on U near X9, after
shrinking U we can uniquely write f = ¢+ f9, where ¢ : U — C is
locally constant and f° : U — C has f°| ywea = 0. Then ¢, f° correspond
to the components of s in H'(Cx), H°(S%), and X = Crit(f°).

The analogue also holds in the algebraic case, with U a smooth K-
scheme and f : U — A' a regular function.

2.2. The definition of d-critical loci, and some examples. We
can now define d-critical loci:

Definition 2.5. A (complex analytic) d-critical locus is a pair (X, s),
where X is a complex analytic space, and s € H 0(89() for 89( as in The-
orem 2.1, satisfying the condition that for each x € X, there exists an
open neighbourhood R of z in X, a complex manifold U, a holomorphic
function f : U — C, and an embedding 7 : R < U of R as a closed
complex analytic subspace of U, such that i(R) = Crit(f) as complex
analytic subspaces of U, and tg y(s|gr) =i 1 (f) + IJ%%,U'
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Similarly, for K-schemes we define an (algebraic) d-critical locus to
be a pair (X, s), where X is a K-scheme, and s € H(S%) for Sy as in
Theorem 2.1, such that X may be covered by Zariski open sets R C X
with a closed embedding ¢ : R — U into a smooth K-scheme U and
a regular function f : U — A! = K, such that i(R) = Crit(f) as K-
subschemes of U, and tgy(s|r) =i~ (f) + I3 -

In both cases we call (R, U, f,i) a critical chart on (X, s).

A morphism ¢ : (X,s) — (Y,t) of d-critical loci (X, s), (Y,t) (either
complex analytic or algebraic) is a morphism ¢ : X — Y (of complex
analytic spaces or K-schemes) such that ¢*(¢) = s, for ¢* as in Propo-
sition 2.3. If ¢ : (X,s) — (Y,t), ¥ : (Y,t) — (Z,u) are morphisms then
equation (2.12) implies that ¢ o ¢ : (X,s) — (Z,u) is a morphism, and
the last part of Proposition 2.3 shows that idx : (X,s) — (X,s) is a
morphism. Thus, (complex analytic or algebraic) d-critical loci form a
category.

Remark 2.6. (a) In Definition 2.5, we could instead have defined
a d-critical locus (X, s) to have s € H%(Sx) rather than s € H°(SY%),
but with the rest of the definition the same. The difference is this: as
in Example 2.4, if X = Crit(f) for holomorphic f : U — C, then f|yrea
is locally constant, and we can write f = f + ¢ uniquely near X in U
for fO: U — C holomorphic with Crit(f%) = X = Crit(f), f°|yrea = 0,
and ¢ : U — C locally constant with ¢|yrea = f|xred.

Defining d-critical loci using s € H°(SY), as we have done, corre-
sponds to remembering only the function f° near X in U, and forget-
ting the locally constant function f|yrea : X™4 — C. Equivalently, it
corresponds to remembering the closed 1-form df = df° on U near
X = (df)~0). In the applications the author has in mind [4-8], tak-
ing s in H°(S%) rather than H°(Sx) is more natural, as there is no
canonical value for f|yrea other than f|yra = 0. Also (2.8)—(2.9) give
an alternative description for 8% rather than Sx.

(b) As in Theorem 1.1, in [6, Th. 6.6] we define a truncation functor
from —1-shifted symplectic derived K-schemes (X,w) in the sense of
Pantev et al. [30] to algebraic d-critical loci (X, s), so that algebraic
d-critical loci may be regarded as classical truncations of —1-shifted
symplectic derived K-schemes.

If we define a morphism ¢ : (X,w) — (Y,«') of —1-shifted sym-
plectic derived K-schemes to be a morphism ¢ : X — Y of derived
K-schemes with ¢*(w') ~ w, this forces ¢ to be étale. However, the
notion of morphism ¢ : (X, s) — (Y, t) of d-critical loci in Definition 2.5
is more general, e.g. ¢ : X — Y can be smooth of positive dimension,
as in Proposition 2.8.

(c) For (X,s) to be a (complex analytic or algebraic) d-critical locus
places strong local restrictions on the singularities of X. For example,
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Behrend [2] notes that if X has reduced local complete intersection sin-
gularities then locally it cannot be the zeroes of an almost closed 1-form
on a smooth space, and hence not locally a critical locus, and Pandhari-
pande and Thomas [29] give examples which are zeroes of almost closed
1-forms, but are not locally critical loci.

On a d-critical locus (X, s), any closed embedding X D R-U
with U smooth can be made into a critical chart (R',U’, f',i'), after
shrinking R, U.

Proposition 2.7. Suppose (X, s) is a complex analytic d-critical lo-
cus, R C X is open, and i : R < U 1is a closed embedding, where U 1is
a complex manifold. Then for each x € R, there exist open x € R C R
and i(R") CU" C U and a holomorphic function f: U" — C such that
(R, U, f',1") is a critical chart on (X,s), where i’ = i|g : R’ — U’.

Suppose also that dimU = dimT, X, so that di|, : T, X — Ty U
is an isomorphism, and f : U — C is holomorphic with (g (s|r) =
iTN(f) + I - Then we may take f' = flyr in (R, U, f',4).

The analogue holds for algebraic d-critical loci, with U a smooth K-
scheme, R C RC X, U' C U Zariski open, and f :U — A", f/ U —
Al regular.

The next result will be useful in §2.8.

Proposition 2.8. Let ¢ : X — Y be a smooth morphism of complex
analytic spaces or K-schemes. Supposet € HO(SY.), and set s := ¢*(t) €
HO(S8Y), for ¢* as in Proposition 2.3. If (Y,t) is a d-critical locus, then
(X,s) is a d-critical locus, and ¢ : (X,s) — (Y,t) is a morphism of d-
critical loci.

Conversely, if also ¢ : X — Y is surjective, then (X,s) a d-critical
locus implies (Y,t) is a d-critical locus.

As in Hartshorne [14, App. B] and Serre [31], there is an analytifi-
cation functor from algebraic C-schemes X to complex analytic spaces
X3 where the points of X®" are the C-points of X. It is easy to show
that this extends to d-critical loci, and we leave the details to the reader:

Proposition 2.9. Let (X,s) be an algebraic d-critical locus over
the field K = C. Then the complex analytic space X*" associated to
the C-scheme X extends naturally to a complex analytic d-critical locus
(Xan San)'

The proofs of the following lemma and proposition are also more-or-
less immediate, and we leave them as exercises.

Lemma 2.10. Let (X,s) be a d-critical locus, and 0 # ¢ € C or
0+#ceK. Then (X,c-s) is also a d-critical locus, and if (R,U, f,1i) is
a critical chart on (X, s) then (R, U, c-f,1) is a critical chart on (X, c-s).
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Proposition 2.11. Let (X,s),(Y,t) be d-critical loci. Write wx :
X XY = X, ny : X XY =Y for the projections, and define s Ht :=
5 (8) + 7% (1) in HO(S% .y ), for m%, 7% as in Proposition 2.3. Then
(X xY,sHBt) is a d-critical locus, and if (R,U, f,i), (S,V,g,7) are
critical charts on (X, s), (Y, t) respectively then (Rx S, U XV, fHg,ixj)
is a critical chart on (X xY,sHt).

Remark 2.12. Note that in Proposition 2.11, wx, 7y are in general
not morphisms of d-critical loci (X x Y, sBt) — (X,s), (X xY,sHt) —
(Y,t) in the sense of Definition 2.5, since 7% (s) # s Bt # 73-(t). Also
(X xY,sHt) is not a product (X,s) x (Y,t) in the category of d-
critical loci, in the sense of category theory. Nonetheless, we will call
(X xY,sHt) the product of (X,s),(Y,t).

Let U be a complex manifold, f : U — C be holomorphic, and
X = Crit(f), as a complex analytic space. Then f|x : X — C is
holomorphic, and d(f|x) = 0 in H°(T*X). Experience with calculus
on manifolds suggests that if g : X — C is holomorphic with dg = 0 in
HY(T*X) then g is locally constant on X. However, this is true only for
reduced complex analytic spaces or K-schemes X. Here is an example
of a non-reduced critical locus with f|x not locally constant:

Example 2.13. Define f : C2 — C by f(z,y) = z° 4+ 2%y + ¢°, and
let X = Crit(f), as a complex analytic space. Then f|x € H°(Ox).
We have d(f|x) = 0 € HY(T*X), since X = df~1(0). Suppose for a
contradiction that f is constant on X near (0,0). Then we may write

a 0
Floy) = A+ 2 Ba,y) + % Cla,y)
on C? near (0,0), for some holomorphic functions B,C defined near
(0,0) in C2. That is, we have
2’ +22y? +y° = A+ (5at 4 22y?) 3 By jatyd +(22%y+5yt) YD Ci iyl
1,520 1,520
Comparing coefficients of z°, 3%, z%y? give the equations
1=5B10, 1=5Cp1, 1=2B19+2Cy;,
which have no solution. Thus in this case, f|x is not locally constant

on X.

If X = Crit(f) and X™ is the reduced complex analytic subspace
of X, then f|yrea is always locally constant. This is why we defined
S% using restriction to X™4 in Theorem 2.1(a). Combining Theorem
2.1(a),(b) we deduce:

Corollary 2.14. Suppose X is a complex analytic space, and the
following sequence of sheaves of C-vector spaces on X is exact:

(2.13) 0 Cy 2> 0y —2

T*X,
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where inc : Cx < Ox is the inclusion of the constant functions into the
holomorphic functions. Then S% = h™'(LLx), so that 89( 18 a coherent
sheaf on X, and Sx = Cx @ h™'(Lx). The analogue also holds for
K-schemes.

Now (2.13) is exact if for g : X — C a locally defined holomorphic
function, dg = 0 implies g is locally constant. In Example 2.13 this fails,
so in this example (2.13) is not exact, and 8% % h~!(Lx), and S% is
not a coherent sheaf on X. Next we consider smooth complex analytic
spaces and K-schemes:

Example 2.15. Suppose X is a complex manifold, considered as a
complex analytic space. Then in Theorem 2.1 we see that Sy = Cx, the
constant sheaf, and 59( = 0, the zero sheaf. To see this, take R =X =U
and ¢ = idx : X — X in Theorem 2.1. Then Ix x = 0 by (2.1), and
Sy & Ker(d : Ox — T*X) ~ Cx by (2.2). As 8% = 0 there is a
unique global section s = 0 € H°(S%), and (X, 0) is a complex analytic
d-critical locus, as it is Crit(0 : X — C).

Similarly, if X is a smooth K-scheme then Sy = Ky, and S% = 0,
and (X,0) is an algebraic d-critical locus.

Our next two examples compare algebraic d-critical loci with sym-
metric obstruction theories on K-schemes, as defined in Definition 1.5.

Example 2.16. Let K be a field of characteristic zero, and define X
to be the K-scheme X = Spec(K[z]/(z")) for n > 2. Then X has an
obvious embedding i : X — A" = Spec(K[z]) as the subscheme 2" = 0

in A'. Tt is a non-reduced point. Using this embedding X < A, from
Theorem 2.1(i) we find that

H(Sx) = {ao + anp12" ™ + -+ + agp_12?" 71 4 (27)

n
a0, an41, - - -, a2n—1 € K} 2 K",

and H°(S%) ¢ HY(Sx) is the subspace with ag = 0, isomorphic to K" 1.

Now let 0 € U C A! be open, and suppose f : U — Al is regular with
f(0) = 0 and Crit(f) = i(X). Write ap = %%(0) for k =0,1,....
Then f(0) = 0 gives ap = 0, and Crit(f) = X is equivalent to a; =
- =a, =0and a,;1 # 0. The section s € H°(S%) corresponding to
fis f+ (") = ap12"™ + -+ ag, 122" + (22). From this we see
that if s = ap 12" + -+ ag,_12277 1 + (227) € HY(SY), then (X, s)
is an algebraic d-critical locus if and only if a,4+1 # 0.

By equation (1.1), the natural symmetric obstruction theory on X =
Crit(f) is determined by % ‘X, that is, by (n+1)na,112" ' +--- mod-
ulo (2™). Thus, in this example, the d-critical locus (X, s) associated to
Crit(f) records the first n — 1 coefficients a,11,ap42,...,a2,—1 in the
power series expansion of f(z) = a, 12" +an 122" 2+ at 0, but the
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symmetric obstruction theory ¢ : £ — Lx, 6 records only the first co-
efficient a,,11. Hence (at least in this case), the algebraic d-critical locus
remembers more information, locally, than the symmetric obstruction
theory.

Example 2.17. Let ¢t : U — A! be a smooth morphism of K-schemes
of relative dimension 2, whose fibres U, for ¢ at and near 0 in A' are K3
surfaces. Set X = Uy C U, and regard U,t as a 1-parameter family of
deformations of X.

We wish to compare Crit(t? : U — A') and Crit(0 : X — A!) in the
categories (or higher categories) of:

(i) classical K-schemes;
(ii) algebraic d-critical loci;
(iii) schemes with perfect obstruction theories [3];
(iv) schemes with symmetric obstruction theories [2]; and
(v) —1-shifted symplectic derived schemes [30].

We will see that the two are isomorphic in (i),(ii), but not equivalent in

(iii)~(v). For (i), Crit(t? : U — A') and Crit(0 : X — A') are both X as

classical schemes. For (ii), as X is smooth 8% = 0, so Crit(t> : U — A!)
and Crit(0: X — A') are both (X,0) as algebraic d-critical loci.

For (iii), write ¢ : £* — Lx and ¢ : F* — Lx for the obstruction

theories from Crit(t? : U — A') and Crit(0 : X — A'). Then (1.1) gives

2 (42
g = [TUlxy 2 gy, o= [Tx — S T Xy,

We want to know whether £* = F* in D(qcoh(X)). Now 7<_1(E®) =
TXI[1] and 7>9(E°) = T*X, so we have a distinguished triangle in
D(qcoh(X)):

= T*X[-1] = TX]1] E* T*X

That is, £° is the cone on a : T*"X[—1] — TX|[1] in D(qcoh(X)) for
some « in Ext?(T*X,TX). Hence £* = F* if and only if o = 0.

The normal bundle v of X in U, and its dual v*, are both iso-
morphic to Ox as t : U — Al induces isomorphisms v = t*(TyAl),
v* 2 t*(TgAb). Hence we have exact sequences

0 Ox T*U|x TX 0.

Let these correspond to 8 € Ext!(Ox,TX), and 8" € Ext! (T*X, Ox).
Then a = B’ o f” € Ext*(T*X,TX) = H*(TX ® TX).

Under the isomorphisms Ext!(Ox, TX) = HY(TX) = Ext}(T* X, Ox),
we see that 3/, 8" are both identified with 8 € H'(TX), which para-
metrizes the infinitesimal deformation of {U; : t € A} at t = 0, so that
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informally 8 ~ %Ut|t:0- The projection of a from H?(TX ® TX) to
H?(A’TX)~Kis B2

Let us choose the deformation ¢ : U — A' of X = U, so that the
infinitesimal deformation 8 € H'(TX) at t = 0 satisfies 82 # 0 in
H?(A’TX) = K, which is possible by well known facts about K3 sur-
faces. Then o # 0 in Ext?(T*X,TX), and £* % F°. Hence Crit(¢? :
U — A') and Crit(0 : X — Al) are not equivalent as schemes with
perfect obstruction theories, as in (iii), and so a fortiori they are also
not equivalent as schemes with symmetric obstruction theories, as in
(iv), or as —1-shifted symplectic derived schemes, as in (v).

Observe that a € Ext?(T* X, T X) which distinguishes the obstruction
theories is global information, which is locally trivial: if Y C X is any
affine open subset then aly = 0 as Ext?(T*Y,TY) = 0. Thus (at least
in this case), the (symmetric) obstruction theory remembers global, non-
local information which is forgotten by the algebraic d-critical locus.

This example shows that the dotted arrows ‘--+’ in Figure 1.1, which
indicate local constructions, cannot be made to work globally.

Using related ideas, the author expects that if (X, s) is an algebraic
d-critical locus, then there is an obstruction in Ext3 (T*X, (T*X )V)
to finding a symmetric obstruction theory ¢ : £* — Lx, 6 on X
which is locally modelled on (1.1) when (X, s) is locally modelled on
Crit(f : U — C). But the author does not know of an example in which
this obstruction is nonzero. Finding such an example would show that
the truncation functor from —1-shifted symplectic derived schemes to
algebraic d-critical loci in [6] is not essentially surjective.

2.3. Comparing critical charts (R, U, f,7). In §2.2 we defined a d-
critical locus (X, s) to admit an open cover by critical charts (R, U, f,1),
which write (X, s) as Crit(f) in an open set R C X. We will treat critical
charts like coordinate charts on a manifold. Our analogues of transition
functions between coordinate charts are called embeddings.

Definition 2.18. Let (X,s) be a d-critical locus (either complex
analytic or algebraic), and (R, U, f,i) be a critical chart on (X,s). Let
U’ C U be (Zariski) open, and set R’ =i~ (U’) C R, so that R' C R C
X are (Zariski) open, and i’ = i|g : R < U’, and f' = f|y, : U' — C
or Al. Then (R, U, f',#) is also a critical chart on (X,s), and we call
it a subchart of (R,U, f,i). As a shorthand we write (R',U’, f',i') C
(R, U, f,19).

Let (R,U, f,i) and (S,V,g,j) be critical charts on (X,s), with R C
S C X. An embedding of (R,U, f,i) in (S,V,g,7) is a locally closed
embedding ® : U < V of complex manifolds or K-schemes such that
Poi=jlg:R—->Vand f=go®:U — C or A'. As a shorthand
we write ® : (R,U, f,i) < (S,V,g,j) to mean ® is an embedding of
(R> U7 f7 Z) in (57 V».g?])
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Clealy, if ® : (R,U, f,i) = (S,V,0,7), ¥ : (5,V,g,9) < (T, W, h, k)
are embeddings, then W o @ : (R, U, f,i) < (T,W,h,k) is also an em-
bedding.

Ifo: (R,U,f,i)— (S,V,g,k) is an embedding then dimU < dim V.
Thus, embeddings between critical charts (R, U, f,i),(S,V,g,j) usually
go in only one direction, and do not have inverses which are embeddings.
The author drew some inspiration for these ideas from the theory of
Kuranishi spaces in the work of Fukaya, Oh, Ohta and Ono [10, §A] in
symplectic geometry: critical charts (R, U, f,7) are like Kuranishi neigh-
bourhoods on a topological space, and embeddings are like coordinate
changes between Kuranishi neighbourhoods.

In the algebraic case, it is sometimes convenient to work with critical
charts (S,V,g,j) in which V' C A" is Zariski open in an affine space A".
Every critical chart (R, U, f,i) locally admits embeddings into such a
(S,V,g,7). The proof of the next proposition in §5.1 uses the assumption
char K # 2 from §1.

Proposition 2.19. Let (R,U, f,i) be a critical chart on an alge-
braic d-critical locus (X, s). Then for each x € R there exists a sub-
chart (R,U', f',i") C (R,U, f,i) with * € R’ and an embedding ® :
(R, U, f',7) <= (S,V,g,7) into a critical chart (S,V,g,7) with V.C A"
Zariski open for some n = 0.

Given two critical charts (R, U, f,i),(S,V,g,j) on (X, s), there need
not exist embeddings between them (or their subcharts) in either di-
rection. So to compare (R,U, f,i),(S,V,g,j), we construct embed-
dings of subcharts (R',U’, f',4), (S, V', ¢, 7) into a third critical chart
(T, W, h, k) with dim W > dim U, dim V.

Theorem 2.20. Let (X,s) be a d-critical locus (either compler ana-
lytic or algebraic), and (R, U, f,1),(S,V,g,7) be critical charts on (X, s).
Then for each x € RN S C X there exist subcharts (R, U’ f',i") C
(R, U, f,1), (S",V',¢',7) € (S,V,g,7) with € R"'NS" C X, a crit-
ical chart (T,W,h,k) on (X,s), and embeddings ® : (R, U’ f',i') —
(T,W,h,k), W: (S V' d, i) — (T,W,h,k).

Remark 2.21. To see the point of the definition and theorem, we
explain how they will be used. Often, given a d-critical locus (X, s),
we want to construct some global object G on X by gluing together
local data by isomorphisms. Examples include the canonical bundle
Kx s in §2.4, perverse sheaves, Z-modules and mixed Hodge modules on
oriented d-critical loci (X, s) in [5], and motivic Milnor fibres on oriented
algebraic d-critical loci (X, s) in [8]. For each of these constructions, we
use the following method:

(i) For each critical chart (R, U, f,i) on (X, s), we define a geometric

structure gR,U,f,z’ on R, with gR@U/,f/J'/ = QR,va,i|R/ for (R/,U,,
) € (RU, f,4).
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(ii) For each embedding ® : (R,U, f,i) — (S,V,q,j), we define a
canonical isomorphism ®. : Gry i — Gsvg,i|lr. We show @, is
independent of ®, that is, if ®, @ : (R,U, f,i) < (S,V,g,j) are
embeddings then ¢, = P,.

(iii) For embeddings ® : (R,U, f,i) < (S,V,¢9,7), ¥ : (S,V,q,j) —
(T,W,h,k), we show that (Vo ®), = W,|[go ®, : Gruri —
Gr.wh kR

(iv) Choose critical charts {(Ra, Uq, fa,%a) : a € A} with {Rq : a € A}
an open cover of X. Using (ii),(iii) and Theorem 2.20 we obtain
isomorphisms tep 1 GR,.Us. faria| RanRy — GRy,Up. f1.is | RanR, fOT @b €
A, with tqq = id and tpc © Lap| RaNRyNRe = tac| RanRyNR. TOT @, b,c €
A. Thus, provided the geometric structures concerned form a
sheaf, there exists G on X, unique up to canonical isomorphism,
with Q\Ra = ngUmfmia for all a € A.

Our next three results say roughly that if & : (R, U, f,i) — (S,V,g,J)
is an embedding of critical charts on (X, s), then locally near j(R) in V/
we have VU xC"or V=U x A" and g = fB 22 + -+ + 22, where
n = dimV — dimU. But in the algebraic case we have to be careful
about which topology we mean when we say ‘locally’. The complex
analytic case is straightforward:

Proposition 2.22. Let (X,s) be a complex analytic d-critical locus,
and ® : (R,U, f,i) < (S,V,g,7) an embedding of critical charts on
(X,s). Then for each x € R there exist open neighbourhoods U’ , V'
of i(x),j(x) in UV with ®(U") C V', and holomorphic o : V! — U,
B:V'—C" forn=dimV —dimU, such that a x B: V' — U x C" is
a biholomorphism with an open subset of U x C", and a o ®|y» = idyy,
Bo®ly =0, glyr = foa-t (2 +-+22) o f.

For the algebraic case, we give two statements. The first is a direct
analogue of Proposition 2.22 for the étale topology, regarding ¢ : U’ —
U, 7: V' — V as étale neighbourhoods of i(z),j(z) in U,V, and &’ :
U — V' with ® o1 = j0 @ as the analogue of ®(U’) C V'. Tt will be
used in [5].

Recall our convention in §1 that the base field K of X is algebraically
closed with char K # 2. Both these assumptions will be used in the
proofs of Propositions 2.23 and 2.24, since to define V' we need to take
square roots in K, and we need charK # 2 to diagonalize quadratic
forms over K.

Proposition 2.23. Let (X,s) be an algebraic d-critical locus, and
O: (R,U, f,i) — (S,V,g,7) an embedding of critical charts on (X, s).
Then for each x € R there exist smooth K-schemes U', V', a point
v € U', and morphisms + : U — U, 3 : V! — V, ® : U — V/,
a: V' = U and B : V' — A" forn = dimV — dimU, such that
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(W) =1i(x), and o : U — U, 3: V' =V, axB:V' —UxA" are étale,
and ®or = 700’ aod’ =1, fo®' =0, and goj = foa+(22+---+22)0p.

The second holds with U’ a Zariski open neighbourhood of z in U,
at the cost of giving a more general form for go 7: V' — Al. It will be
used in [8].

Proposition 2.24. Let (X,s) be an algebraic d-critical locus, and
O: (R,U, f,i) — (S,V,g,7) an embedding of critical charts on (X,s).
Then for each x € R there exist a Zariski open neighbourhood U’ of
i(z) in U, a smooth K-scheme V', and morphisms 3 : V' — V, & :
U=Vi,a:V U, B:V = A" and q,...,q, : U — AL\ {0} for
n=dimV —dimU, such that 3: V' =V and ax: V' — U x A" are
étale, |y = 0P, a0 ® =idys, fo P =0, and

(214)  gog=foa+(qoa) (Hof) +  +(moa) (z00).

2.4. Canonical bundles of d-critical loci. Propositions 2.22-2.24 lo-
cally describe embeddings ® : (R, U, f,i) < (S,V, g, j) of critical charts
on (X,s). We can also associate a piece of global data to ®, a non-
degenerate quadratic form ¢, on the pullback i*(Ny ) of the normal
bundle Ny of ®(U) in V.

Proposition 2.25. Let (X,s) be a d-critical locus (either complex
analytic or algebraic), and ® : (R,U, f,1) — (S,V,g,j) be an embedding
of critical charts on (X, s). Write Ny for the normal bundle of ®(U)
in V, regarded as a (holomorphic or algebraic) vector bundle on U in
the exact sequence

de

(2.15) 0 =TU o (TV) Y Ny — 0,

so that i*(Nyy) is a vector bundle on R C X. Then there exists a
unique gy € H°(S%i*(N},)) which is a nondegenerate quadratic form
on i*(Nyv ), with the following property in each case:

(a) If (X,s) is a complex analytic d-critical locus and z,U", V' n,«, B

are as in Proposition 2.22, writing (dz1,...,dz,)ys for the trivial
vector bundle on U' with basis dz1,...,dz, and R = i }(U’) C
R C X, there is a natural isomorphism [ : (dz1,...,dzp)pr —

N}y lur such that
O (dB*) = yy|fo B
|7y 0 B(TFC™) = (dzy, ..., dzn)yr — @[H(T*V),
(2.17)  with  quvlr =i} [(523)(dz1 ®dzy 4 -+ dz, ® dzy)].

(b) If (X,s) is an algebraic d-critical locus and x, U", V' 1,7, ®' «, B,n
are as in Proposition 2.23, then there is an isomorphism [ :

(2.16)
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(dz1,...,dzn)yr — (NJy,) making the following diagram of vec-
tor bundles on U’ commute:
L(NEL) Lo ®F(T*V) = & 0 y*(T*V)

* (Hz‘]v)

(2.18) Y5 s @ (dy") |
(dn, .. dep)or = B 0 g (ToC™) 29 g (pry),
and if R = R x;y, U with projections p: R — R, ¢ : R' — U’,
then
(2.19) o (quy) =i [(523)(dz1 ®dz + - +dz, ®dz,)].

(c) If (X,s) is an algebraic d-critical locus and xz,U' V' 3, @ «,f,
n,q, are as in Proposition 2.24, then there is an isomorphism

B (dz1,...,dzn)yr — 5(NJ,) making the following commute:
Nivlur Q7 (T"V) = @™ 0 y*(T*V)
A 1_[*UV‘U’
(2.20) 5 ()|

B 1% d *
(dn, . Az = &% 0 gr(Toem) 4

and if R' =i Y(U') C R C X, then

(2.21)quv|r = i[jp [q1- (S2B)(dz1 @ d21) + -+ + gn - (S?B)(d2n @ dzp)].
Now suppose ¥ : (S,V,g,j) — (T,W,h,k) is another embedding of
critical charts, so that ¥ o ® : (R,U, f,i) < (T,W,h,k) is also an
embedding, and define Ny, qvw and Nyw, quw using W, Wod as above.
Then there are unique morphisms Yuvw, Ouvw which make the following

diagram of vector bundles on U commute, with straight lines exact:
(2.22)

q)l* (T* Vl) ,

0
¥ 0
0 U<
\ %
O*(TV) d(Vod)
oy O*(dW)
0 \
Nyv ~ (Vo ®)"(TW)
— ..
0 e
VW AUW O* (Ilyw)
NUW el
/ 5va T
0 O*(Nyw)
N0
0.

Pulling back by i* gives an exact sequence of vector bundles on RC X :

i*(vovw) i*(duvw)

(2.23) 0 — i*(Nyw) #*(Nyw) 7*(Nyw)|r — 0.
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Then there is a natural isomorphism of vector bundles on R
(2-24) Z'*(NUW) = i*(NUV) @j*(NVW”Ra
compatible with the exact sequence (2.23), which identifies
(2.25) quw = quy D qyw B0 under the splitting
S (NG ) 220" (N5 ) @S2 (5 (NS ) R® T (NG, ) 5™ (N7 ) | e

Using Ny, quv we define an isomorphism of line bundles Jg on R™9:

Definition 2.26. Let ® : (R, U, f,i) < (S,V,g,7) be an embedding
of critical charts on a d-critical locus (X,s). Define Nyy,qyy as in
Proposition 2.25, and set n = dim V —dim U. Write R™ for the reduced
complex analytic subspace or reduced K-subscheme of R. Taking top
exterior powers in the dual of (2.15) and pulling back to R*? using 7*
gives an isomorphism of line bundles

(2.26) pov + (I (Ku) @ i (A" N5y )) [ prea — 5 (Kv)| rea.

As quv is a nondegenerate quadratic form on i*(Nyy ), its determinant
det(gyy) is a nonvanishing section of i*(A" N}, )®*. Define an isomor-
phism of line bundles Jg : * (K[QJ@Q) | prea — J* (K‘Q/@Q) | grea on R™4 by the

commutative diagram

i (KE")| prea (* (K2 @i* (AP N7, ) ©°) | e

id .y 2 ®d0t(fIUV)| red
i*(K#) R
(2'27) \—) p?ﬁ/‘Rred i
. 2
Jo j*(K‘(§) )’chd.

Here are some useful properties of the Jg. The proof that Jg is
independent of ® needs R*? reduced, which is why we restricted to
R*d in Definition 2.26.

Proposition 2.27. In Definition 2.26, the isomorphism Jg is inde-
pendent of the choice of ®. That is, if ®,® : (R,U, f,i) < (S,V,qg,7)
are embeddings of critical charts then Jp = J§.

If ¥ : (S,V,g,5) — (T,W,h,k) is another embedding of critical
charts then

(2.28) J\I}‘chd 0Jo = Jyosp.

We can now define the canonical bundle of a d-critical locus.

Theorem 2.28. Let (X, s) be a d-critical locus (either complex an-
alytic or algebraic), and X4 C X the associated reduced complex an-
alytic space or reduced K-scheme. Then there exists a (holomorphic
or algebraic) line bundle Kx s on X*ed which we call the canonical
bundle of (X, s), which is natural up to canonical isomorphism, and is
characterized by the following properties:
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(1) If (R,U,f,i) is a critical chart on (X,s), there is a natural iso-

morphism
- 2
(229) LR7U7f’7; : KX’S|Rred — 1 (K}? )|Rred,
where Ky = AM™UT*U s the canonical bundle of U in the usual
sense.

(ii) Let @ : (R,U, f,i) < (S,V,g,j) be an embedding of critical charts
on (X,s), and let Jp be as in (2.27). Then

. 2
(2.30) L5, Vglrrea = Jo 0 tru,fi - Kx sl grea — 7 (KT) | prea-

(iii) For each x € X™4, there is a canonical isomorphism
o 2
(2.31) Kot Kx sl — (APTEX)S

where T, X is the Zariski tangent space of X at x.
(iv) Suppose (R,U, f,i) is a critical chart on (X,s) and x € R, and
let tru.fi, ke e as in (i),(iii). Then we have an exact sequence
di)s Hess;(z f

di| X

and the following diagram commutes:

KX75 ‘x . (AtOpT;X) ®2
Qg R,U,f,i
(2.33) LR,U, 1 ile iz
Kulita):

where o gy, f,i 15 induced by taking top exterior powers in (2.32).

Remark 2.29. (a) As in Theorem 1.1 proved in [6], if (X, s) is the
truncation of a —1-shifted symplectic derived scheme (X, w) in the sense
of Pantev et al. [30], then Ky s = det(Lx)|xrea. So Kx s is isomorphic
to the canonical bundle of the derived scheme X in this case, which is
why we call it a canonical bundle.

(b) The line bundle Kx s in Theorem 2.28 is characterized uniquely up
to isomorphism either by parts (i),(ii), or by parts (i),(iii),(iv).

Here is a formula for pullback of canonical bundles under smooth
morphisms of d-critical loci, which will be useful in §2.8. By saying that
T;C/Y is a vector bundle of mized rank, and by the top exterior power

AtOPT;‘( Jy» We mean the following: as ¢ : X — Y is smooth, there is

a decomposition Hn>0 X, with X,, € X open and closed, such that
dlx, : Xp — Y is smooth of relative dimension n. Then T /Y] X, is a

vector bundle on X,, of rank n, and the line bundle AmpT)*( J/y on X is
defined by A'"PT% sy |x, = A"TY )y |x, for each n.
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Proposition 2.30. Suppose ¢ : (X,s) — (Y,t) is a morphism of
d-critical loci with ¢ : X — Y smooth, as in Proposition 2.8. The
relative cotangent bundle T;(/Y s a vector bundle of mized rank on
X in the exact sequence of coherent sheaves on X :
do*

T*X Ty

(2.34) 0 o (T*Y)
There is a natural isomorphism of line bundles on X*4:

2 o
(235) T(j} : ¢|}red (KY,t) ® (AtopT;(/Y) ‘i?}red ;> KX,S7

such that for each = € X' the following diagram of isomorphisms
commutes:

2

Ky ilp@) @ (APTg )y |)¢ o Kx sle

(2.36) lﬁ¢(x)®id 2 “”l
(AmpT;(x)Y)®2 ® (AtopT;{/Y ’x)®2 Y= (AtOpT;X) ®27

where Ky, Ky are as in (2.31), and vy : At"pT(;‘(x)Y ® AtOPT)*(/Y|m —
AYPT*X s obtained by restricting (2.34) to x and taking top exterior
powers.

2.5. Orientations on d-critical loci. The next two definitions will
be important in the sequels [4-8]. For examples of results on oriented
d-critical loci, see Theorems 1.3 and 1.4 above.

Definition 2.31. Let (X,s) be a d-critical locus (either complex
analytic or algebraic), and Ky s its canonical bundle from Theorem 2.28.
An orientation on (X, s) is a choice of square root line bundle K)l(/i for
Kxson X red " That is, an orientation is a (holomorphic or algebraic) line
bundle L on X", together with an isomorphism L = Lo L2K X,s-
A d-critical locus with an orientation will be called an oriented d-critical
locus.

An oriented critical chart on an oriented d-critical locus is a critical
chart (R,U, f,i) on (X,s) with an isomorphism jr s, : K;(/§|
i*(Ky)| grea satisfying ]%%,Uj,i = LRU,f,is fOT Lpy i as in (2.29).

Rred —

Remark 2.32. In view of equation (2.31), one might hope to define
a canonical orientation K;(/ i for a d-critical locus (X,s) by K;(/ i‘x =
AYPT*X for x € X", However, this does not work, as the spaces

AYPT*X do not vary continuously with z € X™4 if X is not smooth.
FExample 2.39 shows that d-critical loci need not admit orientations.

In the situation of Proposition 2.30, the factor (A™PT% /Y) ?}ied in
(2.35) has a natural square root (A*PT% /Y)\ xred. Thus we deduce:



A CLASSICAL MODEL FOR DERIVED CRITICAL LOCI 313

Corollary 2.33. Let ¢ : (X,s) — (Y,t) be a morphism of d-critical
loci with ¢ : X — Y smooth. Then each orientation le,{f for (Y,t)
lifts to a natural orientation K;(/i = ¢|}md(K)1,’/t2) ® (AtOPT)*</Y)|de
for (X,s).

We can express orientations in terms of principal Zs-bundles.

Definition 2.34. Let (X, s) be a d-critical locus. For each embed-
ding of critical charts ® : (R,U, f,i) < (S,V,g,7) on (X,s), define a
principal Zo-bundle 7¢ : Pp — R over R to be the bundle of square roots
of the isomorphism Jg in (2.27). That is, local sections s, : R — Pgp
correspond to local isomorphisms « : *(Ky)|grea — 7*(Kv)|grea with
a®a = Jp. Note that Proposition 2.27 implies that Pg is indepen-
dent of the choice of @, that is, if ®,® : (R, U, f,i) < (S,V,g,j) are
embeddings then Py = Pg.

Ifw: (S, V,g,j) = (T,W, h, k) is another embedding of critical charts
then (2.28) implies that there is a canonical isomorphism

ZEv.¢ : Pyos — Py|r ®7, Po,
such that if local isomorphisms « : i*(Ky)|grea — J*(Kv)|pred, B :
J(EKv)| grea — E*(Kw)|grea, 7 @ T*(Ky)|grea — k*(Kw)|grea with a ®
a=Jp, BRP = Ju|pred, 7 @7 = Jyoa correspond to local sections
Sq: R — Py, s3: R— Py|g, 5y : R — Paoa, then Zy ¢(sy) = s§®z, sa
if and only if v = o «, where 7 = 3 o « is possible by (2.28).

Now let Ky / be a choice of orientation on (X, s), as in Definition
2.31. For each crltlcal chart (R, U, f,i) on (X, s), define a principal Zs-
bundle 7g ti : Qru,fi — R to be the bundle of square roots of the
isomorphism tp 7 7 in (2.29). That is, local sections sg : R = QRr.u ¢,
correspond to local isomorphisms 3 : K;</§| pred — U(Ky)|prea with
BR®B=1truy,ti-

Given an orientation K /8 and an embedding ® : (R,U, f,i) —

(S,V,g,7), we have principal Zy-bundles 7¢ : Pp — R, 7R Ut QrRuU.fi
— Rand mgyv,g;: @s,v,g,; — S. Then there is a natural isomorphism
of principal Zs-bundles

(2.37) A : Qsvigilr — Po @z, Qru,ri
on R, defined as follows: local isomorphisms
" . 1/2 .
o P (Ku) s — J*(Kv) [ grea, B2 K\ prea — * (Ky)| grea,
1/2 ‘*
and v KX/,s’Rmd — J(KV)| grea

with o ® a = i[jea(Jo), B® B = tpuysi and ¥ @7 = Ls5v,g,j|gred
correspond to local sections s, : R — i*(Ps), sg : R = Qru, i and
sy R — Qs,v,4,j|r- Equation (2.30) shows that v = a o 3 is a possible
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solution for v, and we define Ag in (2.37) such that Ag(sy) = 50 @z, 53
if and only if ¥ = o 8. Note that Ag is independent of the choice of
d, as Jp, Py are.

Ifw: (S, V,g,j) — (T,W, h, k) is another embedding of critical charts
then it is easy to check that the following diagram commutes:

Pyow @z, QRU.f,i

Qrwhk R
(238)  |Asln
(Py ®2z, Qs,v,g,5) |R

Agos
E\p,q>®idQRyny’i \L

dpy,|,®Aa
Py|r ®2z, Po @7, QRU.1,i-

Proposition 2.35. Let (X,s) be a d-critical locus. Then Definition
2.34 induces an isomorphism between isomorphism classes of orienta-
tions K;(/i on (X, s), and isomorphism classes of the following collec-
tions of data:

(a) For each critical chart (R,U, f,i) on (X,s), a choice of principal
Zo-bundle TR,U,f,i - QR,U,fJ' — R on R, and

(b) For each embedding of critical charts ® : (R,U, f,i) < (S,V,g,7),
a choice of isomorphism Ao : Qsv,gj|lr = Po ®z, Qru,si as in
(2.37),

such that (2.38) commutes for all embeddings ® : (R, U, f,i) — (S,V,
gaj)? v (Sa Mgaj) — (T7 W7 h7 k)a where PCI>7P\I/7P\I/O<I>75\I/,<I> are as in
the first part of Definition 2.34.

The proof of Proposition 2.35 is straightforward. Definition 2.34

shows how to go from an orientation Ky 12 ; to a collection of data Qr v, f,i,
Ag. For the converse, given a collectlon of data Qr v, ., Ao, note that
each Qg y,f,i determines a square root Ly 1, ¢, for Kx g|grea uniquely up
to isomorphism for each critical chart (R, U, f,i), and for an embedding
®: (R,U, f,i) — (S,V,g,7) the isomorphism Ag determines an isomor-
phism i¢ : Lry, i — Ls,v,g,jlgrea, and for @ : (R, U, f,1) — (5,V,g,7),
U:(S,V,g9,j) — (T W, h, k), equation (2.38) commuting implies that
iWod = 1y pred O ig. ?1 the sheaf property of line bundles, we can then
show there ex1sts K X5 unique up to canonical isomorphism, with iso-

morphisms K\ X, S| pred = Ly s, for all (R, U, f,i), which are compatible
with ig for all ®. We leave the details to the reader.

Remark 2.36. Let ®: (R, U, f,i) < (S,V,g,j) be an embedding of
critical charts on a d-critical locus (X, s). Define Ny, gyy as in Propo-
sition 2.25, and mg : Pp — R as in Definition 2.34. Then an alternative
interpretation of Py is as the principal Zs-bundle of orientations of the
nondegenerate quadratic form qyv on the vector bundle i SNUV) over R.

Thus, Proposition 2.35 shows that an orientation K X2 (X,s) is
equivalent to giving principal Zo-bundles Qry ri — R for each chart
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(R,U, f,i) on (X, s), such that Qr y ; and Qs,v,q,|r differ by the prin-
cipal Zg-bundle of orientations of ¢, for each embedding ® : (R, U/ fii)
< (S,V,g,7). This is why we chose the term orientation for K;i It

is closely relation to the notion of orientation data in Kontsevich and
Soibelman [18, §5].

Here are some examples of canonical bundles and orientations:

Example 2.37. Let U be a complex manifold, f : U — C be holo-
morphic, and (X, s) be the complex analytic d-critical locus from Ex-
ample 2.4 with X = Crit(f). Then Theorem 2.28(i) with (R, U, f,i) =
(X,U, f,inc) implies that Ky s = K§2|Xred. Hence Kx  has a natu-
ral square root K;(/ i = Ky|xrea, and (X, s) a natural orientation. The
analogue holds for éﬂgebraic critical loci.

Example 2.38. Let X be a complex manifold, so that (X,0) is
a d-critical locus as in Example 2.15. Then Theorem 2.28(i) with
(R,U, f,i) = (X,X,0,idx) shows that Kxo = K%, where Ky is
the usual canonical bundle of X. Again, (X,0) has a natural orien-
tation K)l(/(z] = Kx.

As we call Kx o the canonical bundle of (X,0), one might have ex-
pected Kxo = Kx. The explanation is that as a derived scheme,
Crit(0 : X — C) is not X, but the shifted cotangent bundle 7% X|1],
and the degree —1 fibres of the projection 7* X [1] — X include an extra
factor of Kx in Kx .

Example 2.39. Let X be the non-reduced projective C-scheme
{[z,y,2] € CP?: 2% = 2yz = 0}.

The reduced C-subscheme X4 ¢ X ¢ CP? is the CP! defined by z = 0,
and X has only one non-reduced point [1,0,0], with X \ {[1,0,0]} =
C smooth. The open neighbourhood X \ {[0,1,0]} of [1,0,0] in X is
isomorphic as a classical C-scheme to Crit(yz? : C* — C), where (y, 2)
are the coordinates on C2.

Extend X to an algebraic d-critical locus as follows: on X\ {[0,1,0]},
define s as in Example 2.4 using X \ {[0,1,0]} = Crit(yz* : C? — C).
But S% = 0on X\{[1,0,0]} by Example 2.15 as X\ {[1,0,0]} is smooth,
so s extends uniquely by zero to all of X. Since (X, s) is modelled on
Crit(yz? : C* — C) on X \ {[0,1,0]} and on Crit(0 : C — C) on
X \{[1,0,0]}, it is an algebraic d-critical locus.

Theorem 2.28 defines a line bundle Kx s on X red o CPl, Calculation
shows that Kx s = Ogp1(—5). For the smooth algebraic d-critical locus

(CP',0) we have Keprg & Kgl = Oppt(—4) as in Example 2.38, so

the effect of the nonreduced point [1,0,0] in X is to modify Kx s from
Ocpt (—4) to Ogp1(—5). Since —5 is odd, Kx s admits no square root.
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Thus, (X, s) is an example of a non-orientable algebraic d-critical locus.
We can also consider (X, s) as a complex analytic d-critical locus, where
again it is not orientable.

2.6. Equivariant d-critical loci. We now discuss group actions on
algebraic d-critical loci.

Definition 2.40. Let (X, s) be an algebraic d-critical locus over K,
and 4 : G x X — X an action of an algebraic K-group G on the K-
scheme X. We also write the action as p(y) : X — X for v € G. We say
that (X, s) is G-invariant if p(y)*(s) = s for all v € G, or equivalently, if
p*(s) = 7% (s) in HO(SZ, ), where 7x : G x X — X is the projection.

Let x : G — G,, be a morphism of algebraic K-groups, that is, a
character of G, where G,, = K\ {0} is the multiplicative group. We say
that (X, s) is G-equivariant, with character x, if u(y)*(s) = x(v) - s for
all v € G, or equivalently, if z*(s) = (x o 7g) - (7% (s)) in HO(S2 ),
where H%(Og) > x acts on H(S2, ) by multiplication, as G is a
smooth K-scheme.

Suppose (X, s) is G-invariant or G-equivariant, with y = 1 in the
G-invariant case. We call a critical chart (R,U, f,i) on (X,s) with a
G-action p: G x U — U a G-equivariant critical chart if R C X is a G-
invariant open subscheme, and i : R < U, f : U — A! are equivariant
with respect to the actions /gy g, p, X of G on R, U, A', respectively.

We call a subchart (R, U’, f',i') C (R,U, f,i) a G-equivariant sub-
chart if ¥ C R and U’ C U are G-invariant open subschemes. Then
(R, U, f',1"), p' is a G-equivariant critical chart, where p' = p|gxu--

Let (R,U, f,i),p and (S,V,g,7),0 be G-equivariant critical charts
on (X,s), and ® : (R,U, f,i) — (S,V,g,j) an embedding. We call ®
equivariant if ® : U — V is equivariant with respect to the actions p, o
of Gon U, V.

When we have a G-equivariant d-critical locus (X, s), we would like
to be able to work only with G-equivariant critical charts and subcharts
(so in particular, we would like X to be covered by such charts) and
G-equivariant embeddings. However, as Example 2.46 below shows,
X may not be covered by G-equivariant critical charts without extra
assumptions on X, G.

We will restrict to the case when G is a torus, with a ‘good’ action
on X:

Definition 2.41. Let X be a K-scheme, GG an algebraic K-torus, and
1 GxX — X an action of G on X. We call p a good action if X
admits a Zariski open cover by G-invariant affine open K-subschemes
UCX.

Sumihiro [32, Cor. 2| proves that every torus action on a normal
K-variety is good. Applying this to the reduced K-subscheme X*4 of
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a K-scheme X, and noting that open U C X is affine if and only if
Ured € xred i affine, yields:

Lemma 2.42. Suppose X is a K-scheme whose reduced K-subscheme
Xred s normal. Then any action p of an algebraic K-torus G on X is
good.

A torus-equivariant d-critical locus (X, s) admits an open cover by
equivariant critical charts if and only if the torus action is good:

Proposition 2.43. Let (X,s) be an algebraic d-critical locus which
is invariant or equivariant under the action p : G x X — X of an
algebraic torus G.

(a) If w is good then for all x € X there exists a G-equivariant critical
chart (R,U, f,i),p on (X,s) with x € R, and we may take dimU =
dimT,X.

(b) Conversely, if for all x € X there exists a G-equivariant critical
chart (R,U, f,i),p on (X,s) with x € R, then p is good.

We can also prove a torus-equivariant analogue of Theorem 2.20:

Proposition 2.44. Let (X,s) be an algebraic d-critical locus equi-
variant under an algebraic torus G, and (R,U, f,i),p, (S,V.g,j),0 be
G-equivariant critical charts on (X,s). Then for each x € RN S there
exist G-equivariant subcharts (R, U’ f',i")C(R, U, f,4), (8", V', ¢',5") C
(S,V,g,j) with x € R'NS’, a G-equivariant critical chart (T, W, h, k), T
on (X, s), and G-equivariant embeddings ® : (R, U’ f',i")— (T, W, h, k)
and (S, V', g, 7)< (T, W, h, k).

Suppose now that (X, s) is an algebraic d-critical locus invariant un-
der a good action  of an algebraic torus G. Write X for the G-fixed
subscheme of X, so that X¢ is a closed K-subscheme of X with inclu-
sion 1 : X¢ < X. Set s¢ = 1*(s) € H*(S%¢), for 1* as in Proposition
2.3. Let (R,U, f,i),p be a G-equivariant critical chart on X. Write
R U€ for the G-fixed subschemes of R, U, and f¢ = f|,c, i% = i|pc.
It is easy to see that (R®,U%, f¢ i%) is a critical chart on (X%, s%).
Since we can cover X by such (R, U, f,i), p by Proposition 2.43, we can
cover X% by such (RG, Ue, fG,z'G). This proves:

Corollary 2.45. Suppose (X,s) is an algebraic d-critical locus in-
variant under a good action p of an algebraic torus G. Write X
for the G-fized subscheme of X, with inclusion + : X¢ < X, and
s¢ = 1*(s) € H'(S%a). Then (XC,s%) is an algebraic d-critical lo-
cus.

Maulik [23] will use the last three results when G = G, to prove a
torus localization formula for the motives M F'x ¢ associated to oriented
algebraic d-critical loci (X, s) by Bussi, Joyce and Meinhardt [§8], as in
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Theorem 1.4, writing m.(M Fx ) in terms of m (M FxGm 4om) for m :
X, X®n — SpecK.
Here is an example of a non-good torus action on a d-critical locus:

Example 2.46. Let A2 have coordinates (z,y), and define f : A% -
Al by f(x,y) = 2%y% Write (X,s) for the corresponding affine d-
critical locus with X = Crit(f). It is the union of the z- and y-axes
in A%, with a non-reduced point at (0,0). Let G = G,, act on AZ
by u : (z,y) — (uz,u"ly). Then f is G,-invariant, so (X,s) is also
G,-invariant.

Define an étale equivalence relation ~ on X by (x,0) ~ (0,271) for
0# z € A', and let X = X/~ be the quotient K-scheme. As ~ is
G,n-equivariant and preserves s, the G,,-action and d-critical structure
s on X both descend to X, so (X, 3) is a G,,-invariant d-critical locus.

Now X is a projective scheme (it can be embedded in KP?, with
reduced subscheme the nodal cubic u?w = v?*w + v® in homogeneous
coordinates [u, v, w] on KP?), but it is not affine. The G,,-action on X
has only two orbits, (0,0) and X \ {(0,0)}. Thus, the only G,,-invariant
open neighbourhood of (0,0) in X is X itself, which is not affine, so the
Gm-action on X is not good.

Proposition 2.43(b) shows that there does not exist a G,,-equivariant
critical chart (R,U, f,i),p on (X,3) with (0,0) € R.

Remark 2.47. For actions of reductive groups, we can prove the
following weaker analogues of Propositions 2.43 and 2.44 by similar
methods:

(i) Let (X,s) be an algebraic d-critical locus which is invariant or
equivariant under the action p: 7' x X — X of a reductive alge-
braic K-group G. Suppose x € X is a fixed point of GG, and there
exists a G-invariant affine open neighbourhood of = in X (this is
automatic if X is normal). Then there exists a G-equivariant
critical chart (R,U, f,i),p on (X, s) with € R, and we may take
dimU =dim7T,X.

(ii) Let (X, s) be an algebraic d-critical locus equivariant under a re-
ductive K-group G, z € X a fixed point of G, and (R, U, f,1), p,
(S,V,g,7),0 be G-equivariant critical charts on (X, s) with z in
RN S. Then there exist G-equivariant subcharts (R',U’, f' i)
C (R,U, f,4), (S\V',¢',5) C (S,V,9,7) with x € RF'n S, a
G-equivariant critical chart (T, W, h, k), on (X,s), and G-equi-
variant embeddings ® : (R, U’, f',i') — (T,W,h,k) and ¥ :
(S' V' g j') = (T, W, h, k).

We make no claims about points x € X not fixed by G.
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2.7. Background material on sheaves on Artin stacks. Section
2.8 will extend §2.1-§2.5 from K-schemes to Artin K-stacks. As a pre-
liminary, to establish notation, we discuss Artin stacks and sheaves upon
them.

Artin stacks are a class of geometric spaces, generalizing schemes and
algebraic spaces. For a good introduction to Artin stacks see Gémez [11],
and for a thorough treatment see Laumon and Moret-Bailly [20]. Artin
stacks over a field K form a 2-category Artg, with objects the Artin
stacks X, Y, ..., l-morphisms f,¢ : X — Y, and 2-morphisms n : f = g,
which are all 2-isomorphisms.

There is a natural full and faithful strict (2-)functor FLIt : Schx —
Artg from the category Schi of K-schemes (regarded as a 2-category
with only identity 2-morphisms) to the 2-category Artx of Artin K-
stacks. By a common abuse of notation, we will identify Schx with
its image in Artg, and consider schemes as special examples of Artin
stacks. By definition, every Artin K-stack X admits a smooth atlas,
which is a smooth, surjective 1-morphism ¢ : T'— X in Artg, for some
K-scheme T'.

Let X be a K-scheme, and K D K a field containing K. A K-point
x of X is a morphism z : Spec K — X in Schg, and a point x of X,
written x € X, is a K-point for any K. Similarly, if X is an Artin K-
stack, a K-point of X is a 1-morphism z : Spec K — X in Artg. Two
K-points z, 2’ are equivalent, written x = 2/, if there is a 2-isomorphism
0:2=12'. A point x of X, written x € X, is a K-point for any K.

If x is a K-point in X, the isotropy group or stabilizer group Iso,(X)
is the group of 2-isomorphisms 6 : x = z. It has the structure of an
algebraic K-group, and we write Jso,(X) for its Lie algebra, a K-vector
space. The Zariski cotangent space T X of X at x is also a K-vector
space; we have h®(Ly)|, = T X and h'(Ly)|, = Js0,(X)*, where Ly
is the cotangent complexr of X, as in Remark 2.51 below.

Laumon and Moret-Bailly [20, §§12, 13, 15, 18] develop a theory of
sheaves on Artin stacks, including quasi-coherent, coherent, and con-
structible sheaves, and their derived categories. Unfortunately, Laumon
and Moret-Bailly wrongly assume that 1-morphisms of algebraic stacks
induce morphisms of lisse-étale topoi, so parts of their theory concern-
ing pullbacks, etc., are unsatisfactory. Olsson [24] rewrites the theory,
correcting this mistake. Laszlo and Olsson [21,22] study derived cate-
gories of constructible sheaves, and perverse sheaves, on Artin stacks,
in more detail. All of [20-22,24] work with sheaves on Artin stacks in
the lisse-étale topology, which we now define.

Definition 2.48. Recall that a site is a category with a Grothendieck
topology, as in Artin [1]. Let X be an Artin K-stack. Define the lisse-
étale site Lis-ét(X) of X as follows. The category of Lis-ét(X) has
objects pairs (7,t), where T is a K-scheme and ¢ : T' — X a smooth
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1-morphism in Artg, and morphisms (¢,7n) : (T,t) — (U,u), for ¢ :
T — U a morphism in Schkg and n : t = u o ¢ a 2-morphism in Artg.

Composition of morphisms (7', t) @) (U, u) ®.q (V,v) is

(¥, Q) o (¢,n) = (Yo ¢, (¢ xidy) ©®n).

Identity morphisms are id(7;) = (idr,id;). The coverings of an object
(T,t) in the Grothendieck topology on Lis-ét(X) are those collections
of morphisms {(gbi,m) (T, t) — (T, t)},-el for which {qﬁ,- 2T — T}iel
is an open cover of T in the étale topology on Schi.

Definition 2.48 differs from Laumon and Moret-Bailly [20, Def. 12.1]
in taking objects (7,t) with T a K-scheme rather than an algebraic K-
space. But as in [20, Lem. 12.1.2(i)], the two definitions yield the same
notion of sheaf on X.

We can now define sheaves (of sets, or K-vector spaces, or K-algebras,
or ...) on X to be sheaves on the site Lis-ét(X), using the notion of
sheaves on a site from Artin [1]. The structure sheaf Ox is a sheaf of
K-algebras on Lis-ét(X), and by considering sheaves of Ox-modules on
Lis-ét(X) we can define quasi-coherent and coherent sheaves on X, as
in [20, §13] and [24, §6].

Laumon and Moret-Bailly [20, Lem. 12.2.1] give an alternative, ex-
plicit description of the categories of sheaves on an Artin K-stack X. In
§2.8 we will use the category Sh(X) in Proposition 2.49 as our definition
of sheaves on X.

Proposition 2.49 (Laumon and Moret-Bailly [20]). Let X be an
Artin K-stack. The category of sheaves of sets on X in the lisse-étale
topology is equivalent to the category Sh(X) defined as follows:

(A) Objects A of Sh(X) comprise the following data:

(a) For each K-scheme T and smooth 1-morphismt: T — X in Artg,
we are given a sheaf of sets A(T,t) on T, in the étale topology.
(b) For each 2-commutative diagram in Artx:

U
(2.39) %nﬂ T .

T

where T,U are schemes and t : T — X, u : U — X are smooth
1-morphisms, we are given a morphism A(¢,n) : ¢~ (AU, u)) —
A(T,t) of étale sheaves of sets on T.

This data must satisfy the following conditions:

(1) If ¢: T — U in (b) is étale, then A(¢,n) is an isomorphism.
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(ii) For each 2-commutative diagram in Artx:

Vv

¥ v
T t

with T, U,V schemes and t,u,v smooth, we must have

AW o ¢, (¢*idy) ©n) = A(¢,n) 0 67 (AW, () as morphisms
(o 0) H(AV,v) = ¢~ o™ (AV,)) — A(T ).
(B) Morphisms o : A — B of Sh(X) comprise a morphism «o(T\,t) :
A(T,t) — B(T,t) of étale sheaves of sets on a scheme T for all smooth

1-morphisms t : T — X, such that for each diagram (2.39) in (b) the
following commutes:

6N AW, 1)~ AT
|o @y . a(T) |
¢_1(B(U, u)) (¢777) B(T, t)

(C) Composition of morphisms A B N Sh(X) is (Boa)(T,t) =
B(T,t) o «(T,t). Identity morphisms idgq : A — A are ida(T,t) =
idA(T7t) .

The analogue of all the above also holds for (étale) sheaves of K-
vector spaces, sheaves of K-algebras, and so on, in place of (étale)
sheaves of sets.

Furthermore, the analogue of all the above holds for quasi-coherent
sheaves, (or coherent sheaves, or vector bundles, or line bundles) on X,
where in (a) A(T,t) becomes a quasi-coherent sheaf (or coherent sheaf,
or vector bundle, or line bundle) on T, in (b) we replace ¢~ (A(U,u)) by
the pullback ¢*(A(U,w)) of quasi-coherent sheaves (etc.), and A(o,n),
a(T,t) become morphisms of quasi-coherent sheaves (etc.) on T.

We can also describe global sections of sheaves on Artin K-stacks
in the above framework: a global section s € HY(A) of A in part (A)
assigns a global section s(T,t) € HY(A(T,t)) of A(T,t) on T for all
smooth t : T — X from a scheme T, such that A(¢,n)*(s(U,u)) =
s(T,t) in HO(A(T,t)) for all 2-commutative diagrams (2.39) with t,u
smooth.

Remark 2.50. As in Laumon and Moret-Bailly [20, §13.1], if T’
is a K-scheme, there is a difference between the categories Sh(T')zar
and Sh(T')g of sheaves of sets (say) on T in the Zariski and étale
topologies. There are adjoint functors e, : Sh(T)¢g — Sh(T)zar and
€12 Sh(T)zar — Sh(T)g;, with €1 fully faithful, but in general Sh(T)g
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may be larger than Sh(7")z,y. So one should distinguish between sheaves
in the Zariski and the étale topologies.

However, as in [20, p. 120], the categories of quasi-coherent sheaves on
T (and hence their full subcategories of coherent sheaves, vector bundles,
and line bundles) in the Zariski and étale topologies are equivalent,
essentially by definition. So for quasi-coherent sheaves we need not
distinguish between the Zariski and étale topologies, and in the last
part of Proposition 2.49 we can take the A(T,t) to be quasi-coherent
sheaves on T in the usual (Zariski) sense.

For Theorem 2.56 we will need the following properties of cotangent
complexes, as in Illusie [15,16] and Laumon and Moret-Bailly [20, §17].

Remark 2.51. (i) If f: X — Y is a l-morphism of Artin K-stacks,
we have a distinguished triangle in D(qcoh(X)):

(240)  fr(Ly) — Ly Ly FLx,

where Lx, Ly are the cotangent compleres of X,Y and L,y (also writ-

ten ]Lﬁ(/y) is the relative cotangent complex of f.

(ii) If f,g: X — Y are l-morphisms of Artin K-stacks and n: f = g is
a 2-morphism, then we have a commutative diagram

FrLy) ——Lx Ly —— /" (Lx)[1]
ln*(ﬂay) lid l% ln*(Ly)
]Lg
g"(Ly) Lx L%y g"(Lx)[1].

(iii) Let X Loy 9 Zbe 1-morphisms of Artin K-stacks. Then there
is a distinguished triangle in D(qcoh(X)):

f*(Lyyz)[1].

(iv) If f : X — Y is smooth then Lx/y is equivalent to a vector bundle
of mized rank on X in degree 0, in the sense of Proposition 2.30. In
this case we write T’y y Or T)f(}ky for L x/y considered as a vector bundle

f*(Lyz) Lx/z Lx/y

of mixed rank. The top exterior power A'PLy/y = A*PTY Jy s a line
bundle on X.

(v) If ¢ : T — U is a smooth morphism in Schgx then the relative
cotangent bundle 77 U in Proposition 2.30 is canonically isomorphic
to LT/U'

2.8. Extension of §2.1-§2.5 to Artin stacks. We now extend parts
of §2.1-§2.5 from K-schemes to Artin K-stacks. In [4] we will use the
ideas of this section to extend the results of [5, 6, 8] (summarized in
Theorems 1.1, 1.3 and 1.4 above) to Artin stacks. Note that by the same
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methods we can also extend §2.1-§2.5 to Deligne—Mumford K-stacks or
algebraic K-spaces, and the proofs simplify as the étale topology is easier
to work with than the lisse-étale topology. We leave the details to the
interested reader.

Combining Theorem 2.1, Proposition 2.3, and the material of §2.7,
we deduce an analogue of Theorem 2.1 for Artin K-stacks:

Corollary 2.52. Let X be an Artin K-stack, and write Sh(X)k_alg,
Sh(X )k vect for the categories of sheaves of K-algebras and K-vector
spaces on X defined in Proposition 2.49. Then:

(a) We may define canonical objects Sx in both categories Sh(X )k alg
and Sh(X)k.veet by Sx(T,t) := Sr for all smooth morphisms t :
T — X forT € Schg, for St as in Theorem 2.1 taken to be a sheaf
of K-algebras (or K-vector spaces) on T in the étale topology, and
Sx(¢,n) = ¢* : 971 (Sx(U,u)) = ¢~ (Sy) — St = Sx(Tt) for
all 2-commutative diagrams (2.39) in Artg with t,u smooth, where
o* is as in Proposition 2.3.

(b) There is a natural decomposition Sx = Kx EBS% in Sh(X)K_vect
induced by the splitting Sx (T, t) =Sy =Kp®SP in Theorem 2.1(a),
where Kx is a sheaf of K-subalgebras of Sx in Sh(X)k.alg, and
S% a sheaf of ideals in Sx.

Here the conditions (i),(ii) on the data Sx(7,t),Sx(¢,n) in Proposi-
tion 2.49(A) follow from the last part of Proposition 2.3 and equation
(2.12). We can now generalize algebraic d-critical loci to Artin stacks.

Definition 2.53. A d-critical stack (X, s) is an Artin K-stack X and
a global section s € HY(S%), where S% is as in Corollary 2.52 and global
sections as in Proposition 2.49; such that (T ,s(T, t)) is an algebraic d-
critical locus in the sense of Definition 2.5 for all smooth morphisms
t: T — X with T € Schg.

The next proposition gives a convenient way to understand global
sections of Sx,S% and d-critical structures on X by working on the
scheme T for an atlas ¢ : T' — X for X. Then T x; x T is an algebraic
K-space, so choosing a surjective étale morphism U — T x x ;T for U
a K-scheme gives a diagram (2.41) with the properties required.

Proposition 2.54. Suppose we are given a 2-commutative diagram

2

U T
(2.41) ym h t}
T

X,

in Artg, where X is an Artin K-stack, T,U are K-schemes, t,m,m
are smooth 1-morphisms, t : T — X 1is surjective, and the 1-morphism
U — Txy x T induced by (2.41) is surjective. For instance, this happens
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if U=3T is a groupoid in K-schemes, and X = [U = T the associated
groupotid stack. Then:

(i) Let Sx be as in Corollary 2.52, and Sp,Sy be as in Theorem
2.1, regarded as sheaves on T,U in the étale topology, and define
o 7TZ-_1(ST) — Sy as in Proposition 2.3 for i = 1,2. Consider

the map t* : HY(Sx) — H°(St) mapping t* : s — s(T,t). This is
injective, and induces a bijection

(2.42)  *: H(Sx) —» {s' € H'(Sy) : w5 (s') = m5(s) in HO(Sy)}.

The analogue holds for 8%, S, Sy

(ii) Suppose s € HO(SS), so that t*(s) € HO(SP) with 7F o t*(s) =
myot*(s). Then (X, s) is a d-critical stack if and only if (T,t*(s))
18 an algebraic d-critical locus, and then (U, 7y o t*(s)) 1$ also an
algebraic d-critical locus.

Example 2.55. Suppose an algebraic K-group G acts on a K-scheme
T with action p : GXT — T, and write X for the quotient Artin K-stack
[T/G]. Then as in (2.41) there is a natural 2-Cartesian diagram

GxT i T
| i tf
T L. X =[T/q),

where ¢ : T — X is a smooth atlas for X. If s’ € H?(SY) then 77(s') =
75(s") in (2.42) becomes 75 (s") = p*(s’) on G x T, that is, s’ is G-
invariant in the sense of §2.6. Hence, Proposition 2.54 shows that d-
critical structures s on X = [T'/G| are in 1-1 correspondence with G-
invariant d-critical structures s’ on T

Next we state an analogue of Theorem 2.28, constructing the canon-
ical bundle Ky s of a d-critical stack (X, s).

Theorem 2.56. Let (X,s) be a d-critical stack. Using the descrip-
tion of quasi-coherent sheaves on X" in Proposition 2.49 and the no-
tation of Remark 2.51, there is a line bundle Kx s on the reduced K-
substack X™4 of X called the canonical bundle of (X, s), unique up
to canonical isomorphism, such that:

(a) For each point x € X" C X we have a canonical isomorphism
~ 2 2
(2.43) Kot Kx e — (APTF X)) @ (APTs0, (X)),
where T* X is the Zariski cotangent space of X at x, and Js0,(X)
the Lie algebra of the isotropy group (stabilizer group) Iso.(X) of
X at x.
(b) If T is a K-scheme and t : T — X a smooth 1-morphism, so
that tred . Tred 5 Xred s glso smooth, then there is a natural
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isomorphism of line bundles on T

(2.44) Tr: Ko (T 090) =5 Ky © (MPTE )|
Here (T, s(T, t)) is an algebraic d-critical locus by Definition 2.53,
and K g0 — T4 s its canonical bundle from Theorem 2.28.

(c) In the situation of (b), let p € T4 C T, so that t(p) € X. Taking
the long exact cohomology sequence of (2.40) fort : T — X and

restricting to p € T' gives an exact sequence

(2.45) 0 — Ty X — T;T — Tp x|p —> Js0,(,)(X)" — 0.

Then the following diagram commutes:

KX,s‘t(p) = KX,S(Ter7 tmd)’p > KT,s(T,t)‘p@)

It op ®?
b e o (APTF)x) ‘p
2.46 o 2 ey @i
(240 M”E@@®®2a; @jz
(A%PT50,(,) (X)) —— (APT;T) @ (NPT ) [,

where ky, Ky(p), U are as in (2.31), (2.43) and (2.44), respectively,

and oy Aprt*(p)X ® AtOP'Jsot(p)( ) —>At0pT*T ® APT /X| 1

is induced by taking top exterior powers in (2.45).

Here is the analogue of Definition 2.31:

Definition 2.57. Let (X, s) be a d-critical stack, and Kx s its canon-
ical bundle from Theorem 2.56. An orientation on (X,s) is a choice
of square root line bundle K)l(/i for Kx , on Xred That is, an ori-
entation is a line bundle L on X9, together with an isomorphism
19 = Lo L = Kx . A d-critical stack with an orientation will be
called an oriented d-critical stack.

Suppose (X, s) is an oriented d-critical stack. Then for each smooth
t: T — X we have a square root K;(/i(de,tmd) for Kx s(T74,¢ed).
Thus by (2.44), K;(/’i(TrEd,tred) ® (A*PLy)x)|rea is a square root for
K71 g1, This proves:

Lemma 2.58. Let (X,s) be a d-critical stack. Then an orientation
K)l(/i for (X, s) determines a canonical orientation KT (T.0) for the al-
gebraic d-critical locus (T,s(T,t)), for all smooth t : T — X with T a
K-scheme.

In [4] we will prove that an oriented d-critical stack (X,s) has a
natural perverse sheaf P)’(’ s> Z-module Dy ¢, mixed Hodge module H 3< s
(over K = C) and motive M Fx 4, as in Theorems 1.3 and 1.4 for K-
schemes.



326 D. JOYCE

3. The sheaves Sx,S%

Sections 3.1-3.3 prove Theorem 2.1 from §2.1, and §3.4 proves Propo-
sition 2.3.

3.1. Comnstruction of the sheaf Sy in Theorem 2.1. Let X be a
fixed complex analytic space. In this section we construct the sheaf Sx
in Theorem 2.1, satisfying Theorem 2.1(i),(ii). We will use the following
notation. Define a triple (R,U,i) to be an open subset R C X, a
complex manifold U, and an embedding i : R — U of R as a closed
complex analytic subspace of U, as in Theorem 2.1(i). For such a triple
(R,U, i), define the sheaf of ideals Iry C i1 (Oy) as in (2.1). We will
also write [ l/[%,U C Oy for the sheaf of ideals vanishing on the closed
complex analytic subspace i(R) C U.

If (R,U,1i) is a triple and U’ C U is open, set R’ :=i~1(U’) C R and
i' == i|g : R — U'. Then (R',U’,i') is another triple, which we call a
subtriple of (R, U, 1), and write as (R',U’,i") C (R, U, 1).

For each triple (R,U, i), as in (2.2) define Kry;, kpu by the exact
sequence of sheaves of C-vector spaces on R:

KR,U i~ (Oy) d i~HT*U)

31) 00— Kpu, .
(3-1) Lt 2, Ipy - i ((T*U)

That is, kpv : Krui — i_l(OU)/I%U is the kernel of d : i_l(OU)/I}QiU
— i~ YT*U)/Igy - i *(T*U). The difference between (2.2) and (3.1) is
that (2.2) includes an isomorphism Sx|r = Kpg i, but we have not
yet defined Sy. If (R, U’,i') C (R,U,i) then Kr o = ICR,U,Z‘|R’
and Kp 7 = KRU|R'-

Note that i~*(Oy) /I }2%7(] in (3.1) is a sheaf of commutative C-algebras
on R, since i~}(Oy) is and 112%,U C i~Y(Op) is a sheaf of ideals. Now
kru(KRru,i) is the subsheaf of local sections f + I%%’U in i_l(OU)/I}QiU
such that df € Igy - i H(T*U). If f + I%U,g + 112%,U are two such
sections then d(fg) = fdg+gdf € Iy i~ Y(T*U), so (f—I—I%U) (g+
I%%’U) € kpu(Krus). Also 1+ 112%,U € kpu(Kprus) as d(1) = 0. Hence
kru(KRru,i) is a subsheaf of C-vector spaces in i_l(OU)/I}Qz’U which is
closed under multiplication and contains the identity, so xkr v (Kr,uv,i)
is a sheaf of C-subalgebras in i~1(Op) /IJ%%,U' Therefore g 7; has the
structure of a sheaf of commutative C-algebras on R in a unique way,
such that kg in (3.1) is a morphism of sheaves of C-algebras.

Call ® : (R,U,i) — (S,V,j) a morphism of triples if R C S C X,
and ® : U — V is holomorphic with ® o7 = j|p : R — V. As for (2.3),
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form the commutative diagram of sheaves of C-vector spaces on R:

0 Ksvsln ks,vIR j_lg(QV) ‘ d j_l.(_T*V) ‘
5 IZy IR Isy - j=YT*V)Ir
(3.2) o lrl(qﬁ) lrl(@)
0 ’C}:Ui srru i Y (Oy)  a r{(T*U) ‘
” I%B,U Ipy - i~ Y(T*0)

Since the right hand square of (3.2) commutes as in (2.3), exactness
of the rows implies there is a unique ®* : Kgyvj|lr = Kpgy,; making
(3.2) commute. As kg, ks,y|r, i~ () are morphisms of sheaves of
C-algebras, so is ®*.

If (R,U'",7) C(R,U,i) and (S, V', 5") C (S,V,j) with ®(U") C V' C
V then setting ®' := ®|ys : U' — V', we have ®* = &*|p.

If w: (S,V,j) = (T,W, k) is another morphism then so is ¥ o @ :
(R,U,i) — (T, W, k), and by considering the diagram

0 K | KT,w|R k_l(OW)‘ d k_l(T*W) ‘
o lrl(mm @)k
0 K | kS, VIR j_l(ov)‘ d j_l(T*V) ‘
SV.jlR Igy’v R Isly - j=X(T*V)Ir
(Tod)* i~ L(Tod)t) i~ (d(Tod))
o+ i (@) i~1(d®)
KR,U i~ (Oy) d i~HT*U)

0—Krui ,
fut 2, Ipy -~ (T*U)
we see that (¥ o ®)* = &* o U*|p, that is, the morphisms ®* in (3.2) are
contravariantly functorial. If (R, U, i) = (S,V,j) and ® = idy then ®* =
id.
We begin with three lemmas. The first is the main point of the proof:

Lemma 3.1. The morphism ®* in (3.2) is independent of the choice
of ®. Thatis, if ®,®: (R,U,i)—(S,V,7) are morphisms of triples then

(3.3) ®* = &*: Ksvilr — Krusie

Proof. If x € RC S C X and « is a local section of Kgy j|r defined
near z in R, then « = f + (I 37‘/)2 for f a local section of Oy defined
near j(z) in V such that df is a section of I - TV C T*V near j(z)
in V. Then ®*(a) = fo ® + (IE%,U)2 and ®*(a) = fo ® + (I}%’U)2 near
z in R.
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Choose holomorphic coordinates (21, ..., z,) on V near j(z)=®(i(x))
=®(i(x)). Then by a holomorphic version of Taylor’s Theorem we have

fod—fo® =3 (5% 00 (2a0® 200

(3.4) ~ ~
+ ZZ,b:l Atlb(za od — Za © CI)) (Zb o®d — 2p O q))

near j(z), for some holomorphic Ay, : V' — C defined near j(z).
Since ® 04 = ® o4 and Ip; is the ideal in Oy vanishing on i(R)
near i(z), we see that z, 0 ® — 2z, 0 ® € Iy on U near i(z) for each

a=1,...,n. Also 867]; € Ig"/ near j(z) by choice of «, f, and g — go ®

maps [gy — Iy near j(z),i(z) as ® oi = j|g, so % o ® € Iy near
i(x). Thus each factor (---) on the right hand side of (3.4) lies in Iy
near i(z),so fo® — fod € (I}%7U)2 near i(z). Therefore

P*(a) = fod+ (IE%,U)Q =fod+ ([f'%,U)Q = &*(a)
near z in R for any local section « of Kg,v,;|r, which proves (3.3). g.e.d.

Lemma 3.2. Let (R,U,1i),(S,V,7) be triples. Then for each z € RN
S C X, there exists a subtriple (R',U’,i') C (R, U, i) with z € R C RNS
and a morphism ® : (R, U',i") — (S,V, ).

Proof. Choose holomorphic coordinates (z1,. .., z,) on an open neigh-
bourhood V of j(x) in V, so that (z1,...,2,) : V — C" is a biholomor-
phism with an open set W C C". Let U’ be an open neighbourhood of
i(x) in U small enough that R’ := i~ (U')C RNj~Y(V)C RNS C X.
Then z, o j|g for a = 1,...,n are morphisms R’ — C. Since i(R’) is a
closed complex analytic subspace of U’ isomorphic to R/, and any holo-
morphic function on i(R') extends locally to U’ near i(z), by making
R/, U’ smaller we can suppose there exist holomorphic f, : U' — C with
faoilg =z40j|g fora=1,...,n.

Making R/, U’ smaller again, we can suppose that (fi,..., f,) : U —
C™ maps into V C C™. Then there is a unique holomorphic map ® :
U -V CV with z,0® = f, fora=1,...,n. Hence z, 0 ® o i|g =

faoilg = zq 0 j|r for a =1,...,n, which implies that ® o i|g = j|g/
as (z1,...,2,) : V. — C" is injective. Thus ® : (R, U’,i") — (S,V,j) is
a morphism of triples. q.e.d.

Lemma 3.3. Let (R,U,i),(S,V,j) be triples. Then there exists a
unique isomorphism of sheaves of commutative C-algebras on RN S

(3.5) I8 Ksvjlrns — Kru.ilrns

such that if (R',U’,'),® are as in Lemma 3.2 then I3y | g = ®*. Also
,L' . 7 i _1

(3.6) Iggz = ldKR,U,i’ Izi‘r;Jz = (Ig‘%) J
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and if (T, W, k) is another triple then

[R,U,i o [S,V,j | — [R,U,i .
(3 7) S,V.i |RNSNT T,W.k | RNSNT T,W.k|RNSNT *

Krwklrnsnr — Kruilrnsnr-

Proof. Suppose z, (R',U’,i'),® and &, (R',U’,7'),® are two possible
choices in Lemma 3.2. Then ® : U’ — V, ® : U’ — V induce morphisms

* Tk
(O ICS,V,]"R’ —_— ICR,U,Z"R’ and & : ICSA/J’R, — ICR,UJ"R/.
The restrictions ®|y/agr and @Ay thus induce morphisms
* Tk .
P ‘R’OR” o ‘RIOR’ . ]Csvvvj‘R’ﬁR’ - ICRvUvi‘R’ﬁR"

Lemma 3.1 now shows that (I)*‘R’OR’ = @*\R,OR,.

Thus, Lemma 3.2 shows that for each x € RN .S we can choose an
open neighbourhood R’ of z in RN S, and a morphism ®* : Kg v j|p —
Kruilr. These open neighbourhoods R’ form an open cover of X,

and on overlaps R’ N R’ the corresponding morphisms <I>*,<i>* agree.
Therefore by properties of sheaves there is a unique morphism I5y of
sheaves of commutative C-algebras in (3.5) such that Iy | g = ®* for
all (R',U’,4),® as in Lemma 3.2.

To see that I} = idxy,,, as in (3.6), take (R, U’,7) = (R,U,i) =
(S,V,j) and ® = idy, so that ®* = id.

To prove (3.7), let (R,U,1),(S,V,j),(T,W,k) be triples and x= €
RN SNT. Apply Lemma 3.2 twice to get open i(z) € U C U
and j(z) € V! C V and morphisms ® : (R, U’,i') — (S,V,j) and
U (S, V) = (T, W, k). Making U’, R’ smaller we can suppose that
j(x) € ®(U') C V' C V, so that ® is also a morphism (R, U’,7") —
(S, V', j"). Functoriality of the ®* now gives ®* o U*|p = (¥ 0 ®)*. So
the defining property of the Iy} gives

IR,U,i

S,V
svilp ol

_ TRU
R AT, Wk =1

R T, W,k

R

As we can cover RN SNT by such open R, equation (3.7) follows.
Finally, applying (3.7) with (7, W, k) = (R,U,7) and using the first

equation of (3.6) yields

R,U,i S,\V,j _ TR, Ui
IS,V,j 0 IR,U,i = IR,U,i

rns = 9Kkl prs

Exchanging (R, U, 1), (S,V,j) proves the second equation of (3.6), and
also shows that [ ?5’; is an isomorphism. The lemma is complete. q.e.d.

We can now construct the sheaf Sx in Theorem 2.1. Since X is locally
of finite type by our convention in §1, near each x € X it admits a local
embedding ¢ : X < U into a complex manifold U. Therefore we can
choose a family {(Ra, Ug,iq) : a € A} of triples such that {R, : a € A}
is an open cover of X. For each a € A we have a sheaf of commutative
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C-algebras Kp, v,,i, o0 R, from (3.1), and for all a,b € A we have an
isomorphism

Ra’Ua/L'a .
Taiuint KRy Uiy [RanRy = KRasUasia | RanR,

on R, N Ry by (3.5), which satisfy the usual conditions (3.6)—(3.7) on
identities, symmetry, and triple overlaps.

Hence by properties of sheaves there exists a sheaf Sx of commuta-
tive C-algebras on X, unique up to canonical isomorphism, with iso-
morphisms tr, v, : Sx|r, = KRr..U.i, for a € A, such that I g;g;l;a
LRy, Uy | RanRy = URa,Us|Ranm, for all a,b € A. One way to do this is to
define an explicit presheaf PSx on X using Ry, Kr, U, ia: 1 S;’lﬁ}lj;?, and
take Sy to be the sheafification of PSx.

Now suppose (R, U, i) is any triple, as in Theorem 2.1(i). We can
construct Sx using the family {(Rq,Uq,iq) : a € A}U{(R, U, %)} instead
of {(Ra,Uq,iq) : @ € A}, and get the same (not just isomorphic) sheaf
Sx and the same isomorphisms tg, v, : Sx|r, — KRy, Ua.ia, DUt NOW We
also have an isomorphism (g : Sx|r = Kgry,i. Combining this with
(3.1) gives the exact sequence (2.2), proving Theorem 2.1(i).

Suppose @ : (R,U,i) — (S,V,j) is any morphism of triples, as in
Theorem 2.1(ii), so that R C S. We can construct Sx using the family
{(Ra, Uayig) 1 a € A}U{(R, U,1i), (S, V,j)} instead of {(Ra, Uayiq) 1 a €
A}, and get the same sheaf Sx and isomorphisms tg, v,, but now we
also have isomorphisms (g : Sx|r = Kry,i and tsy : Sx|s = Ksv,;
satisfying Iﬁ:’é{f otsv|r = tgry. Consider the diagram:

Sx| ts,vIr K | kS, VIR j_l((’)v) ‘ d j_l(T*V) ‘
xin SV Ly, Ik Isy NIV IR
(3.8) [m 5= Jimt@n lz‘*l(dé)
Syl LR,U i ' KR,U i_l(OU) d i_l(T*U)

Here I3y = ®* by Lemma 3.3. The left hand square of (3.8) commutes
as 1§y ousv|r = tru, and the right hand two squares commute by
(3.2). Composing the first two horizontal morphisms in the rows of (3.8)
gives (2.3). This proves Theorem 2.1(ii).

3.2. Theorem 2.1(a)—(c): properties of Sx. Next we prove that the
sheaf Sx constructed in §3.1 satisfies Theorem 2.1(a)—(c). We continue
to use the notation of §3.1. For part (a), define 59( C Sx to be the
kernel of the morphism Sx — Oyrea in (2.5), where By : Sy — Ox
is defined using (3.1)-(3.2) and Ox|g = i Y(Op)/Iry. As (2.5) are
morphisms of sheaves of C-algebras, 59( is a sheaf of ideals in Sx.
There is also a natural inclusion Cx < Sx of sheaves of C-algebras,
where Cyx is the sheaf of locally constant functions X — C: for any triple
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(R,U,1), the sheaf Cy is a subsheaf of O, so (i_l((CU) + I%U)/I%U
is a subsheaf of i~'(Op) /I%%’U which lies in the kernel of d in (2.2),
and so lifts to a subsheaf of Sx|gr, which is isomorphic to Cx|g, as
locally constant functions on X lift locally uniquely to locally constant
functions on U near i(X).

It remains to show that Sx = Cx ®S%. To see this, suppose (R, U, )
is a triple and s is a local section of Sx near z € R, so that tp(s|r) =
f+ (I}LU)Q for f alocal section of Oy defined near i(z) in U with df a
local section of I7 ;- T*U. Then f|;(xreay is locally constant on i(Xred)
near i(x), so f |Z-(de) extends locally uniquely to a locally constant
function ¢ : U — C defined near i(x). Writing fo = f — ¢, we have
foli(xreay = 0 near i(x). The local section s now splits uniquely as
s =50+t with try(so) = fo+ (13%7(])2 and tpy(t) = c+ (I§%7U)2. But
50 is a local section of S% as foli(xreay = 0, and t a local section of Cx
as c is locally constant. Hence Sy = Cx @ S%, proving (a).

Part (b) involves the cotangent complex Lx € D(qcoh(X)). For
background on (co)tangent complexes, see Illusie [15], [16, §1] for K-
schemes, and Palamodov [25-28] for complex analytic spaces. We need
only two facts: that h%(Lx) = T*X, and if R C X is open and i :
R — U is a closed embedding of R into a complex manifold U, then the
truncation 7> _;(Lx) satisfies

(3.9) T>—1(Lx)|r = [IR,U/IJ%LU

in D(qcoh(R)), where IR,U/I%,U is in degree —1 and *(77*U) in degree
0, and the morphism v maps v : f + 112%,U — i (df).
Consider the diagram of sheaves on R:

*(T*U) |

(3.10)
0 0 0
! | | .
0>h""Lx)|lr —= Irv/I}y i(TU) —— ; (T*)E()||§ -0
;O‘X‘R \L =
Voowe 0N Op) 4 iTNTHU)
0 Sx|r e i
§ RU ru -1 HT*U)
EBX‘R \1/7'(
v 10
0—> Ox|gr i i~ (Ov) 0
= Iru
ld |
T*X|r 0 0.

Here the first row is exact by (3.9), the second row by (2.2), and the
third row and second and third columns are obviously exact. Also the
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middle two squares commute by definition of 4 in (3.9). Properties of
exact sequences now imply there are unique morphisms ax|g, Sx|r as
shown making (3.10) commute. Using functoriality of the isomorphism
(3.9), one can show that these ax|g,8x|r are independent of R, U,
locally, and so glue on an open cover to give unique global morphisms
ax, Bx in (2.6), noting that the first column of (3.10) is the restriction
of (2.6) to R.

Since taking kernels of morphisms of sheaves of C-vector spaces is
a left exact functor from the category of morphisms of such sheaves
to the category of such sheaves, equation (3.10) also implies that the
first column of (3.10) is exact at h~}(Lx)|r and Sx|r. To prove it is
exact at Ox|gr, we work at the level of stalks. Let z € R C X, and
write Sx 2, Ox 2, T Xy, ... for the stalks of Sx,Ox,T*X,... at x € X,
so that Sx ;,... are C-vector spaces whose elements are germs at = of
sections of Sx,.... A sequence of sheaves of C-vector spaces on R is
exact if and only if it is exact on stalks at every = € R.

Let n € Ox, with dyp = 0 € T*X,. Then 6,(n) € i Y(Ov)z/Ir vz,
so we may write 6,(n) = ¢ + Iy, for some ¢ € i~1(Op),. The exact
sequences in (3.10) induce an isomorphism

T*X, =i YT*U)./(Inv. - z“1<T*U )e + d(Iruz))

which identifies dn € T* X, with d{ + (IR Ux “Y1T*U), + d(IR,U@)),
sod¢ € Ipp, i HT*U)y +d(Ipy.) C (T*U)x asdn=10. As (Cis
unique up to addition of an element of I R,U,z» Dy changing our choice
of ¢ we can eliminate the d(Iry,) component in d¢, so that d{ €
Ipua i ' (T*U)g. Then ¢+ I, lies in i ' (Op)o /I3 17, with d(¢ +
I%%’UJ) =0in i YT*U)s/Ir vz - i H(T*U),. Hence by the exactness of
the middle row of (3.10) in stalks at x, there exists a unique 6 € Sx
with tp2(0) =(+ I%%,UJ. Therefore

0z 0 Bxa(0) = T2 0 truw(0) = Ta({ + Thy,) = C+ Iruae = 0a(n),

as the bottom left square in (3.10) commutes.

Since ¢ is an isomorphism, this forces fx (#) = n. Similarly, if
0 € Sx,, then d o Bx,(6) = 0. Thus the first column of (3.10) is exact
on stalks at Ox|g, so it is exact. As such open R C X cover X, we
see that (2.6) is exact. Exactness of (2.7) follows from (2.5)—(2.6). This
proves Theorem 2.1(b).

For part (c), consider the morphism of sheaves on R

d: i Y (Op) /Ty — i (T7U)/A(Ty):

Composing with tp 7 maps Sx|r — i~ 1( U)/d( JQ%U) From (2.2), the
image of dovpp lies in (IRU i~HT*U) /d( IRU)) Ci )/d(IéU).
1

Also, as d? = 0, the image lies in Kerd + d(I% ). This defines a

7
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morphism
Ker(d: Igy - i H(T*U) — i H(A*T*U))

3.11) d : S —
(B11) de gy : Sxlr m(d: I3y — Iny - (T°0))

)

where the right hand side is the cohomology of (2.8).

In the splitting Sx |r = Cx|r®SY|r, clearly Cx|g lies in the kernel of
dotpp in (3.11), since d of a locally constant function is zero. We claim
that the restriction of (3.11) to S¥|g C Sg is an isomorphism. As for
part (b), it is enough to prove this on the stalks at each x € R. By the
Poincaré Lemma on the complex manifold U, written using morphisms
d: AkT*Ui(m) — Ak“T*Ui(m) of stalks at i(x), and pulled back to X

using ¢, we have an exact sequence

(312) 0—=C—=i"YOx), -1~ i Y(T*V), —2= i L(A2T*T),.

Let ¢ lie in the stalk at x of the r.h.s. of (3.11). Then ¢ = 7/’+d([1%z,U,x)=
where ¢ € Ig i H(T*U), C i~ (T*U), with dy) = 0in i~ (A2T*U),.
By exactness of (3.12), we may write 1) = d¢ for ¢ € i~Y(Oy )., where ¢
is unique up to addition of a constant 1(c) for ¢ € C. We fix ¢ uniquely
by requiring that ((i(z)) = 0. Then ¢ + I%%,U,x lies in i_l(OU)x/I%U@
with d(¢ + [%;,) = 0 in i N (T*U)o/(Ipye - i~ (T*U)y), since d¢ =
Y € IRy i H(T*U),. Hence C+I%%7U’x = 1p,U(0) for unique 6 € Sx
as (2.2) is exact, and ((i(x)) = 0 implies that 6 € 5.9(751:- Therefore
d o trulsy|y s an isomorphism on stalks, and so is an isomorphism,
proving Theorem 2.1(c).

3.3. Modifications to the proof for the algebraic case. Next we
explain how to modify §3.1-§3.2 to work with K-schemes in algebraic
geometry, rather than complex analytic spaces and complex manifolds.

In §3.1 we replace complex analytic spaces X, R by K-schemes, and
complex manifolds U by smooth K-schemes, and open subsets R C X,
U C U, etc., are taken to be open in the Zariski topology. Then
the proofs work in the algebraic case without modification, working
throughout with sheaves in either the Zariski or the étale topology,
with the exception of Lemma 3.2, which is false: one can write down
examples of K-schemes X with embeddingsi: X < U, j: X — V into
smooth K-schemes U, V', such that for Zariski or étale open () £ U’ C U,
there exist no morphisms ® : U’ — V with ® o' = j|y.

Here are two different ways to fix this:

(A) The analogue of Lemma 3.2 is true if we require that the smooth
K-scheme V' is isomorphic to a Zariski open subset of an affine
space A", as then we can take the coordinates (z1,...,z2,) in the
proof of Lemma 3.2 to be the embedding V' < A".
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(B) Suppose R, S C X are Zariski openandi: R<— U, j: S < V are
closed embeddings into smooth K-schemes U, V. Write U ,V for
the formal completions of U,V along i(R),j(S), with inclusions
i:R< U, j:8 < V. Then one can prove the following formal
analogue of Lemma 3.2: for each z € RN S C X, there exists
a Zariski open U’ C U with z € ¥ C RN S, and a morphism
of formal K-schemes & : U’ — V with ® 07 = j|p/, where R’ =
i~HU') and ¥ = i|p.

Using approach (A), the whole of §3.1 works provided we restrict to
triples (R, U, i) with U isomorphic to a Zariski open in A™. In particular,
we can construct the sheaf Sx using a family {(Ra, Uayiq) @ a € A}
with U, C A™ Zariski open. Note that immediately after the proof of
Lemma 3.3, Zariski locally near each x € X there exists an embedding
1: X — U with U C A™.

The disadvantage of this is that it proves Theorem 2.1(i),(ii) only for
U,V Zariski open in affine spaces A™. To prove them for U,V general
smooth K-schemes, we have to do some more work.

To prove the algebraic version of §3.1 using (B), observe that (2.2)—
(2.3) defining Sx depend only on the formal completion U of U along
i(R), since

iY(Oy) _ i7(0p) and iNrU) TN T0)
v Iip Iry i Y (T*U) ~ Ipp - i~Y(T*0U)

Thus we may replace U,V by U , 1% throughout the proof. For triples
(R,U,1),(S,V,7) with U,V smooth K-schemes and R C S, a morphism
® U — V with ® oi = j|g induces a morphism d: U — V with
doi= jlr. However, the converse is false: there may be d:U -V
with ® 07 = jlr which are not induced by any ® : U — V Zariski or
étale locally on U. Because there are more formal morphisms d than
morphisms &, the formal analogue of Lemma 3.2 holds, which makes
the proof work.

For the extension of §3.2 to K-schemes, the proofs of Theorem 2.1(a),
(b) need no modification. But for (c), equation (3.12) is not exact at
i~Y(T*U), in the algebraic case: algebraic closed 1-forms need not be
locally exact, in either the Zariski or the étale topology. For example,
the closed 1-form z~'dz on A!\ {0} is not algebraically locally exact,
since log z is not an algebraic function.

Because of this, in the algebraic case the morphism from Sg( to the
cohomology of (2.8) constructed in §3.2 is injective, but generally not
surjective. The solution is to modify (2.8), replacing U by the formal
completion U of U along i(R), as in (2.9). In fact the Poincaré Lemma
may not hold on U either (consider the case X = U = U and i = id X)s
but what matters is that one can show that if @ € H(Ig - T*U) -
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HO(T*U) with d&@ = 0 then & = df for a unique f € H(Op) with
f oi|xra = 0, that is, the particular class of formal closed 1-forms we
are interested in can be integrated to formal functions. This completes
the proof of Theorem 2.1.

3.4. Proof of Proposition 2.3. Let ¢ : X — Y be a morphism of
complex analytic spaces. To construct the morphism ¢* : ¢~1(Sy) —
Sx in Proposition 2.3, we will generalize the construction of Sx in §3.1.
Modifying the notation of §3.1, define an X-triple (R,U,%)x to be an
open subset R C X, a complex manifold U, and a closed embedding
i: R <— U, and a Y-triple (S,V,j)y to be an open subset S C Y,
a complex manifold V', and a closed embedding j : S < V. Define
X-subtriples (R',U',i')x C (R,U,i)x and Y-subtriples (S, V', ")y C
(S,V,j)y asin §3.1.

Call T : (Ry,Uy,i1)x — (Re,Us,iz)x a morphism of X-triples if
Ry € Ry C X, and Y : Uy — Uy is holomorphic with T o iy = is|p, :
Ry — Us. Call @ : (R,U,i)x — (S,V,j)y a morphism of X,Y -triples
if (R) CSCY,and ® : U — V is holomorphic with Y oi = jo ¢|g :
R— V. Call U: (S1,Vi,71)y — (S2,Va,j2)y a morphism of Y -triples
if S €Sy CY,and ¥ : V; — V5 is holomorphic with W o j; = jol|g, :
Sl — VQ.

Let @ : (R,U,i)x — (S,V,j)y be a morphism of X,Y-triples. Con-
sider the diagram of sheaves of C-vector spaces on R :

(3.13)
- “loj T (Ov)] o~ (TN T*V))|
0= -1(S 0" o Ov)lr _, ¢ (G~ (I"V))r
¢ (;Y)‘Rwl(bs,v)m o ISR g1 ¢ Usv -3 H(T*V))Ir
5 93 lrl(qﬁ) rl(d@)l
v . - 1 s
0 >S R,U 7 (OU) d 7 (T U)
X|R I]2{,U IR,U . Z—I(T*U) 5

which is (2.11) with ¢} in place of ¢*|g. The rows of (3.13) are exact, as
(2.2) is exact, and the right hand square of (3.13) commutes by definition
of d®. So by exactness, there is a unique morphism ¢} of sheaves of C-
vector spaces making (3.13) commute. Since tr 7, ¢ (tsv)|r, it (PF)
are morphisms of sheaves of commutative C-algebras, so is ¢%.
Suppose T : (Ry,Uy,i1)x — (R2,Us,i2)x is a morphism of X-triples,
and @9 : (Rg,Us,is)x — (S92, Vs, j2)y a morphism of X, Y-triples. Then
$y0Y : (Ry,Uyp,11)x — (S2,Va,J2)y is a morphism of X, Y-triples, and
composing (2.3) for T with the restriction of (3.13) for ®2 to R; yields

(314) gb&()zOT = ¢3>2|R1 : ¢_1(SY)|R1 — SX|R1

Similarly, suppose ®1 : (Ry,U1,41)x — (S1,V1,71)y is a morphism of
X, Y-triples, and ¥ : (S1,V1,51)y — (S2,V2,Jj2)y a morphism of Y-
triples. Then W o &y : (Ry,Uy,i1)x — (S92, Va,j2)y is a morphism of
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X, Y-triples, and composing (3.13) for ®; with ¢|}_%11 applied to (2.3) for
U, we see that

(3.15) oo, = Py * 0 (Sy) Ry — Sx|r,-
Easy generalizations of the proofs of Lemmas 3.1 and 3.2 show:

Lemma 3.4. The morphism ¢} in (3.13) is independent of the choice
of ®. That is, if ®,®:(R,U,i)x — (S,V,j)y are morphisms of X,Y -
triples then

(3.16) 05 = ¢% : 07 (Sy)lr — Sx|r

Lemma 3.5. Let (R,U,1)x be an X-triple and (S,V,j)y a Y -triple.
Then for each x € RN ¢~ (S) C X, there exist an X -subtriple (R,
U',i'\x C (R,U,i)x with x € R C RN ¢~Y(S) and a morphism of
X, Y -triples ® : (R, U',i'")x — (S,V,j)y.

We now claim that there exists a unique morphism ¢* : ¢~ (Sy) —
Sx of sheaves of commutative C-algebras on X, such that ¢*|r = ¢}
for all morphisms of X,Y-triples ® : (R,U,i)x — (S5,V,j)y. To show
this, it is enough to prove:

(a) For all x € X, there exists a morphism of X, Y -triples ®:(R,U,i)x
— (S,V,j)y with z € R; and

(b) If @y @ (Ry,Uy,i1)x — (S1,V1,j1)y and ®o : (R, Us,in)x —
(S, Vs, j2)y are morphisms of X, Y-triples, then ¢$1|R10R2 =
¢$2‘R10R2'

To see part (a) holds, choose an X-triple (R,U,i)x with x € R and
a Y-triple (S,V,j)y with ¢(z) € S, and apply Lemma 3.5. For (b),
let x € Ry N Ry. Applying Lemma 3.2 twice gives an X-subtriple
( ll,U{,Z'll)X - (Rl,Ul,’il)X with = € Rll C Ry N Ry and a mor-
phism of X-triples T : (R}, U7,%)x — (R2,Us,i2)x, and a Y-subtriple
(ST, V1, 710)y C (S1,Vi,51)y with ¢(z) € S} and a morphism of Y-triples
U (S, V{31 y — (Sa2, Va, jo)y. Making R}, U] smaller if necessary we
may suppose that ®(U{) € V{ C V4. Then we have

¢$1|R’1 = ¢$1|U1 = qb‘&/o@l‘[]{ = ¢$20T = ¢$2|R’17

using (3.15) in the second step, Lemma 3.4 for W o @y, P30T :
(R}, U{,i))x — (S2,Va,j2)y in the third, and (3.14) in the fourth.
Thus for each x € Ry N Ry we can find an open x € R} C Ry N Ry
with @3 [rr = ¢%,|r;- This implies (b).

Thus, comparing (2.11) and (3.13) shows that there exists a unique
morphism ¢* such that (2.11) commutes for all R, S,U,V,i,j, ® as in
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Proposition 2.3. Consider the diagram

00— (S}) ——— 67 (Sy) ¢~ (Oyrea)
. . o1 oBy)
(3.17) ly-10s0) #| o WHrea |
1500 x
0 S% Sx a O yred.

The rows are exact by Theorem 2.1(a), and one can see the right hand
square commutes by composing the left hand square of (2.11) with
the projections to ¢~ (Oyrea)|r, Oxrea|r. Thus by exactness, ¢* maps
¢~ HSY) — S% as in (3.17).

Now let ¥ : Y — Z be another morphism of complex analytic spaces.
Using the obvious notation, suppose ® : (R,U,i)x — (S,V,j)y, ¥ :
(S,V,j)y — (T, W, k)z are morphisms of X,Y -triples and Y, Z-triples,
so that Wo @ : (R,U,i)x — (T,W,k)z is a morphism of X, Z-triples.
Then comparing (2.11) for ¥ o ® with the composition of (b];zl applied
to (2.11) for ¥ with (2.11) for ® shows that ()0 ¢)*|r = ¢* 0~ (¢*)|r.
As we can cover X by such open R C X, equation (2.12) follows.

To show that id% = ids, , compare (2.3) with (2.11) with R, U, ,idy
in place of S,V,j,®. Finally, if ¢ : X — Y is an étale morphism of
complex analytic spaces, then ¢ is a local isomorphism in the complex
analytic topology, so ¢* is an isomorphism. This proves Proposition 2.3
for complex analytic spaces.

The extension to K-schemes works as in §3.3. For the last part,
for Sx,Sy sheaves in the Zariski topology, if ¢ : X — Y is a Zariski
inclusion then it is an isomorphism locally in the Zariski topology, so ¢*
is an isomorphism. Similarly, for Sx, Sy sheaves in the étale topology,
if ¢ : X — Y is étale then it is an isomorphism locally in the étale
topology, so again ¢* is an isomorphism.

4. D-critical loci

We now prove Propositions 2.7 and 2.8 from §2.2.

4.1. Proof of Proposition 2.7. We will prove the K-scheme case, as
it is more complicated, and we tackle the second part of the proposition
first.

Suppose (X,s) is an algebraic d-critical locus, and =z € X. Let
(T, W, h, k) be a critical chart on (X, s) with x € T, and set dim 7T, X =
m and dimW = n. Then Hessy,)h has rank n —m. Choose étale
coordinates (z1,...,2,) on a Zariski open neighbourhood W' of k(z) in
W, such that

(4.1)

8ZZ'8Zj

oh ‘ )L, di=je{m+1lm+2,...,n},
E(z) N 0, otherwise.
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Define V = {w e W': 8zm+1 (w)="--- = gz}; (w) = 0}. Equation (4.1)
implies that the equations gfj (w) =0for j =m+1,...,n are transverse

at k(z), so V is smooth of dimension n — m near k(xz). Making W’
smaller, we can suppose V' is smooth of dimension n — m.

Define S = k=1(W’), so that z € S C T C X is Zariski open and k|g :
S — W' is a closed embedding with k(S) the K-subscheme dh/y;/,(0)
in W’. But dh|ys = 0 implies that az T h_(w) = = (%;(w) =0, so
k(S) CV C W' Thus j:=k|s:S < V is a closed embedding. Write
g:=h|y : V — Al Tt is now easy to check that (S,V,g,j) is a critical
chart on (X,s) with x € § and dimV = dim 7, X.

Suppose now that x € R C X is Zariski open, and i : R — U is a
closed embedding into a smooth K-scheme U with dimU = dim 7T, X =
m, and f : U — Al is regular with (g (s|g) = i~ '(f) + I%%,U‘ Let
(S,V,g,7) be as above. Then i|gns X jlrns : RNS — U x V is a closed
embedding. Choose a Zariski open neighbourhood S of z in RN S and
a smooth locally closed K-subscheme V of U x V such that dim V = m
and (i x j)(S) CV C U x V as K-subschemes of U x V, with (i x §)(5)
closed in V.

Writej:(ixj)|5:5’—>f/and7rU:V—>U,7TV:T7—>Vforthe
projections. As T(i(m),j(x))f/ = dj|. (T, X) = (di|z xdj|,) (T, X) and di|, :
T,X — Ti(x)U, djle : T, X — TV are isomorphisms, we see that
d”Ukzx 1i@)  Ti@.g@n)V = TiwU and Ay, @) - T eV =
)V are isomorphisms, so 7y, my are étale near (i(w),j(z)). Making

J(:v
S,V smaller, we can suppose 7, Ty are étale. Since my o Jj=17lg, and

j: S <—> V is a closed embeddmg, we see that j(S) is open and closed
in 7rV 1(j(S)). Thus, making V smaller, we can suppose that j(S) =
(5 (S)).

Define § = gomy : V — Al. As 1y is étale, Crit(§) = ' (Crit(g)) =
T (5(S)) = 7(S). Since (S,V,g,j) is a critical chart, we have t5v(s|s)

i~1(q) +I§7V. Combining this with § = gomy, my0j = j|g, and The-
orem 2.1(ii), proves that ¢3¢ (s|g) = 77'(§)+1%,i. Therefore (S,V,3,7)
is a critical chart on (X, s).

Now 7y = S — U is étale, and using gy (s|r) = i~ (f) + 112%,U and
Theorem 2.1(ii) again shows that j~'(g) + I3 = j~ (7}, (f)) + I3 v, so
that

(4.2) w7 (f) — g € I3; C Oy,
where Iq5 C Oy, is the ideal generated by dg. Differentiating (4.2) gives

d(7fr(f) — 9) € lag - Lag.o2s - TV,
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where 15 925 C Oy is the ideal generated by the first and second deriva-
tives of §. Therefore locally on V we may write

(4.3)  d(mp(f)) = (d+a)-dg, where « € lyz2;-TV @ T*V.

As j(z) € Crit(g) and Ty, Crit(g) = Tj(x)f/ we have dgl;,) =
82§]5(m) = 0, 50 alj(z) = 0, and id+a is invertible near j(z). Making S,V
smaller, we can suppose id + « is invertible on V. So (4.3) implies that
Crit(r};(f)) = Crit(g), as K-subschemes of V. Hence (S,V,7};(f),]) is
a critical chart on (X, s).

As 2 V — U is étale, it maps Crit(r};(f)) — Crit(f) on the image
of . But Crit(n};(f)) = j(S), so my (Crit(r};(f))) = 7 0 3(S) = i(S).
Thus Crit(f)Nay (V) = i(S), and Crit(f) coincides with i(R) near i(z).
Choose open i(z) € U' C ny(V) C U, and set R =i~ (U"), f' = flo
and i’ = i|p/. Since 1y is étale, m; ! (Crit(f')) = Crit(r};(f)) N7y, (U') =
J(S)yNa (U = 75t (i"(R')), and this forces Crit(f’) = '(R'), since the
étale morphism 7 is a Zariski isomorphism j(S) — i(S). Therefore
(R, U, f',4') is a critical chart on (X,s). This proves the second part
of Proposition 2.7 in the K-scheme case.

For the first part, suppose (X,s) is an algebraic d-critical locus,
R C X is Zariski open, ¢ : R < U is a closed embedding into a
smooth K-scheme U, and z € R. Let n = dimU and m = dim 71, X.
Choose a Zariski open neighbourhood U’ of z in X and étale coordinates
(21,-++,2n) : U — A" such that 2, 11]yry = -+ = znlir(r) = 0, where
R = i1 (U') and i’ = i|p : R' < U’, a closed embedding. Making
R', U’ smaller if necessary, we may choose regular f : U — Al with
r v (slr) = 771 (F) + L

Set V! .={v € U : zjps1(v) = -+ = z,(v) = 0}, so that V' is a
smooth K-subscheme of U" with dimV’ = m = dim7, X and ¢'(R’) C
V' C U'. The proof above shows that Crit(f|y/) = i'(R) near i'(z),
so making R/, U’, V' smaller we may suppose that Crit(f|y/) = ¢ (R').
Define f': U’ — A! by

(4.4 Enz . 1 En: 5 +ﬁ .
4) 82] T D202 “i%k:

j=m+1 ] k=m-+1

Differentiating (4.4) shows that for j =m+1,...,n we have

0z; — A kl— azjazkﬁzl
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Rewriting this in matrix form gives

of’
aszrl f n Zm+1
(4.5) = ( ik +3 Zl =m+1 92;02,0z, )j k=m—+1
or ’ %n
Ozn

As z; =0 on V' C U’ the first matrix on the r.h.s. of (4.5) is invertible
near V' in U’, so making U’ smaller while fixing R’, V’, we can suppose

it is 1nvert1b1e Then the K-subscheme 5 f == gf =0in U’ is
Zm41 = -+ = zp, = 0, that is, V. Therefore as f’|V/ = fly’ by (4.4) we
have

(46) Crlt(f/) = Crit(f/‘vl) = Crlt(f"//) = Z/(R/)

Since Zj’i’(R’) = ‘2 R’) =0 forj =m + 1, , N we have i/~ 1( ]) c

Ir v and i’_l(% ry for j =m+1,...,n. Thus (4.4) implies

that
(47) i/_l(f/) + I}%’,U’ == i/_l(f) + 112,2/7[]/ = LR/7U/(S|R/).

Equations (4.6)—(4.7) imply that (R,U’, f’,4') is a critical chart on
(X, s). This completes the proof of Proposition 2.7 for K-schemes.

For complex analytic spaces, the proof above also works more-or-less
without change, but it can be simplified, as étale morphisms of complex
analytic spaces are local isomorphisms, and so are invertible on suitable
open sets.

4.2. Proof of Proposition 2.8. Let ¢ : X — Y be a smooth mor-
phism of complex analytic spaces (or K-schemes) and t € H?(SY), and
set s = ¢*(t) € HO(S%). Fix x € X with y = ¢(x). Write dim 7, X = m
and dim7T,Y = n, so that m > n and ¢ is smooth of relative dimen-
sion m — n near x. We may choose (Zariski) open y € S C Y and
r € RC ¢ 1(9) C X, closed embeddings i : R < U, j : S — V
for U,V complex manifolds (or smooth K-schemes) with dimU = m,
dimV = n, and a morphism ® : U — V smooth of relative dimension
m —n with ®oi = jo¢|g: R — V. Making S,V (and hence R,U)
smaller, we may choose holomorphic g : V' — C (or regular g : V — Al)
with gy (tls) = 71 (g) + Igy. Define f = go ®. Then s = ¢*(t) and
Proposition 2.3 imply that vz (s|r) =i 1(f) + IIQ%U

Since dim 7, X = dim U, Proposition 2.7 implies that (X,s) is a d-
critical locus near x if and only if Crit(f) = i(R) near i(x) as complex
analytic subspaces (or K-subschemes) of X. Similarly, (Y,t) is a d-
critical locus near y if and only if Crit(g) = j(R) near ]( ) But @ :
U — V is smooth and f = g o ® implies that Crit(f) = ®~1(Crit(g)).
Also ®oi = jo¢|g and ¢,  smooth of relative dimension m —n imply
that i(R) = ®~1(5(9)) near i(R).
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Therefore Crit(f) = i(R) near i(z) if and only if Crit(g) = j(R) near
j(y), and so (X, s) is a d-critical locus near z if and only if (Y,¢) is a
d-critical locus near y. Hence (Y,t) a d-critical locus implies (X, s) is a
d-critical locus, and if ¢ : X — Y is surjective then (X, s) a d-critical
locus implies (Y, t) is a d-critical locus. If (X s), (Y,t) are d-critical loci
then ¢ : (X,s) — (Y,t) is a morphism of d-critical loci by Definition
2.5. This proves Proposition 2.8.

5. Comparing critical charts (R, U, f,i)

Next we prove Theorem 2.20 and Propositions 2.19 and 2.22-2.24
from §2.3.

5.1. Proof of Proposition 2.19. Let (R, U, f,i) be a critical chart
on an algebraic d-critical locus (X,s) over K, and z € R. Then U
is a smooth K-scheme, so there exist an affine open neighbourhood U
of i(z) in U and a closed embedding of K-schemes ® : U < A" for
some n > 0. Choose a Zariski open neighbourhood V' of ®(i(z)) in
A™ and étale coordinates (z1,...,2,) on V such that ®(U) NV is the
K-subscheme defined by 2,11 =+ = 2, = 0in V, where m = dimU.
Set U/ =dY(V), R =8 =i (U),7 =ilg: R <= U, f = flo:
U A, d=0|: U < V,and j=Poi : S =R < V.

Now ®(U") is a closed K-subscheme of V, and f o ®~!: ®(U’) — Al
a regular function. Zariski locally on V, we may extend f’o ®~! from
®(U’) to V. Thus, making V,U’, R’, S smaller, there exists a regular
h:V — Al with ho ® = f': U’ — A'. Then we may form the partial

derivatives gzh ) af 5‘2 for a,b=1,...,n. Define g : V. — Al by

(51) g = h_Za:m—l—l Za - az +3 Zab m+1 Za’b - 8zaazb +Za m+1 2
Here we use char K # 2 from §1. Since z4|g@ry) =0fora=m+1,...,n,
we have go® = ho® = f: U’ — A'. Also equation (5.1) implies that

Loy = 0, a=m+1,...,n
(5.2) 32@
az—az lo@ry = 2040, a,b=m+1,...,n.

Consider the K-subscheme of V' defined by the equations 8_ =0 for
a=m++1,...,n. The first equation of (5.2) shows this K-subscheme
contains CID(U’ ), and the second that this K-subscheme coincides with
®(U’) near ®(U’) in V. Hence, by making V smaller while keeping

U RS fixed, we can take this K-subscheme to be ®(U’). We now
claim that

(5.3) Crit(g) = ®(Crit(f)) = ®(i(R')) = 4(5)
as K-subschemes of V. To see this, note that the equations a— =0 for
a=1,...,m defining Crit(g) divide into 7a =0fora=m+1,...,n
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which define the smooth K-subscheme ®(U’) in V, and g—i =0 for a =
1,...,m, which under ®(U’) = U’ correspond to df’ =0 as go ® = f.

As (R, U', f',7') is a critical chart on (X,s) we have tp v/ (s|r) =
i + 1}22,71],. Applying Theorem 2.1(ii) with (R',U’,7) in place
of (R,U,i) and using go® = [/, j = ® o4 and R’ = S shows
that tsv(sls) = i 1(g) + Igy. Together with (5.3), this implies that
(S,V,g,7) is a critical chart, and ® : U’ < V an embedding with
j=®o0i, go® = f'show ®: (R,U, f,i) = (S,V,g,7) is an embedding
of critical charts. This proves Proposition 2.19.

5.2. Proof of Theorem 2.20. We begin with the complex analytic
case. Let (X,s) be a complex analytic d-critical locus, (R, U, f,1), (S,
V.,g,j) be critical charts on (X,s), and x € RN S. Then (RN S) is
a locally closed complex analytic subspace of U, and j o i_1|i(RmS) :
i(RNS) — V a morphism to a complex manifold V. So we can extend
j oi~! locally to a holomorphic map U — V. That is, we can choose
an open neighbourhood U’ of i(z) in U with R’ := i~}(U’) € RN S,
and a holomorphic map © : U’ — V such that © o' = j|p : Rf = V|,
for i/ := i’R/.

Theorem 2.1(ii) with (R/,U’,4’), © in place of (R, U, 1), ® gives a com-
mutative diagram (2.3). Applying this to s|p shows that

(5.4) e (slr) = /71 (©%) [us,v (s]s)].

Write I} 17 € Opr for the ideal vanishing on i(R) C U’ and f' = f[y.
Then

S+ T )2 =7 )+ T g =t v (8 R) =11 (©F) [Ls,v (s]9)]
=i 1O [ (g) + 5] = (O] 0O (g) + 15 ]
(55) =i [OHON9)] + i =1 g0 O + (T )],

using i1 (I%, ;,,) = Ir y in the first and seventh steps, tp 17 (s|p) =
RU ; ;

i’_l(f’)+1}22,7U, in the second, (5.4) in the third, tg v (s|s) = j_l(g)—l—lgy
in the fOUTth, Ooi = j|R’ in the ﬁfth, and ’i,_l(@ﬁ)(ls’v) = IR’,U’ in
the sixth.

Equation (5.5) implies that f' —go®© € (I}%U,)? Therefore, making
U’, R’ smaller if necessary, we can choose holomorphic functions rq, s, :

U — C fora=1,...,n, some n > 0, such that r,,s, € H(I} ) for
a=1,...,n and
(5.6) ff=goO®+ris1+--+rps,: U — C,

Define W =V xC*, T =8,k=4jx(0,...,0): T=8 <= VxC" =W,
(S V'.q.,7)=(S,V,g9,5), and ® : U =W,V :V'->W, h:W—=C by

O (u)= (@(u), (ri(u),...,rp(u),s1(u),. .. ,sn(u))), U(v)= (v, (0,... ,O)),
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(5.7) and h(v, (Y1 -y Yny 21,5 - - .,zn)) =g()+y121+ -+ Ynzn.

By increasing n and adding extra functions r,, s, with s, = 0, we can
suppose ® is an embedding near i(z) € U’. So making U’, R’ smaller
we can take ® : U’ < W to be an embedding.

Since (S,V,g,7) is a critical chart, (T, W, h, k) is one too. Also @ :
U — W, \I’ V' W are embeddlngs and f' = ho®, ¢ = ho¥, ®oi’ =
klg, ¥ oj = k|g follow from (5.6)—(5.7) and © o i’ = j|p. Therefore
o . (RLNU' fi) = (T,W,h, k), ¥ : (S, V' ¢, ) — (T,W,h, k) are
embeddings of critical charts with z € R'NS’, proving Theorem 2.20 in
the complex analytic case.

For the algebraic case, with (X, s) an algebraic d-critical locus over
K, and (R, U, f,1),(S,V,g,j) critical charts, we would like to follow the
above method, but there is a problem with the first step: if V' is a general
smooth K-scheme, we may not be able to choose a Zariski open i(z) €
U’ C U and a morphism © : U" — V such that © o4’ = j|gp : R — V.
However, this is valid if V' is Zariski open in an affine space A™.

So we modify the method above as follows: first we apply Proposition
2.19, proved in §5.1, to get a subchart (5',V’,¢',j") C (S,V,g,j) with
z € S and an embedding = : (S", V', ¢, j') = (S,V,§,)) for (S,V,§,7)
a critical chart on (X,s) with V € A™ Zariski open. Thus we may
choose Zariski open i(z) € U’ C U and a morphism © : U’ — V with
©oi = j|g : R — W. Then we follow the rest of the proof above with
(5,V,3,7), A" in place of (S,V,g,7),C", so that W =V x A?™ except
that we define U : V' < W by ¥(v) = (E(v), (0,...,0)). We leave the
details to the reader.

5.3. Proof of Proposition 2.22. Choose holomorphic coordinates

(1, Um» 21, - - - » 2n) 00 an open neighbourhood V of j(z) in V, where
dimU = m and dimV = m + n, such that j(x) = (0,...,0) and
®(U) NV is the submanifold 2, = --- = =0in V. Set U =

(V) and &4 = g4 © Pl for a = 1,...,m. Then U is an open
neighbourhood of i(x) in U, and (&1,...,4,) are holomorphic coor-
dinates on U with i(z) = (0,...,0). Write f|; = f(1, ..., &y) and
gly = 91, Ym, 41,...,%,) as functions of these coordinates, so

that f = go ® implies that f(¢1,...,9m) = §(§1,--%m,0,...,0)
for (y1,...,9m) € U. .
Then the ideal 1 J’Q v ="1uap is on U the ideal of holomorphic functions

n (i1, ..., d&m) generated by 2 i L fora=1,...,m, and the ideal Igy =
I(dg) is on V the ideal of holomorphic functlons in (91,... ,ym, ZlyeeeyZn)
generated by 69 for a = 1,...,m and 3 for b = ..,n. Since

® maps U to 2y = -+ = %, = 0 and Z(R) to j(R) C j(S), we have
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I(df) = I(dg)|51:,,,:5n:0, that iS,

(g—i(yl,...,ym):azl,...,m):

(5=, 9ms 0,...,0) sa=1,...,m,
LY .
a,fb(yl,...,ym,O,...,0):bzl,...,n).

As g—i(g)l, o3 Um,0,...,0) = amf (U1, -+ +Ym), this holds provided each

S, Um0+, 0) lies in (S (G1, o, G, 0,0, 0) sa=1,...,m).
Thus, making U, V smaller if necessary, we can suppose there exist holo-
morphic functions Ag(§1,...,9m) on U fora =1,...,m, b=1,...,n
such that for each b

NIE

ag ¢ - . . . 9g /- .
Ti(yla"'7yM707"'70): Aab(ylw”uym)’ a_y'ga(ylu"'7yM707"'70)'

a=1

Define holomorphic coordinates (g1, ..., %Um,21,.-.,2,) O0 an open
neighbourhood V' of j(x) in V by §a = 9a + Sopey Aab (15, Um) %
and 3, = Z,. Here §q, % are defined on all of V, but they need only be
a coordinate system near j(x) in V where 21, .., 2, are small, so we
shrink V to V C V. We also write U = &~ (V) C U and &, = Talg-
Then g 0 ®|; = T4 as £, 0 ®|7 = 0. Making V smaller if necessary we
can suppose that if (1,...,9m,21,...,2n) € V then (J1y---yUm) € U,
using the coordinates (i1,...,4m) on U.

Write gl = §(1, - - Um,» 215 - - -, Zn) using these coordinates. Then

95/~ -
ngb(ylv"'vym707"'70)
m

06 . g 8a y 2
1a—i(y1,...,ym,0,..., 0) - agb—l—zazc(yl, ..,ym,O,...,O)-g—gb
a=
LA Y . . .
= Zlaigjqa(ylv"'vyﬂwo) : (_Aab(yla---yym))
a=
n
. . 94 /- .
+Z:l(zzlzlAac(yla"'aym)'ﬁ(yla"wymnou'”ao))'56020'
c=
o~ - . - 95 / ~
Sog(y17”’7ymuo7”’70):f(ylu"'aym)andaTg(ylu"'ayM707"'7O):
0 for b=1,...,n in the new coordinates (gl,...,ym,zl,...,zn).

Consider the holomorphic function h : V — C given by

(58) h(glu”’7?}7717517"'7571):.&(:&17"'7@7717217”’72n)_f.(g17’”7gm)-
0) = 0 and %(gl,...,gm,o,...,m =
1 .yUm) € U, so h lies in the ideal
U smaller if necessary, we may write

It satisfies A(J1,...,Um,0,...,
0 for all b = 1,...,n and ~(g]
(%1,...,2,)?. Thus, making V,

1

(59) h(glu cee 7@7717517 o 7571): Z gbgc ch(gh o 7@7’17217 o 7§n)7
b,c=1
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for some (nonunique) holomorphic functions Q. : V — C with Qp. =
ch- _

Now Crit(g) = Crit(g)NV = j(S)ﬁV liesin®(U) ={% =--- =3, =
0} as complex analytic subspa~ces of V. Therefore Z1,..., %, lie in the
ideal I(45) generated by 8y , 88 Zg , so making U,V smaller, for each d =
1,...,n there exist holomorphic functions Baq(§1,- -, Um, 21, -5 2n),

Cya(F1s - Gms 215+ - - » Zn) on V such that using (5.8)—(5.9) we have

~_mB 8§ "C 8§
Zd—z ad'a—gaJrZ bd " 55

(s T B )

= 8B [ S, 5 52

+2 Z Chd = ZeQuc(U1s - -+ Y 215+ -+, Zn)
b,c=1

(5.10)

+ Z Ceq - zbzc(% (U1 - s Ums 215+ s 2n)-
b,c,e=1

Apply a%g to (5.10) and restrict it to the point (0,...,0) = j(x),
noting that 6;9_56];(0’ ...,0) = 0. This yields

0ed =23 41 Cra(0,...,0) - Qpe(0,...,0), foralled=1,...,n

Hence the symmetric matrix (ch(O, . ,0))2’621 is invertible. Thus, by
applying an element of GL(n,C) to the coordinates (Z1,...,2,) we can
suppose that Qp:(0,...,0) = 0. for byc=1,...,n

We now define new holomorphic coordinates (yi,...,Ym,21,---,2n)
on an open neighbourhood V' of j(z) in V, and write ¢ (y1,. .., Ym,

Z1,-..,2n) = glyr for g as a function of these new coordinates and
U’ =&~ 1(V’), such that:

(a) y —gafora—l co,m

(b) & 5= = Ope at j(x) for be=1,...,n.

(c) ®(U’) is the submanifold z; = -+- =2z, =0in V.

(A) I W1y Yms 21 2n) = FW1s ooy Ym) 4 25+ - + 22

We define z;, by reverse induction on b =n,n—1,...,1.
For the first step, as Qn, = 1 at j(z) = (Q, ...,0), we may restrict to
a small open neighbourhood V' of j(z) in V on which Qunn(91,- -, Um,
1/2

Z1,...,%n) is invertible and has a square root @y, . Rewrite (5.9) on
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V' as

. n—1
g(gly---7gm7§17---72n):f(g17'~agm)+ Z gbgc[ch_Q;%anan

b,c=1
1 9.~ . B n—1 A
/ 2n+z an anzb :f(yly---yym)"’_ Z 2bchbc+272n
b,c=1

(511) where ch ch Q;&anany Zn = 1/22n+ Z Qrm anzb

Note that QbC(O,...,O) = 0pe for bye=1,...,n—1, as Qpc(0,...,0) =
Ope. For the second step, making V'’ smaller so that (),,_1,_1 is invertible

and has a square root Q , on V', we have

nln

915 Umy 1y Z) = f@h---,@m) + 3 by BEeQre + 22y + 22,

where Q ch n— ln 1an chn 1

1/2 ~ — —-1/2 A ~
and Zn—1 = Qn/_ln_lzn—l + Zb:l Qn_/l n_1an—1Zb'

Continuing in this way, we define j(z) € V/ C V and holomorphic
functions y1, ..., Ym, 21, .-, 2 : V' — C satisfying (a)-(d) above.

Parts (a)—(c) imply that (y1,...,Ym, 21,.-.,2n) are a coordinate sys-
tem near j(x) in V', so making V' smaller, we can suppose they are
coordinates on V’. Define a : V! — U and 8 : V! — C" by « :
Y1y s Yms 21y -y 2n) = Y1y oy Ym) and B (Y1, oy Ymy 215 -+ 5 2n)
(21, ..., 2n), using coordinates (Y1, ..., Ym,21,---,2n) on V' and (i1,...,
i) on U. Proposition 2.22 then follows from (a),(c),(d) above.

5.4. Proof of Proposition 2.23. We will adapt §5.3 to the algebraic
context. The first part, until just before (5.8), works with i(z) € U C
UCUandj(z) € VCV CV Zariski open and (i1,...,dm) : U — A,
W15 Gms 1, ndn) 2 Vo= AT (G Gy B Ba) 2 V=
A™F™ ¢tale coordinates on U,V,V. Note that f,g are not functions
of &, or 9q,2p OF §g, 2y, €xcept in an étale sense, so we cannot rigor-
ously write f[; = f(&1,...,&m), and so on. Nonetheless, the partial

derivatives Dia Dot D Di (%‘7 are all well defined on U, V, V.

In this way, we construct étale coordinates (91, ..., Ym, 21, --,2n) O0
V C V such that ®(U) is the smooth K-subscheme z; = --- = Z, =0
in V, and g_égl,‘cb(ﬁ) =0for b=1,...,n. Now (5.8) does not make sense

on V, since we cannot extend f from U to V as f is not a function
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of (§1,...,Um). Instead, we form the Cartesian square of smooth K-
schemes and étale morphisms
(5.12) j{m (gl,...,gm,zl,...,znw

~ (w17 ey )deA"

U x A" AT = AT AT
There is a unique o € V with &(?) = i(z), 5(9) = (0,.. .,0) and j(v) =
j(x). Then & x (3 and j are étale, so we can regard j: V — V C V as
an étale open set in V. Define étale coordinates (91, ..., Um, 215 -« -, 2n)

V = A™" by §4 = §a 0 J, % = % o j, and define f,g : v Al by
f = foaand g = goj. The analogue of (5.8)isnow h = g—f : V — AL
The previous argument now shows that on the smooth K-subscheme
U € V defined by z; = --- = %, = 0 we have h|; = 0 and g—gbzofor
b=1,...,n. Therefore h lies in the ideal (%, ..., %,)? on V. So making
U,U,V,V smaller, we may write h = ZZCZI ZpZ2:Qpe, the analogue of
(5.9), for some Qpc : V — A! with Qp = Qu, where the last part
requires char K # 2, and Qp.(0,...,0) = dp becomes Qpe(0) = Jpe.

The last part of §5.3, defining the coordinates (y1,...,Ym, 21,--.,2n),
. . 1/2 A—1/2
involves taking square roots Qpnn , @, 5, _1:----
not exist on V or Zariski open subsets of V, but they will exist on
étale open subsets of V, noting that K is algebraically closed, so that
square roots exist in K. So we can construct an étale open neigh-
bourhood § : V! — V of ¥ in V on which we define étale coordinates
(Yly - s Yms 21, - -+ 2n) + V! — A" satisfying the analogues of (a)-(d)
in §5.3, where (d) becomes goy = fos + 23 4+ + 22

Set U' = {v' € V': z1(¢v/) = -+ = z,(v') = 0}, which is a smooth
K-subscheme of V' as (y1,...,Ym,21,.-.,2n) are étale coordinates on
V. Define . : U - U, 3:V =V, ® .U -V, a:V — U,
and 8 : V' — A" byt =caof|y, g=joy, ¥ =idy, a = aoy
and 8 = (21,...,2n). As j/ : V! — V is an étale open neighbourhood
of ¥ in V, there exists v/ € V’ with 7/(u/) = @, and z(u') = 0 for
b=1,....,nas %) = Z, 0 j(®) = %(j(zx)) = 0, so v/ € U with
v(u)=cdo g (u)=ca&(d)=i(zx). Also t,7,ax [ are étale as @ x f3, 7,7 are.

To see that ® o1 = 50 @', note that

These generally will

(T1s- o Gms 21y e s Zn) 0D oL = (F1,. .., @m,0,...,0) 007 |y

= ((531, ey Tm) X idAn) o (& x B) o7 |u

= (Y1y -+ > Jms 215+ - - 2n)0jo) lrroidyr = (G1, - - s Yy 215 - - - 2n) 090D,
using the definitions and (5.12). Since ® o ((u') = j(z) = j0 ®’(u') and
(U1, -+ sTUms 21, - - -, 2n) are étale coordinates on V' C V', this implies that

® o, =j 0P near v in U, so making U’ smaller if necessary we have
®or=j 0@ The equations ao ®’ =, B0 P =0 are immediate, and
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gog=foa+ (2} +---+22)op follows from goj = foy + 27 +---+22.
This proves Proposition 2.23.

5.5. Proof of Proposition 2.24. For Proposition 2.24, we first follow
the proof of Proposition 2.23 in §5.4 until immediately before the choice
of 7 : V! = V, so we have étale coordinates (F1- - ,ym,zl, evyZp) ON
j@) € VCV and (&1,...,%y,) oni(z) € U = & (V) C U with
ZTq = Yo 0 @|7, f%gz,|<1>(l7) = 0, and a Cartesian square (5.12) with étale
coordinates (1, ..., Jm, 21,---, %) on V and © € V with &(0) = i(z),
B(v) = (0,...,0) and j(v) = j(z), and functions f,§,h,Qp. : V — Al
with f = fod, g=goj,and h=g—f =3} _| ZZQuec, With Que(?) =
Ope-

We have morphisms id x 0 : U — U x A", Dl - U — V with
(1, &m) x idan) o (id X 0) = (F1, -+, Fms Z1s- -+, Zn) 0 |7 : U —
A™T"  Thus by the Cartesian property of (5.12), there is a unique
morphism & : U — V with (& x §) o ® =id x 0 and jo & = ®|g. Also
®(i(x)) = 0, since (idx 0)(i(z)) = (z‘(:c),o) (@ 3)(v) and @[5 (i(x)) =
j(@) = J(5).

We now modify the inductive procedure in §5.3-85.4, to construct a
Zariski open neighbourhood U’ of i(x) in U C U, an étale open neigh-
bourhood j/ : V! — V of % in V with & o 7/(V') C U’ C U, a morphism

"L U — V' with 7 o ® = |y, étale coordinates (y1,...,%Ym, 21,

2,) 1 V! — A™™ and regular functions qi,...,q, : U — A\ {0},
such that:

(a) Yo =Ua0) =Ggojoj fora=1,...,m.

(b) azl} = Ope at '(i(x)) for b,c =1,...,n, where (y},..., Yy, 21, -,
;z) (U1y- -y Ums 21, - -+, 2n) © ) are étale coordinates on V.

(c) ®'(U’) is the submanifold 2y = -+ =2, =0 in V.

(d) ho] _(QIOdOJ/)‘z%+"‘+(%0d0]/)'zg.

In the first step of the induction, as Qn,(?) = 1 and ®(i(z)) = o,
we can choose a Zariski open neighbourhood U’ of i(z) in U such that
¢n = Qpno® is nonzero on U, so that g, : U’ — Al\{O} Then &~ H(U")
is a Zariski open neighbourhood of ¢ in V, with ®(U") C a~Y(U’) as
do® = idg, and

Pn = (an’dfl(U’)) . (q;l o d‘dfl(U/)) : (i_l(U/) — Al

is a regular function, with ]5 od|y = 1.

Define j : V. — P;1(A! \ {0}) < V to be the étale double cover
parametrizing square roots of P, wherever P, is nonzero. Then P, o7 has
anatural square root (P, 0])1/2 V- Al\{O} Since P,o®|; = 1, there
is a unique lift ® : U’ — V such that jo® = &|y and (B, 03)1/20<I> =1
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In an analogue of (5.11), we may now write
h oj = chzl(zbchbc) o j = 222211 (2{,20 [ch - Q;&anan]) o
3 B . 12
+ (Qn oo j) : |:(Pn o j)1/2 (én + 22211 Q;&anzb) o .7]
(5.13) =30ty 25eQue + (gn 0 &) - 22,
where 2, = %, 0 j for b <n, 2, = (P, o j)1/2 (Zn + 22;11 Q;&anéb) o7,
ch - [ch - Qr_w%anQCn] OijI‘ b,C - 17 , L — 17 and & = doj

In the second step we define ¢,_1 := Qn—ln—l o <f>, and making U’
smaller we can suppose that ¢,_; maps U’ — A'\ {0}. Then we define
pn—l = (Qn—ln—l‘d*l(U’)) . (q;ll o d‘dfl(U/)) : (i_l(U,) — Al
so that P, jo® = 1. Let j: V — P, 1(A1 \ {0}) C V be the étale
double cover parametrizing square roots of Pn 1 where Pn_l is nonzero.
Then P,—1 o j has a square root (P,_y 0‘7)1/2 V — A"\ {0}, and there
is a unique lift ® : U’ — V such that jo® = & and (P,_10)"/20® = 1.

As for (5.13) we have

hojoj=3p2 5EQue + (gn 1oa> 2+ (god)- 22,

Pn 1 O])1/2(Zn 1+ Z n— 1n 1an 1Zb) O]a Zy =
Zp 0 j for b e — 2, ch - [ch - Qn_ln_lan—chn—l] °j
for be = 1,...,n— 2, and & = & o jJ. Continuing in this way, after
n inductive steps we define data 7/, V', ® y,, 23, qp satisfying (a)—(d)
above. The important difference with §5 4 is that each time we pass to
a further étale cover V,V,... of V to take a square root, we also lift
Dlgr : U — V to morphlsms d:U -V, d:U =V, ..., to these

étale covers, for U’ C U Zariski open. Proposition 2.24 now follows as
in §5.3-§5.4, with (2.14) coming from (d) above.

where %, 1 = (
=1

6. Canonical bundles of d-critical loci

We prove the results of §2.4, Propositions 2.25, 2.27, 2.30 and Theo-
rem 2.28.

6.1. Proof of Proposition 2.25. We will prove the complex analytic
case of Proposition 2.25, involving (a) and Proposition 2.22. The alge-
braic cases with (b),(c) and Propositions 2.23 and 2.24 are similar.

Let (X, s) be a complex analytic d-critical locus and x,U’, V' n,a, 8
be as in Proposition 2.22. To see there exists a unique isomorphism ﬁ
satisfying (2.16), consider the diagram of vector bundles on U’:

0—TU|y *(TV)|ur Nov |
Iy g :
(6.1) = |ia ) = | @l (d(exp) =~

(idx0)
0—=TU|yr ——=T(UXC")|grxog —> <821 .. 7>U’ — 0.

0
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Here (6.1) has exact rows, the first two columns are isomorphisms as
a X [ is étale, and the left hand square commutes since oo @ = id
and S o ®|yr = 0. Therefore by exactness there is a unique isomorphism
3* making (6.1) commute, and taking duals shows that (2.16) holds.
So (2.17) prescribes quv |, for R = i~Y(U’) € R C X. This guv|r
is a nondegenerate holomorphic quadratic form on i*(Nyy )|/, since
dzy ® dz; + - + dz, ® dz, is a nondegenerate holomorphic quadratic
form on <8%1, ey %>U’-

Thus, for each z € R we can find an open x € R' C R and a given
value for the restriction ¢, |p. Since such R’ form an open cover for
R, and S%i*(N},) is a sheaf on R, these values for gy |p come from
a unique g € H°(S%*(N;,)) if and only if they agree on overlaps
R’ N R” between different subsets R/, R” in the open cover.

Let 2, U, V', a, B, R and 2/, U", V", o/, 3, R” be alternative choices
in Proposition 2.22. Then (2.17) gives values for quv|g and quv|grr,
which agree on the overlap R’ N R” if

i[5r [(S26)(d21 @ d2y + -+ - + d2, @ dzy)]
= i[fnpy [(S28)(d21 ® dzg + - + dzy ® dzy)).

Combining (6.1) for U, V' a, 8 and U”, V" o/, ' gives a commutative
diagram of vector bundles on U’ N U”, with exact rows:

(6.2)

- n 0 o)
q)*/ d CMI / N N
R T
d(idx0) .
0%-TU|U/ HT(UX(C )|U/X0H<%""’%>U’$O'

Here (o’ x B")o(a x )71 is a local biholomorphism U x C" — U x C"
defined near (U’ NU") x {0}, which is the identity on U x {0}, and
preserves the function f @ 2% 4+ -+ + 22 : U x C" — C. So restricting to
Crit(f B2+ +22) = Crit(f) x {0} where Hess(f B2 +---+22) is
defined, we see that d((a/ x ') o (v X B>_1)|Crit(f|U’mU”)><{0} preserves
Hess(f H Z% +---+ Z%) in HO(SzT*(U X Cn)‘Crit(ﬂU/mUu)x{O})- As

Hess(fEEz%—F---—i—zg) =Hess f +dz; ®dz; + - - - + dz, ® dzy,

from (6.3) we see that B o 3*1 preserves dz; @ dzy + -+ - 4 dz, @ dz,
on CI‘it(f|U/ﬂU//). That iS,

(2B o))z @dzy + - +dz, ® dzn) | Crit( £y
=(dzxy®dz; +---+dz, ® dzn)]Crit(f‘U,

mU”)

mU”)’
Composing with S23 and applying i|fynpe gives (6.2). Hence, there
exists a unique, nondegenerate ¢, satisfying Proposition 2.25(a).

For the final part of the proposition, suppose ¥ : (S,V,g,j) <
(T, W, h, k) is another embedding, so Wo® : (R, U, f,i) < (T, W, h, k) is
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also an embedding, and define Ny v, quv, Nyw, ¢vw and Ny, quw from
&, U and Vo ® as above. Then existence of unique vy w, 0y making
(2.22) commute is immediate by exactness, and exactness of the line in
(2.22) including vy vw, dpvw also follows easily. So (2.23) is exact on R.

We will first prove the required isomorphism (2.24) exists locally. Let
x € R. Applying Proposition 2.22 to ® : (R, U, f,i) — (S,V,g,j) at =
gives i(z) e U' C U, j(x) eV CV,a:V - Uand g:V — C"
for m = dimV — dim U, satisfying conditions including g|y» = foa +
(y2+---+y2) 0B, writing (y1, ..., Ym) for the coordinates on C™. Then
Proposition 2.25(a) gives

,3: <dy1,...,dym>U/ i)N;V‘U/, and

(6.4) R
Qov|r = il5 [(S?B)(dyr @ dyr + -+ + dym @ dym)]

where R’ = i~}(U’) C R C X. Similarly, applying Proposition 2.22 to
U:(S,V,g,5) = (T,W,h, k) at x gives j(xz) e V" CV, k(z) e W' CV,
o W' —Vand g : W — C" for n = dimW — dim V, satisfying
conditions including h|y» = goo/ +(22+- - -+22)of, writing (21, . . ., 2,)
for the coordinates on C", and with S” = j~1(V"), Proposition 2.25(a)
gives

,3/ : <d2’1,...,d2n>vn i)N:;W‘VN, and

(6.5) i
QVW|S” = j|iksw [(526,)((121 ® le + -+ dzn ® dzn)] .

Set U” = U' N @ (V") and W" = o/ V"), write (y1,--.,Ym, 21,
., zp) for the coordinates on C™*" and define o’ : W"” — U and
,8// . W/// N Cm—i—n by a// — o a/‘WW and 5// — (,8 ° O/’W”’) % B/‘W”’-
Then
hlwor = g0/l + (2 + -+ 22) 0 'l
:foaoo/‘Wm—i—(y%—i—- . -—i—ygn)O/BOO/’W///—F(Z%—F' . '+23L)oﬂ/’W”’
=fod + Wi+ Huynta+ta)op
The other conditions are easy to verify, so U”, W" . d", 3", m +n are a
possible outcome for Proposition 2.22 applied to W o @ : (R, U, f,i) <
(T,W,h,k) at x. Hence Proposition 2.25(a) with R"” = i~} (U") =
R'NS" gives
B” : <dy1, ‘e ,dym, le, v 7d2n>W”’ i) N{;W’Wﬂ/, and
(6'6) qQuw|rr = Z.|*W/" [(523//)((13/1 Qdyr + -+ - + dym ® dym
+dzg @dzy + -+ 4 dzp @ dzy)].
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The isomorphism *(Nyw ) = i*(Nyv) & j*(Nvw)|r in (2.24) is now
clear on the open subset € R” = R'NS” C R, from the isomorphisms

7:|Em (B) : <dy1, e ,dym>RW i> i*(NUV)ﬁ{’”a
j‘E/H (,é/) : <d21, e ,dZn>RW i)j*(va)’*R///,

i (B") : (dyy, - .., dym) g ® (21, . .., dzn) g — i (Now )5

It is easy to see this isomorphism is compatible with (2.23), and (6.4)—
(6.6) imply that the isomorphism induces equation (2.25) on R".

Now isomorphisms (2.24) compatible with (2.23) are in 1-1 correspon-
dence with complementary vector subbundles to i*(yyvw) (i*(Nyyv)) in
i*(Nyw ). In this case, the complementary vector subbundle is just the
orthogonal subbundle to i*(’yUVW)(z'*(NUV)) using the complex inner
product qyw on i*(Nyyw ). This orthogonal subbundle is complementary
provided QUW‘i*(Vuvw)(i*( Nyv)) 1s nondegenerate, which holds as this re-
striction is isomorphic to ¢y .

Thus, the isomorphism (2.24) exists locally on R, and is unique (even
locally) if it exists. So we can glue local choices on an open cover of
R by subsets R"” to get a unique global isomorphism (2.24) compatible
with (2.23) and (2.25). This completes the proof of Proposition 2.25.

6.2. Proof of Proposition 2.27. Let ® : (R, U, f,i) < (S,V,g,7) be
an embedding of critical charts on a complex analytic d-critical locus
(X,s). Fixz € RC X. As for (2.15), define the normal C-vector spaces
Nxvlz, Nxv]z to X in U,V at z by the exact sequences

0 >TX — =Ty

Nxy |m —0,
(6.7) il
0T, X Tia)v

Nxv|x —0,

where T, X is the Zariski tangent space of X at x. Write dim 7T, X = [,
dimU =1+ m and dimV = [ 4+ m + n, so that dim Nyx,|, = m,
dim Ny |, = m+n, and dim Ny |y = n. As for (2.26), equation (6.7)
induces isomorphisms

pxu|x : AZT;X ® AmN)*cU|w — AH_m z’?x)U = KU|i(~’0)’

pxvle AlTxX(X’A NYy | — AT Tj(m)v - KV’j(x)'

We also have a commutative diagram with exact rows:

0 X dils LV Hess;(a) f Z(Z)U W Lok >0
(6.9) idl l/dq>|i(z) f l/id
djla Hessjmyg YV djlz |
0 T,X Tj(x)V—>Tj(m)V—>TxX—>O.

Since T, X = Ker(Hess;,) f), by (6.7) Hess;) f is the pullback to

Ti(z)U of a nondegenerate quadratic form Hess;-(x) f on Nxy|z. Then



A CLASSICAL MODEL FOR DERIVED CRITICAL LOCI 353

det(Hess;, f) is a nonzero element of A™N =012, Similarly, Hessj(2) g
is the pullback to Tj(,)V of Hess,) g on Nxv|., and 0 # det(Hess,) g)
in AmTRNE |97,

In a similar way to (2.23), there is a natural exact sequence

(6.10) 04>NXU|90

Nxv|m

NUV|7L(:(:) —=0,

and as for (2.24), there is a unique isomorphism Nyy|: = Nxyl. ®
Nyvli(z) compatible with (6.10) and identifying Hess;.(x) g with Hess;(w) f
Bquv|®0 as in (2.25). From this, we deduce that the following diagram
commutes:

2 2
(AT ) KE liz) @ A"Ni |2

2
:K® . .
U ’Z(w) id®det(quy )]s

(x) i(x)
Tﬂ%w Jolz p?ﬁ’”l

(6.11) (AIT*X)®* @ AmNE, |®° (AT VIS = KE )
Tid@dct(Hcssg(m) ) p?}i, IT
(AlT;X)@’z id@det(Hess)(,) 9) (AlT;X)@’Q @ AN |§z‘

Here the upper right triangle is the restriction of (2.27) to z, and
depends on ®. But the rest of the diagram depends on z, (R, U, f,1),
(S,V,g,7) but not on ®. So (6.11) a diagram of commuting isomor-
phisms implies that Jg|, is independent of the choice of ®. Thus, if
®,® : (R,U, f,i) — (S,V,g,j) are embeddings of critical charts, then
Jols = Ja|, for all z € R4, As R™ is a reduced complex analytic
space, this implies that Jp = J, as we want.

To prove (2.28), consider the commutative diagram

(K3
i (AP NG )@ | rea

id®det(guw)

from (2.23)\L
. . 5 . u* (K®2)®
i (K§)2)|Rred id@det(quv) 2 (K{? )® id@det(qyw ) i (Atopj\%v)@z@

(AP NG ) | prea

" (AP N3 ) e
Jo lﬂ%i P&y ®id|

o 2
i (K‘%?)'chid@det(qvw) 7 (f(g> )®
i (AtOPN{;W

) ®2 |Rred
2
P%W
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which includes (2.27) for ®, ¥ and ¥ o ®, where the top left triangle
commutes by (2.25). This proves Proposition 2.27 for complex analytic
d-critical loci.

In the algebraic case, for (X, s) an algebraic d-critical locus over a field
K, the argument above shows that for each scheme-theoretic point x of
the reduced K-subscheme R™ we have Jg|, = J3|,, where (6.7)(6.11)
are now diagrams of finite-dimensional vector spaces over the residue
field of X at z, rather than over C. Since R™ is a reduced K-scheme
and Jg,J§ are isomorphisms of line bundles on R*4, Jp|, = J3|, for
each z € R*™! implies that Jp = J§. The rest of the proof is as for the
complex analytic case.

6.3. Proof of Theorem 2.28. We first construct the line bundle Kx g
in Theorem 2.28, and show it satisfies parts (i),(ii). Observe that The-
orem 2.28(i),(ii) characterizing the sheaf Kx ; are similar in structure
to Theorem 2.1(i),(ii) characterizing the sheaf Sx. We will follow the
method of §3.1 to prove Theorem 2.28(i),(ii), handling the complex an-
alytic and algebraic cases together. The analogues of Lemmas 3.1, 3.2
and 3.3 are Proposition 2.27, Theorem 2.20 and:

Lemma 6.1. Let (R,U, f,i),(S,V,g,j) be critical charts on (X,s).
Then there exists a unique isomorphism

. 2 . 2
(612) Jgg?z 1 (K}? )‘chdﬂsrcd — j (K§ )‘chdﬂsrcd
such that if x,U" C U, V' C V(T,W,h,k) and ® : (R, U, f',i') —

(T,W,h,k), ¥ : (S, V' ¢, ) — (T,W,h,k) are as in Theorem 2.20,
and Jg, Jy are as in Definition 2.26 for &, WV, then

(613) J}i:gi?:g‘R/erﬂS/er — qul e} J@’ercdmslrcd.
Also, if (T, W, h,k) is any other critical chart on (X,s) then

o 1
JR,U,f,jL — ld'* 9 JR LU f i — JS ,V,9,7
(6.14) RU,f,i i*(K§)| gred? 5,V,9. ( RUfz) )

T,W,h, k S,V, T,W,
and JS V.,g.j JR U, f i |RredmsrednTred JR U, f i |Rredr~|srednTred .

_ Proof. Suppose 2, U V' & U (T,W,h,k) and z, U, V', & ¥ (T, W,
h, k) are two possible choices in Theorem 2.20. We will show that

—1 -1
(615) J\I/ o J(I)’R/rcdnslrcdmR/rcde‘/rcd - J\if o Jq}’R/rcdnslrcdmR/rcde‘/rcd-

Let & € R4 n §red 0 Rred o §red € T'NT. Then applying Theorem
2.20 to @, (T, W, h, k), (Tth:)yleldsopenajeT’CT FeT C
T, a critical chart (T, W,h,k) and embeddings © : (T', W', W, k') —
(Tth)and_.(T’W’h’k’) (Tth:)

Set U" = &=L (W) nd~ L (W), V" = ¢~} (W') N &1 (W'), and let
(R",U", J",i") € (R.U, f,1), (5", V",g”,j”) C (S.V.g,j) be the corre-
sponding subcharts. Then we have a diagram of embeddings of critical
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charts

(R//, U//, f//a Z'//) (I)‘U” (T/, le h/, k/)
(i)‘U” \I"V”

\il\vu

(S//, V”, g”,j”) (T’, W/, il/, ];./)

Hence we have

J@ 9] JQ) |R//red = J@oq>|R//red = JEO'ii) |R//red = JE o qu>|RHred,
(6.16)
J@ ¢ J\I/ |S//red = J@O\II |S//red = JEO\P |S//red = JE o J\i/ |S//red,

using (2.28) in the first and third steps of each line, and the first part of
Proposition 2.27 in the second steps. Restricting (6.16) to R4 g/red
inverting the second line, and composing with the first line gives

J\Ijl 9} J¢|R//rednsured == (J@ 9] J\I/)_l o (J@ O J¢)|R//rednsured

= (JE 9] J‘i,)_l o (JE o Jé)‘R//rcde//rcd = qul 9] J&)‘R//rcdmsﬂrcd-

This proves (6.15) on the open neighbourhood R4 N §"red of % in
Rved  gived q Rred  §red - Ag this works for all such Z, equation (6.15)
holds.

Thus, Theorem 2.20 shows that for each 2 € RN 5™ we can choose
an open neighbourhood R N §"*d on which the restriction of .J ﬁ:gﬁ:j
is defined by (6.13). These open neighbourhoods R**d N S form an
open cover of R4 5™ and on overlaps (R4 N §ed) N (Rred n §rred)
the corresponding values of J5 %7 agree. Therefore by properties of
sheaves there is a unique morphism Jj; ;%7 in (6.12) such that (6.13)
holds for all applications of Theorem 2.20. Finally, we prove (6.14) by

the method used for (3.6)—(3.7) in Lemma 3.3. q.e.d.

The existence of a line bundle Kx 4, unique up to canonical isomor-
phism, satisfying Theorem 2.28(i),(ii) now follows from Lemma 6.1 in
the same way that the first part of Theorem 2.1 was deduced from
Lemma 3.3 in §3.1.

For parts (iii),(iv), defining k, in (2.31) and showing that (2.33) com-
mutes for all (R,U, f,i) with x € R, first note that if (R,U, f,i) is a
critical chart on (X,s) with € X, and a, gy f; is as in Theorem
2.28(iv), then in the notation of §6.2 we have

2 .
(617) aZ‘,R7U,f,’i = p?éU‘.’E e} [ld ® det(HeSS,/i(x) f)] .
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Thus, if & : (R, U, f,i) < (S,V,g,7) is an embedding of critical charts
then equation (6.11) shows the following commutes:

2
KE i)

®2
Jq>‘x
m

It is now easy to see from Theorem 2.28(i)—(ii) that there is a unique iso-
morphism k, in (2.31) such that oy gy, f,i0 ke = Ltr,U,f,|2 for all critical
charts (R, U, f,i) on (X,s) with € R. This proves Theorem 2.28(iii)—

(iv).

6.4. Proof of Proposition 2.30. Let ¢ : (X,s) — (Y,t) be a mor-
phism of d-critical loci with ¢ : X — Y smooth, fix g € X with
d(x0) =yo € Y, and set m = dim T, X and n = dim T, Y, so that ¢ is
smooth of relative dimension m —n > 0 near x.

As in the proof of Proposition 2.8 in §4.2, we may choose open gy €
S CYandzg € RC ¢ () C X, closed embeddings i : R — U,
j: S < V for UV complex manifolds (or smooth K-schemes) with
dimU = m, dimV = n, a morphism ® : U — V smooth of relative
dimension m — n with ® oi = jo ¢|g : R — V, and holomorphic
g:V - Cand f = go® : U — C (or regular g : V. — A'! and
f=g0®:U — A") with try(s|r) = i '(f) + [y and sy (t]s) =

“Hg) + I§y. Since dim T, X = dimU and dimT,,Y = dimV, the

second part of Proposition 2.7 shows that making R, S, U,V smaller, we
can suppose that (R, U, f,i) and (S,V,g,j) are critical charts on (X, s)
and (Y,1).

We have a diagram of coherent sheaves on R with exact rows, where
the bottom row is (2.34) restricted to R:

(APTEX)

Ky |it)-

i o ¢ s (% R (T
0~ e )> Fawy O T ) =0
(6.18) | ¢t d -

v
AN

0> @o(T*Y) — = T*X|g Ty ln —= 0.

The left hand square commutes as ®oi = jog|r. So by exactness, there
is a unique morphism « as shown making (6.18) commute. As ®,¢|r
are both smooth of relative dimension m — n, i*(T[j/v) and TX/Y|R are
both vector bundles on R of rank m — n. But as ¢ is an embedding, d¢*
is surjective, so « is surjective, and thus « is an isomorphism.

Taking determinants in the top line of (6.18) gives an isomorphism

(619)  B:(jodlr) (Kv)@i*(APTy ) —i"(Ky).
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Define an isomorphism Yo g : [@5ea(Ky) ® (AmpT)*(/Y)]de]

K x s|grea by the commutative diagram of isomorphisms

Rred —

|:¢|i;{rcd (KY,t) (AtopT;{/Y”chd]
(6:20) |0l ea G500 0 (AP0 rea) LR,U,f,il

2 ‘red
(5 0 Dlpmea)* (KE) @ i (APTy; 1)~ i (K ") e,

for tru, f,is 5,9, as in (2.29), and «, B as in (6.18)—(6.19).

We now claim that for each € R, equation (2.36) with Yg g in
place of Ty commutes. To see this, compare (2.33) for sy, g(s), (2.36),
(6.17), the restriction of (6.20) to z, and the commutative diagram

Rred Tq) = KX’S|Rred

2 2 2
(T 1) & (N ) e ()
\L1d®det(HessJo¢(x) g) ’ id®det(Hess;(x) f)l/
op Pk op* op ®?

62y ATTwY)" (QAt T pyle) . (AT .

®(AtOpN)tv‘d>(m)) V2”@ (AP, )& ®(At0pN)*<U‘x)
\L(PYV|§(23C))®(AWPOC‘;1)®2 o2 PXU|;®2\L
. ok
K§2’jo¢(x (At P, /V’z(x ) ® K§2‘z(x)

Here to prove (6.21) commutes, consider the commutative diagram, with
exact rows and columns

0 0
Lo
0_>N;;V’¢(x ....... g ....... > U’SL‘ 0

L i l

(6.22) 0—=T5,V T TiU Ty iy —=0
l/d]*w(z) $di*\z ia\z
- dgle ] A
¢ J |
0 0 0.

The bottom two rows of (6.22) are (6.18) restricted to x. Exactness
implies that there is a unique isomorphism -, as shown in the first
row. One can show that v, identifies the nondegenerate quadratic forms
Hess) 5,y 9 and Hess,) f on Ny, |4 and N,|,. This implies the
upper rectangle of (6.21) commutes. As in equations (6.8), (6.19), and
(2.36), the maps pyv|4(z)s PxU |z Blz, vz in (6.21) are obtained by taking
top exterior powers in the first column, second column, second row, and
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third row of (6.22), respectively. Thus, taking top exterior powers in
(6.22) shows that the bottom rectangle of (6.21) commutes.

To summarize the proof so far: for each zp € X we have con-
structed an open neighbourhood g € R C X and an isomorphism
Yor: [(ﬁ’}md (Ky) ® (AtopT;(/Y) Xred] Rred — K x 5| grea, such that for

each z € R™! equation (2.36) with Yo, r in place of T4 commutes.

Suppose zg, R, To r and z(, R', Yo/ p are two possible choices above.
Equation (2.36) implies that Yo gl = Yo g, for all € R4 N Rred,
As Redn R is reduced, this forces Yo g|greanpred = Yoo gr| gredprred.
Since such R*d form an open cover of X™4, there is a unique isomor-
phism Yy in (2.35) with Y4|grea = Yo g for all zg, R, To r as above.
Proposition 2.30 follows.

7. Equivariant d-critical loci

Next we prove Propositions 2.43 and 2.44 from §2.6.

7.1. Proof of Proposition 2.43. For part (a), suppose (X,s) is an
algebraic d-critical locus over K equivariant under a good action g :
G x X — X of an algebraic K-torus G, with character y : G — G,
and let z € X. As pu is good, there exists a G-invariant affine open
neighbourhood R’ of x in X. Choose a closed embedding (yl, CYK)
R < AX. Then y,opu: G x R — Al is regular, so as H° (OGXR/) =
HO(Oc;) ® HO((’)R/) we may write yq o u(7y,7) = e, 2l (y)yb(r) with
:G — Al and ya R’ — A' regular, fora =1,..., K.

DeﬁneV (ra=1,...,K,b=1,... L>KCH0(Oy)t0bethe
finite-dimensional K-vector subspace of H O(Oy) generated by the 9.
Then V is G-invariant, and contains y1,...,Yx as y, = Zb 1T b(1)-90.
As G is a torus, V decomposes as a direct sum of 1-dimensional G-
representations, so we may choose a basis v1,...,v) for V with v, o
w(y, 1) = Ka(y)va(r) for all v € G, r € R and a = 1,..., M, where
ke : G — Gy, is a character of G. Then ¢ := (v1,...,0) : R <
AM = V* is a closed embedding, since (v1,...,vx) : R — AKX is and
v1,...,Vg €V, and is G-equivariant under the obvious linear G-action
on AM given by v : (21,...,2m) — (K1(7)21, - -, ka(Y)200).-

Let I C Klz1,...,2nm] be the ideal of functions vanishing on i'(R’).
Then I is G-invariant, as i'(R’) is, so as G is a torus we can choose a
finite set of G-equivariant generators hq,...,hy for I, with hy(y-r) =
Aa(V)ha(r) forall vy € G, r € R and a=1,...,N, where A\, : G = G,,
is a character of G. Then

Ty () (7 (R')) =Ker [0 dhalir(e): Tio) AM — @Y1 dh(ToA) i)
Choose a minimal subset {hal, e ap} C{hq,.. hN} such that

Ty (7' (R')) =Ker [@; 1 dhay i () : Tir ) AM — @y A, (ToAY) i) -
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Then P = N — dim Ty (,)i'(R') = N —dim T, X, and dhg,,...,dhs, are
linearly independent at i'(z). Define U’ to be the closed K-subscheme of

AM defined by hgy = -+ = hap = 0. Then#/(R') C U’ as hay, -+, hap €
I, and U’ is G-invariant as the h,, are G-equivariant, and U’ is smooth
of dimension N — P = dim T, X near i'(z) as dhg,,...,dh,, are linearly

independent at ' (z).

Let U C U’ be the open K-subscheme of points where U’ is smooth
of dimension dim7,X. Then U is G-invariant, smooth of dimension
dim T, X, and quasi-affine, so that i/(z) € U. As U is smooth it is
normal, so by Lemma 2.42 we can choose a G-invariant affine open
neighbourhood U” of i'(z) in U. Define R” = i'~1(U") and i" := i |gn
R" — U”. Then R” is an open neighbourhood of x in X, as R’ is,
i/(R') CU’', and U” is an open neighbourhood of ¢/(z) in U’. Also ¢" is
a closed embedding as i’ is, so R” is affine. And R” is G-invariant as
U" is and 7' is G-equivariant, so i’ is G-equivariant.

Write I v C HO(Opr) for the G-invariant ideal of functions on U”
vanishing on the closed subscheme i"(R") C U”. Theorem 2.1(i) gives
a sheaf morphism tpr yv. As R”,U” are affine this descends to global
sections, giving

(crrgm)s : HO(Sx|rr) — H(Oyn) /Lo .

Thus (¢pr )« (S|rr) € HO(OUN)/I%%,,7U,,, so we can choose regular f” :
U" — A' with (tgr yn)u(s|pr) = f" + I%z”,U”- Now by assumption s is
G-equivariant with character x : G = Gy, so (g7 y)«(s|gr) is also G-
equivariant with character y as R” is G-invariant and 7"/ G-equivariant.
By averaging f” over the G-action twisted by x, we can suppose that f”
is also G-equivariant with character x, that is, f”(y-u”) = x(v) - f"(u")
for all y € G and v € U".

Since dim U” = dim T, X, Proposition 2.7 now shows that we can
choose Zariski open U C U” and R = i"~}(U) C R such that (R, U, f,1)
is a critical chart on (X,s) with # € R, where f = f”|y and i = ¢"|R.
The proof of this in §4.1 works by showing that the closed subschemes
i"(R") C Crit(f") C U” satisfy " (R") = Crit(f") near ¢"(z) in U”, and
restricting to an open neighbourhood U of z in U” such that UNi”(R") =
UNCrit(f"). Take U to be the largest such neighbourhood, the union of
all open V C U” with VN’ (R") = VNCrit(f”). Then U is G-invariant,
as i (R"), Crit(f") are. Writing p for the G-action on U, it follows that
(R,U, f,i), p is a G-equivariant critical chart on (X, s) with € R and
dimU = dim 7T, X. This proves Proposition 2.43(a).

For part (b), suppose that for all x € X there exists a G-equivariant
critical chart (R, U, f,i),p on (X, s) with x € R. For such x, (R, U, f,1),
p, note that as U is smooth it is normal, so by Lemma 2.42 there is a
G-invariant affine open neighbourhood U’ of zin X. Asi: R U is a
G-equivariant closed embedding, R’ = i~'(U’) is a G-equivariant affine
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open neighbourhood of x in X. Since such R’ exist for all z € X, p is
a good G-action.

7.2. Proof of Proposition 2.44. Proposition 2.44 is a G-equivariant
version of the K-scheme case of Theorem 2.20, which is proved in §5.2.
The proof relies on Proposition 2.19, which is proved in §5.1. We will
explain how to modify the proofs in §5.1-§5.2 to include G-equivariance
throughout.

Suppose (X, s) is an algebraic d-critical locus over K equivariant un-
der the action p : G x X — X of an algebraic K-torus G, with char-
acter x : G — Gy, and let (R, U, f,7),p be a G-equivariant critical
chart on (X,s). For the equivariant version of Proposition 2.19, we
must show that for each x € X there exists a G-equivariant subchart
(R,U', f',i") C (R,U, f,i) with 2 € R/, and a G-equivariant embed-
ding ® : (R, U’ f',i') — (S,V,g,j) into a G-equivariant critical chart
(S,V,g,7),0 on (X,s), such that G acts linearly on A", inducing the
G-action o on the G-invariant Zariski open subset V' C A".

To prove this, modify §5.1 as follows. Take the affine open neigh-
bourhood U of x in U to be G-invariant, which is possible by Lemma
2.42. Then take ® : U — A" to be G-equivariant under a linear G-
action on A", which is possible as in §7.1. Choose V C A" to be G-
invariant, and the étale coordinates (z1,...,2,) on V with ®({0)NV =
{zm+1 = -+ = z, = 0} to be G-equivariant, that is, they should sat-
isfy zo(7 - v) = Ko(7)za(v) for all v € G, v € V and a = 1,...,n,
where kg : G — G,, is a character of G. Choose h : V — Al to be
G-equivariant with character y, which is possible as for f” in §7.1.

Now in the expression (5.1) for g : V' — Al the terms 22 for a =
m 4+ 1,...,n are not G-equivariant. To deal with this, replace V' by
V' =V x A" where A" has coordinates (w41, ...,w,) and G
acts on A" by

Vi (Wit wn) = (B () T X)Wt 15 - -5 Fn ()T X () wn).

Replace ® : U - V by ® = ®x0:U — V' =V x A"™, and
g:V — Alin (5.1) by ¢’ : V! — Al given by

g'(v, (Wit - - ,wn)) = h(v) — ZZ:m—l—l za(v) - g—i(v)

2
+ % ZZ,meH 2a (V) 2p(v) - %{ib(”) + ZZ:m—i—l Za (V)W

Then each term in (7.1) is G-equivariant with character x. The rest of
the proof in §5.1 may be made G-equivariant in a similar way to §7.1.
To modify the K-scheme case of §5.2 to include G-equivariance, we
choose i(z) € U' C U to be G-invariant and © : U' — V with @ o =
jlr to be G-equivariant, which is possible as V' C A™ is open and G-
invariant with G-action induced from a linear G-action on A™. Then
fl—go® € (I }%U,)2 is G-equivariant with character y. So when as

(7.1)



A CLASSICAL MODEL FOR DERIVED CRITICAL LOCI 361

in (5.6) we write f' = go© + rysy + -+ + 85, we choose the r, to
be G-equivariant with some character A\, : G — G,,, and the s, to be
G-equivariant with the complementary character A, 'x, fora = 1,...,n.
Then W = V x A?" has G-action

Y (v, (r1, . T, 81, 80))
(v, A )rss - A (DT, AT ()X ()15 A ()X (7))

and the rest of the proof in §5.2 may be made G-equivariant in a similar
way to §7.1. This proves Proposition 2.44.

8. Extension to Artin stacks

Finally we prove Proposition 2.54 and Theorem 2.56 from §2.8.

8.1. Proof of Proposition 2.54. Part (i) is a general property of
global sections of sheaves on Artin stacks, applied to the sheaf Sx. For
(ii), the ‘only if” and ‘and then’ parts are immediate from Definition 2.53.
To prove the ‘if’ part, suppose s € H° (Sg() with (T , t*(s)) an algebraic
d-critical locus, and let v : V. — X be smooth with V' a K-scheme.
Then T x4 x, V is an algebraic K-space. Choosing a surjective étale
morphism W — T x; x , V with W a K-scheme gives a 2-commutative
diagram in Artg:

W Vv
Y !
T X,

where 7 : W — T and 7wy : W — V are smooth as v,¢ are, and
my : W — V is surjective as t and W — T x; x, V are.

We have 75.(s(T',t)) = s(W, tonp) = s(W,vomy ) =y, (s(V,v)) as s €
H°(Sx). Since (T,t*(s)) = (T,s(T,t)) is an algebraic d-critical locus
and 7 : W — T is smooth, the first part of Proposition 2.8 shows that
(W, m5.(s(T,t))) is an algebraic d-critical locus. Thus (W, 7} (s(V,v)))
is an algebraic d-critical locus, and 7y : W — V is smooth and sur-
jective, so the second part of Proposition 2.8 shows that (V, s(V, v)) is
an algebraic d-critical locus. As this holds for all smooth v : V' — X,
(X, s) is a d-critical stack, proving the ‘if” part.

8.2. Proof of Theorem 2.56. Let v : U — X be a smooth atlas for X.
Then U x, x4, U is an algebraic K-space, so we may choose a surjective
étale morphism V' — U x, x, U with V' a K-scheme. Composing with
the projections U x, x., U — U gives smooth surjective morphisms
w1, mo : V. — U and a 2-morphism 7 : uwom = uomy. We may now
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form a unique 2-commutative diagram in Arty:

m23 \
2
w 1 U

such that W is the limit of the rest of the diagram. The 2-morphisms in
(8.1) are n in the square faces with X a vertex, and identities in the faces
with W a vertex. That is, we have a diagram of 1- and 2-morphisms in
Artg:

uoﬂloﬁl2ﬁdu0ﬂ'20ﬂ'12:uoﬂ'loﬂ-23

Pidm +id
(82) || nxidrgy n "r23\U/
uo7T2O7T31<:uo7rloﬂ-31:uoﬂ'goﬂ'gg,

and W being the limit implies that composition around the rectangle
gives the identity 2-morphism. By writing W as an iterated fibre prod-
uct W~ (V xy V) X@wxy vy V, we see that W is represented by a
K-scheme. Also mys, o3, w31 are smooth and surjective, as u, 71, w9 are.

Taking reduced K-subschemes and K-substacks in (8.1) gives another
2-commutative diagram in Artgk:

red

Ured

(8.3)

where again ™4 : U — X'd is a smooth atlas, 714, ried . yred
Ured are smooth, and so on.

Now line bundles on X™? are examples of Cartesian (quasi-coherent)
sheaves on X4 in the lisse-étale topology [20, Def. 12.3], which in the
notation of Proposition 2.49 means that A(¢,n) is an isomorphism for
all diagrams (2.39). As in [20, Prop. 12.4.5], Cartesian sheaves can be
described completely in terms of the diagram (8.3) for u™d : Ured —
X'ed a smooth atlas. For line bundles on X™9, this means that the
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following functor is an equivalence of categories:
(8.4)
F: (category of line bundles £ on X red) —

(category of pairs (L, \), where L — U™ is a line bundle and

A (e (L) — (754)* (L) an isomorphism of line bundles on V™4,
with (735" (0) o (7559)"(A) 0 (715" (V) = idggesamgy- 2y 00 W),
mapping F : L — (L(U, u), L(mg,m) Lo L(m1,idyor,)) on objects.
Define a line bundle L on U™ by

(8.5) L=Kysuu® (AtopTU/X)

as in (2.44). In an analogue of (2.46), for each point p € U™ C U
define an isomorphism i, by the commutative diagram

®72
Ured>

2
Ii]p Ky swulp @ (A Ople/XH@
Hp
(86) (A Tu(p)X) ® o2
P

(AT 0) 0 (ArTy )|

(Amp jsou(p) (X)) ®

where k), is as in (2.31), and o, as in Theorem 2.56(c).
By Remark 2.51(i)—(v) we have exact sequences of vector bundles of
mixed rank on V) and an isomorphism 7,:

0 (T )

TuoT * T * 0

V/X VU
(8.7) = |-
0 ——mUy/x) ——=TyX" —=Tyjg —=0.

Define an isomorphism A : (7}°4)*(L) — (75°4)*(L) by the commutative
diagram of line bundles on V4.

(i) (L) (i) (L) - (1) (K ©
(ﬂ'éed)* ((AtopTu/* )®*2)
1d®(Ar, \Vred) \
(8.8) d *(Klisam*) - (5 red)*frfivs(uu)m o
re ( A opTu ) (AtopTV;U) red ® (AtopT 2 )|de
lld®( W1|Vrei) T,r2®1dl
(TN (Ky ) ® T, ®(APY,) KVS(Vuow1)2®
(APTTEr @ (AT ) S (APTER )]0
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with Y, Tr, as in (2.35), and 7, as in (8.7), and A, : (Apr[}‘/*X)
(AtOPTg;Z)_1®AtOPT$;§g *for 1 = 1,2 are induced by taking top exterior
powers in the rows of (8.7).

Let v € V™ C V, so that 7 (v),m2(v) € U with n(v) : 7 (v) =
ma(v) € X. We claim that the following diagram commutes:

(W{ed)*(LNU:L’m (v) (AtOpT* X)®2® (Ampjﬁouom(v) (X))®2

/J'Trl (v) uem (U)
(8.9) le Horgy (v) 77(”)*¢
2 2
(75 (L) o =Llra) > (AP T ) X) 7@ (AP T0s0m, (1) (X))

To see this, combine (8.6), the restriction of (8.8) to v, equation (2.36)
applied to give expressions for Y, |, and Tr,|,, and natural compatibil-
ities between the isomorphisms obtained by taking top exterior powers
in the sequences (2.34), (2.45), and (8.7).

Now let w € W4, Using (8.9) at mia(w), mas(w), w31 (w) and restric-

tion to w of composition round (8.2) being the identity shows that

)‘|7r31(w) © /\|7r23(w) © )‘|7r12 (w) — id : L|7r107r12 (w) — L|7r107r12(w)'

This is the restriction of (54)*(\) o (7351)*(\) o (7151)*(\) = id in
(8.4) to w. Since Wred is reduced, the equation is implied by its
restriction to each point w of W*d. Thus (7554)*(A) o (m5d)*(N) o
(TrsH*(\) = id( red ored ) () So by (8.4), there exists a line bundle
Kxs on X red unlque up to canonical isomorphism, with an isomor-
phism x : F(Kx,s) — (L, \).

We claim that K x s is independent up to canonical isomorphism of the
choices of smooth atlas u : U — X above and étale cover V- — U x,, x ,U
above. To see this, note that if «/,U’, V' are alternative choices, then
setting U” := UL U’ and v” := w1 v/ gives a third atlas v” : U" — X,
and we may choose V" — U” x» x » U"” to be V over U X, x,, U and
V" over U’ X, x v U' and arbitrary over U X, x . U and U’ X x,, U,
yielding K 3’(73 — Xred Now K }’Qs satisfies properties on the analogue
of (8.3) for U" = U IIU’. Restricting to the subdiagram generated by
U C U" shows K , satisfies the same properties as Kx s, and restricting
to that generated by U’ shows K’  satisfies the same properties as Ky .
So we have canonical isomorphisms Kx s = K 3/( 2K 3( o

For Theorem 2.56(a), let x € X. As u: U — X is surjective, there
exists p € U and a 2-isomorphism ¢ : z = u(p). Define an isomorphism
Kz as in (2.43) by the commutative diagram of isomorphisms

Kxsla — (AT X) %0 (AtPTs0, (X))
(8.10) e -

KX,s|u( X‘|P> L|p (AtOpT*( )X)®2® (AtOpjﬁou(p)(X))®2,
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for p, as in (8.6). To see k, is independent of the choice of p, ¢, suppose
P, ¢ are alternate choices. As V' — U x,, x, U is surjective, there exists
v e V™ CV with 71 (v) = p, ma(v) = p’ and n(v) = ¢’ 0 p~!. Compare
(8.10) for p,¢ and p’,¢" with (8.9) for v, and use the commutative
diagram

Kx slu(p) e Lip
/o —1 " >\11
o) Ny o)
KX,s|u(p’) L’p’a

as x : F(Kx;) =, (L, A) is an isomorphism in the lower category in
(8.4). By the same argument as for Kx 5, we can show &, is independent
of the choice of u, U,V above. This proves Theorem 2.56(a).

For part (b), suppose t : T — X is a smooth l-morphism, and set
U':=THU and v := tTu. Then v’ : U’ — X is another smooth atlas
for X, so as above replacing U, u by U’, v/ yields a canonically isomorphic
line bundle K’ , & Ky, with an isomorphism X' : F'(KY () — (L', \')
for L', N given by the analogues of (8.5), (8.8) for U’, v/, so that in line
bundles on 774 IT U4 we have

X' Kl (THU ) = Ky (T, 6) 1KY (Uu) —
* -2 * -2
(K151 © (APTE) ) Frea ] T Ky s(ua) @ (AP ) [Freea -

Since Kx ¢ was only determined up to canonical isomorphism anyway,
we may take K’ . = Kx s, and X'|yrea = X. Define I'ry 1= X/|vea; as in
(2.44). Tt is a natural isomorphism, proving Theorem 2.56(b).

For part (c¢), continuing to use the same notation, let p € T' red C T so
that t(p) :=top € X. As above the definition of r,,) is independent of
the choice of atlas u : U — X, so we can define it using v’ : U’ — X for
U'=T1IU and «' =t u, for the point p € T4 C Tred [T yred = y/red
and 2-morphism ¢ = idy,) : t(p) = t(p). Combining (8.10) at = = t(p)
with I'ry := X/|7wea and the definition (8.6) of j, shows that (2.46)
commutes. This completes the proof of Theorem 2.56.
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